2 research outputs found

    Improving the connectivity resilience of a telecommunications network to multiple link failures through a third-party network

    Get PDF
    Currently, telecommunication networks are fully resilient, in terms of connectivity, to single link failures. On the other hand, multiple simultaneous link failures are becoming a concern to network operators, mainly due to malicious human activities. Full connectivity resilience to multiple link failures is too costly and other solutions must be envisaged. For a given maximum number of simultaneous link failures, the connectivity resilience metric adopted here is the minimum number of network node pairs that can still communicate for any set of failing links. In this work, the connectivity resilience to multiple link failures is improved by resorting to a third-party network for temporary additional connectivity (i.e., while the failing links are not reestablished). In such a solution, some nodes must be selected to act as gateway nodes between the two networks. For a given network topology and a given number of gateway nodes, the aim is to select the most appropriate gateway nodes so that the connectivity resilience is improved as much as possible. To address this problem, a Gateway Node Selection (GNS) algorithm is proposed where the most damaging sets of failing links are identified and, then, a set cover problem type is defined and solved to select the gateway nodes. The computational results demonstrate the effectiveness of the proposed GNS algorithm over two well-known network topologies.publishe

    The minimum cost D-geodiverse anycast routing with optimal selection of anycast nodes

    Get PDF
    Consider a geographical network with associated link costs. In anycast routing, network nodes are partitioned into two sets - the source nodes and the anycast (destination) nodes - and the traffic of each source node is routed towards the anycast node providing the minimum routing cost path. By considering a given geographical distance parameter D, we define an anycast routing solution as D-geodiverse when for each source node there are two routing paths, each one towards a different anycast node, such that the geographical distance between the two paths is at least D. Such a solution has the property that any disaster with a coverage diameter below D affecting one routing path (but without involving neither the source node nor its entire set of outgoing links) cannot affect the other path, enhancing in this way the network robustness to natural disasters. The selection of the anycast nodes has an impact both on the feasibility and cost of a D- geodiverse anycast routing solution. Therefore, for a desired number of anycast nodes R, we define the minimum cost D- geodiverse anycast problem (MCD-GAP) aiming to identify a set of R anycast nodes that obtain a minimum cost routing solution. The problem is defined based on integer linear programming and is extended to consider the existence of vulnerability regions in the network, i.e., by imposing the geographical distance D only between network elements belonging to the same region. We present computational results showing the tradeoff between D and R in the optimal solutions obtained with and without vulnerability regions.This paper is based upon work from COST Action CA15127 ("Resilient communication services protecting end user applications from disaster-based failures ‒ RECODIS") supported by COST Association. The work was financially supported by FCT, Portugal, under the projects CENTRO- 01-0145-FEDER-029312 and UID/EEA/50008/2013 and through the postdoc grant SFRH/BPD/ 111503/2015.publishe
    corecore