39,302 research outputs found

    Inverse scattering results for manifolds hyperbolic near infinity

    Full text link
    We study the inverse resonance problem for conformally compact manifolds which are hyperbolic outside a compact set. Our results include compactness of isoresonant metrics in dimension two and of isophasal negatively curved metrics in dimension three. In dimensions four or higher we prove topological finiteness theorems under the negative curvature assumption.Comment: 25 pages. v3: Minor corrections, references adde

    On the quantum inverse scattering problem

    Full text link
    A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0) = P, the permutation operator) for the quantum R-matrix solving the Yang-Baxter equation, it applies not only to most known integrable fundamental lattice models (such as Heisenberg spin chains) but also to lattice models with arbitrary number of impurities and to the so-called fused lattice models (including integrable higher spin generalizations of Heisenberg chains). Our method is then applied to several important examples like the sl(n) XXZ model, the XYZ spin-1/2 chain and also to the spin-s Heisenberg chains.Comment: Latex, 20 page

    Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions

    Get PDF
    We investigate a time harmonic acoustic scattering problem by a penetrable inclusion with compact support embedded in the free space. We consider cases where an observer can produce incident plane waves and measure the far field pattern of the resulting scattered field only in a finite set of directions. In this context, we say that a wavenumber is a non-scattering wavenumber if the associated relative scattering matrix has a non trivial kernel. Under certain assumptions on the physical coefficients of the inclusion, we show that the non-scattering wavenumbers form a (possibly empty) discrete set. Then, in a second step, for a given real wavenumber and a given domain D, we present a constructive technique to prove that there exist inclusions supported in D for which the corresponding relative scattering matrix is null. These inclusions have the important property to be impossible to detect from far field measurements. The approach leads to a numerical algorithm which is described at the end of the paper and which allows to provide examples of (approximated) invisible inclusions.Comment: 20 pages, 7 figure
    • …
    corecore