1,576 research outputs found

    CRYSTALS-Dilithium: A lattice-based digital signature scheme

    Get PDF
    In this paper, we present the lattice-based signature scheme Dilithium, which is a component of the CRYSTALS (Cryptographic Suite for Algebraic Lattices) suite that was submitted to NIST’s call for post-quantum cryptographic standards. The design of the scheme avoids all uses of discrete Gaussian sampling and is easily implementable in constant-time. For the same security levels, our scheme has a public key that is 2.5X smaller than the previously most efficient lattice-based schemes that did not use Gaussians, while having essentially the same signature size. In addition to the new design, we significantly improve the running time of the main component of many lattice-based constructions – the number theoretic transform. Our AVX2-based implementation results in a speed-up of roughly a factor of 2 over the previously best algorithms that appear in the literature. The techniques for obtaining this speed-up also have applications to other lattice-based schemes

    Digital Signatures with Memory-Tight Security in the Multi-Challenge Setting

    Get PDF
    The standard security notion for digital signatures is single-challenge (SC) EUF-CMA security, where the adversary outputs a single message-signature pair and wins if it is a forgery. Auerbach et al. (CRYPTO 2017) introduced memory-tightness of reductions and argued that the right security goal in this setting is actually a stronger multi-challenge (MC) definition, where an adversary may output many message-signature pairs and wins if at least one is a forgery. Currently, no construction from simple standard assumptions is known to achieve full tightness with respect to time, success probability, and memory simultaneously. Previous works showed that memory-tight signatures cannot be achieved via certain natural classes of reductions (Auerbach et al., CRYPTO 2017; Wang et al., EUROCRYPT 2018). These impossibility results may give the impression that the construction of memory-tight signatures is difficult or even impossible. We show that this impression is false, by giving the first constructions of signature schemes with full tightness in all dimensions in the MC setting. To circumvent the known impossibility results, we first introduce the notion of canonical reductions in the SC setting. We prove a general theorem establishing that every signature scheme with a canonical reduction is already memory-tightly secure in the MC setting, provided that it is strongly unforgeable, the adversary receives only one signature per message, and assuming the existence of a tightly-secure pseudorandom function. We then achieve memory-tight many-signatures-per-message security in the MC setting by a simple additional generic transformation. This yields the first memory-tightly, strongly EUF-CMA-secure signature schemes in the MC setting. Finally, we show that standard security proofs often already can be viewed as canonical reductions. Concretely, we show this for signatures from lossy identification schemes (Abdalla et al., EUROCRYPT 2012), two variants of RSA Full-Domain Hash (Bellare and Rogaway, EUROCRYPT 1996), and two variants of BLS signatures (Boneh et al., ASIACRYPT 2001)

    From Identification to Signatures, Tightly: A Framework and Generic Transforms

    Get PDF
    This paper provides a framework to treat the problem of building signature schemes from identification schemes in a unified and systematic way. The outcomes are (1) Alternatives to the Fiat-Shamir transform that, applied to trapdoor identification schemes, yield signature schemes with tight security reductions to standard assumptions (2) An understanding and characterization of existing transforms in the literature. One of our transforms has the added advantage of producing signatures shorter than produced by the Fiat-Shamir transform. Reduction tightness is important because it allows the implemented scheme to use small parameters (thereby being as efficient as possible) while retaining provable security

    Memory Lower Bounds of Reductions Revisited

    Get PDF
    In Crypto 2017, Auerbach et al. initiated the study on memory-tight reductions and proved two negative results on the memory-tightness of restricted black-box reductions from multi-challenge security to single-challenge security for signatures and an artificial hash function. In this paper, we revisit the results by Auerbach et al. and show that for a large class of reductions treating multi-challenge security, it is impossible to avoid loss of memory-tightness unless we sacrifice the efficiency of their running-time. Specifically, we show three lower bound results. Firstly, we show a memory lower bound of natural black-box reductions from the multi-challenge unforgeability of unique signatures to any computational assumption. Then we show a lower bound of restricted reductions from multi-challenge security to single-challenge security for a wide class of cryptographic primitives with unique keys in the multi-user setting. Finally, we extend the lower bound result shown by Auerbach et al. treating a hash function to one treating any hash function with a large domain

    Boneh-Franklin Identity Based Encryption Revisited

    Get PDF
    Contains fulltext : 33216.pdf (preprint version ) (Open Access

    Critical Perspectives on Provable Security: Fifteen Years of Another Look Papers

    Get PDF
    We give an overview of our critiques of “proofs” of security and a guide to our papers on the subject that have appeared over the past decade and a half. We also provide numerous additional examples and a few updates and errata

    Enhancing Privacy in Cryptographic Protocols

    Get PDF
    For the past three decades, a wide variety of cryptographic protocols have been proposed to solve secure communication problems even in the presence of adversaries. The range of this work varies from developing basic security primitives providing confidentiality and authenticity to solving more complex, application-specific problems. However, when these protocols are deployed in practice, a significant challenge is to ensure not just security but also privacy throughout these protocols' lifetime. As computer-based devices are more widely used and the Internet is more globally accessible, new types of applications and new types of privacy threats are being introduced. In addition, user privacy (or equivalently, key privacy) is more likely to be jeopardized in large-scale distributed applications because the absence of a central authority complicates control over these applications. In this dissertation, we consider three relevant cryptographic protocols facing user privacy threats when deployed in practice. First, we consider matchmaking protocols among strangers to enhance their privacy by introducing the "durability" and "perfect forward privacy" properties. Second, we illustrate the fragility of formal definitions with respect to password privacy in the context of password-based authenticated key exchange (PAKE). In particular, we show that PAKE protocols provably meeting the existing formal definitions do not achieve the expected level of password privacy when deployed in the real world. We propose a new definition for PAKE that is tightly connected to what is actually desired in practice and suggest guidelines for realizing this definition. Finally, we answer to a specific privacy question, namely whether privacy properties of symmetric-key encryption schemes obtained by non-tight reduction proofs are retained in the real world. In particular, we use the privacy notion of "multi-key hiding" property and show its non-tight relation with the IND−CPApropertyofsymmetric−keyschemes.WeusetheexperimentalresultbyGligoretal.toshowhowarealattackbreaksthe"multi−keyhiding"propertyofIND-CPA property of symmetric-key schemes. We use the experimental result by Gligor et al. to show how a real attack breaks the "multi-key hiding" property of IND-CPA symmetric-key encryption schemes with high probability in practice. Finally, we identify schemes that satisfy the "multi-key hiding" and enhance key privacy in the real world

    Highly Efficient Key Exchange Protocols with Optimal Tightness: Enabling real-world deployments with theoretically sound parameters

    Get PDF
    In this paper we give nearly-tight reductions for modern implicitly authenticated Diffie-Hellman protocols in the style of the Signal and Noise protocols which are extremely simple and efficient. Unlike previous approaches, the combination of nearly-tight proofs and efficient protocols enables the first real-world instantiations for which the parameters can be chosen in a theoretically sound manner. Our reductions have only a linear loss in the number of users, implying that our protocols are more efficient than the state of the art when instantiated with theoretically sound parameters. We also prove that our security proofs are optimal: a linear loss in the number of users is unavoidable for our protocols for a large and natural class of reductions
    • 

    corecore