227 research outputs found

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    On the Performance of Millimeter Wave-based RF-FSO Multi-hop and Mesh Networks

    Full text link
    This paper studies the performance of multi-hop and mesh networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the networks' outage probability and ergodic achievable rates. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we determine the minimum number of the transmit antennas in the RF link such that the same rate is supported in the RF- and the FSO-based hops. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, HARQ can effectively improve the outage probability/energy efficiency, and compensate for the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual-hop networks, outage probability of 10^{-4} and code rate of 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to cases with open-loop communication, by 13 and 17 dB, respectively.Comment: Submitted to IEEE Transactions on Wireless Communication

    On the Performance of Millimeter Wave-based RF-FSO Links with HARQ Feedback

    Full text link
    This paper studies the performance of hybrid radio-frequency (RF) and free-space optical (FSO) links in the cases with and without hybrid automatic repeat request (HARQ). Considering millimeter wave (mmwave) characteristics in the RF link and pointing errors in the FSO link, we derive closed-form expressions for the message decoding probabilities as well as the throughput and the outage probability of the RF-FSO setups. We also evaluate the effect of various parameters such as power amplifiers efficiency, different transmission techniques in the FSO link, pointing errors in the FSO link as well as different coherence times/symbol rates of the RF and the FSO links on the throughput and outage probability. The results show the efficiency of the RF-FSO links in different conditions. Moreover, the HARQ can effectively improve the outage probability/energy efficiency, and compensate the effect of hardware impairments in RF-FSO links.Comment: Under review in PIMRC'201

    On the Throughput of Large-but-Finite MIMO Networks using Schedulers

    Full text link
    This paper studies the sum throughput of the {multi-user} multiple-input-single-output (MISO) networks in the cases with large but finite number of transmit antennas and users. Considering continuous and bursty communication scenarios with different users' data request probabilities, we derive quasi-closed-form expressions for the maximum achievable throughput of the networks using optimal schedulers. The results are obtained in various cases with different levels of interference cancellation. Also, we develop an efficient scheduling scheme using genetic algorithms (GAs), and evaluate the effect of different parameters, such as channel/precoding models, number of antennas/users, scheduling costs and power amplifiers' efficiency, on the system performance. Finally, we use the recent results on the achievable rates of finite block-length codes to analyze the system performance in the cases with short packets. As demonstrated, the proposed GA-based scheduler reaches (almost) the same throughput as in the exhaustive search-based optimal scheduler, with substantially less implementation complexity. Moreover, the power amplifiers' inefficiency and the scheduling delay affect the performance of the scheduling-based systems significantly

    Performance analysis of RF-FSO multi-hop networks

    Get PDF
    We study the performance of multi-hop networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in the cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the network outage probability. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we present mappings between the performance of RF-FSO multi-hop networks and the ones using only the RF- or the FSO-based communication, in the sense that with appropriate parameter settings the same outage probability is achieved in these setups. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, the HARQ can effectively improve the outage probability/energy efficiency, and compensate the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual-hop networks, outage probability 10^{-4} and code rate 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to the cases with no HARQ, by 13 and 17 dB, respectively.Comment: Presented at IEEE WCNC 201

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog

    Reliability performance analysis of half-duplex and full-duplex schemes with self-energy recycling

    Get PDF
    Abstract. Radio frequency energy harvesting (EH) has emerged as a promising option for improving the energy efficiency of current and future networks. Self-energy recycling (sER), as a variant of EH, has also appeared as a suitable alternative that allows to reuse part of the transmitted energy via an energy loop. In this work we study the benefits of using sER in terms of reliability improvements and compare the performance of full-duplex (FD) and half-duplex (HD) schemes when using multi-antenna techniques at the base station side. We also assume a model for the hardware energy consumption, making the analysis more realistic since most works only consider the energy spent on transmission. In addition to spectral efficiency enhancements, results show that FD performs better than HD in terms of reliability. We maximize the outage probability of the worst link in the network using a dynamic FD scheme where a small base station (SBS) determines the optimal number of antennas for transmission and reception. This scheme proves to be more efficient than classical HD and FD modes. Results show that the use of sER at the SBS introduces changes on the distribution of antennas for maximum fairness when compared to the setup without sER. Moreover, we determine the minimum number of active radio frequency chains required at the SBS in order to achieve a given reliability target
    • …
    corecore