1,846 research outputs found

    On a Multiple-Access in a Vector Disjunctive Channel

    Full text link
    We address the problem of increasing the sum rate in a multiple-access system from [1] for small number of users. We suggest an improved signal-code construction in which in case of a small number of users we give more resources to them. For the resulting multiple-access system a lower bound on the relative sum rate is derived. It is shown to be very close to the maximal value of relative sum rate in [1] even for small number of users. The bound is obtained for the case of decoding by exhaustive search. We also suggest reduced-complexity decoding and compare the maximal number of users in this case and in case of decoding by exhaustive search.Comment: 5 pages, 4 figures, submitted to IEEE ISIT 201

    Real-Time Dispersion Code Multiple Access (DCMA) for High-Speed Wireless Communications

    Full text link
    We model, demonstrate and characterize Dispersion Code Multiple Access (DCMA) and hence show the applicability of this purely analog and real-time multiple access scheme to high-speed wireless communications. We first mathematically describe DCMA and show the appropriateness of Chebyshev dispersion coding in this technology. We next provide an experimental proof-of-concept in a 2 X 2 DCMA system. Finally,we statistically characterize DCMA in terms of bandwidth, dispersive group delay swing, system dimension and signal-to-noise ratio

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Application of Expurgated PPM to Indoor Visible Light Communications - Part I: Single-User Systems

    Full text link
    Visible light communications (VLC) in indoor environments suffer from the limited bandwidth of LEDs as well as from the inter-symbol interference (ISI) imposed by multipath. In this work, transmission schemes to improve the performance of indoor optical wireless communication (OWC) systems are introduced. Expurgated pulse-position modulation (EPPM) is proposed for this application since it can provide a wide range of peak to average power ratios (PAPR) needed for dimming of the indoor illumination. A correlation decoder used at the receiver is shown to be optimal for indoor VLC systems, which are shot noise and background-light limited. Interleaving applied on EPPM in order to decrease the ISI effect in dispersive VLC channels can significantly decrease the error probability. The proposed interleaving technique makes EPPM a better modulation option compared to PPM for VLC systems or any other dispersive OWC system. An overlapped EPPM pulse technique is proposed to increase the transmission rate when bandwidth-limited white LEDs are used as sources.Comment: Journal of Lightwave Technolog

    Power Control In Optical CDMA

    Get PDF
    Optical CDMA (OCDMA) is the multiplexing technique over the fiber optics medium to increase the number of users and this is a step towards all optical Passive Optical Networks (PON). Optical OFDM, WDM and Optical TDM have also been studied in this thesis which are also candidates to all optical passive optical networks. One of the main features of Optical CDMA over other multiplexing techniques is that it has smooth capacity. The capacity of OCDMA is constrained by the interference level. Hence, when some users are offline or requesting less data rates, then the capacity will be increased in the network. Same feature could be obtained in other multiplexing techniques, but they will need much more complicated online organizers. However, in OCDMA it is critical to adjust the transmission power to the right value; otherwise, near-far problem may greatly reduce the network capacity and performance. In this thesis Power control concepts are analyzed in optical CDMA star networks. It is applied so that the QoS of the network get enhanced and all users after the power control have their desired signal to interference (SIR) value. Moreover, larger number of users can be accommodated in the network. Centralized power control algorithm is considered for this thesis. In centralized algorithm noiseless case and noisy case have been studied. In this thesis several simulations have been performed which shows the QoS difference before and after power control. The simulation results are validated also by the theoretical computation.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore