32,317 research outputs found

    Colored-Gaussian Multiple Descriptions: Spectral and Time-Domain Forms

    Get PDF
    It is well known that Shannon's rate-distortion function (RDF) in the colored quadratic Gaussian (QG) case can be parametrized via a single Lagrangian variable (the "water level" in the reverse water filling solution). In this work, we show that the symmetric colored QG multiple-description (MD) RDF in the case of two descriptions can be parametrized in the spectral domain via two Lagrangian variables, which control the trade-off between the side distortion, the central distortion, and the coding rate. This spectral-domain analysis is complemented by a time-domain scheme-design approach: we show that the symmetric colored QG MD RDF can be achieved by combining ideas of delta-sigma modulation and differential pulse-code modulation. Specifically, two source prediction loops, one for each description, are embedded within a common noise shaping loop, whose parameters are explicitly found from the spectral-domain characterization.Comment: Accepted for publications in the IEEE Transactions on Information Theory. Title have been shortened, abstract clarified, and paper significantly restructure

    Multiple-Description Coding by Dithered Delta-Sigma Quantization

    Get PDF
    We address the connection between the multiple-description (MD) problem and Delta-Sigma quantization. The inherent redundancy due to oversampling in Delta-Sigma quantization, and the simple linear-additive noise model resulting from dithered lattice quantization, allow us to construct a symmetric and time-invariant MD coding scheme. We show that the use of a noise shaping filter makes it possible to trade off central distortion for side distortion. Asymptotically as the dimension of the lattice vector quantizer and order of the noise shaping filter approach infinity, the entropy rate of the dithered Delta-Sigma quantization scheme approaches the symmetric two-channel MD rate-distortion function for a memoryless Gaussian source and MSE fidelity criterion, at any side-to-central distortion ratio and any resolution. In the optimal scheme, the infinite-order noise shaping filter must be minimum phase and have a piece-wise flat power spectrum with a single jump discontinuity. An important advantage of the proposed design is that it is symmetric in rate and distortion by construction, so the coding rates of the descriptions are identical and there is therefore no need for source splitting.Comment: Revised, restructured, significantly shortened and minor typos has been fixed. Accepted for publication in the IEEE Transactions on Information Theor

    Erasure Multiple Descriptions

    Full text link
    We consider a binary erasure version of the n-channel multiple descriptions problem with symmetric descriptions, i.e., the rates of the n descriptions are the same and the distortion constraint depends only on the number of messages received. We consider the case where there is no excess rate for every k out of n descriptions. Our goal is to characterize the achievable distortions D_1, D_2,...,D_n. We measure the fidelity of reconstruction using two distortion criteria: an average-case distortion criterion, under which distortion is measured by taking the average of the per-letter distortion over all source sequences, and a worst-case distortion criterion, under which distortion is measured by taking the maximum of the per-letter distortion over all source sequences. We present achievability schemes, based on random binning for average-case distortion and systematic MDS (maximum distance separable) codes for worst-case distortion, and prove optimality results for the corresponding achievable distortion regions. We then use the binary erasure multiple descriptions setup to propose a layered coding framework for multiple descriptions, which we then apply to vector Gaussian multiple descriptions and prove its optimality for symmetric scalar Gaussian multiple descriptions with two levels of receivers and no excess rate for the central receiver. We also prove a new outer bound for the general multi-terminal source coding problem and use it to prove an optimality result for the robust binary erasure CEO problem. For the latter, we provide a tight lower bound on the distortion for \ell messages for any coding scheme that achieves the minimum achievable distortion for k messages where k is less than or equal to \ell.Comment: 48 pages, 2 figures, submitted to IEEE Trans. Inf. Theor

    Integer-Forcing Source Coding

    Full text link
    Integer-Forcing (IF) is a new framework, based on compute-and-forward, for decoding multiple integer linear combinations from the output of a Gaussian multiple-input multiple-output channel. This work applies the IF approach to arrive at a new low-complexity scheme, IF source coding, for distributed lossy compression of correlated Gaussian sources under a minimum mean squared error distortion measure. All encoders use the same nested lattice codebook. Each encoder quantizes its observation using the fine lattice as a quantizer and reduces the result modulo the coarse lattice, which plays the role of binning. Rather than directly recovering the individual quantized signals, the decoder first recovers a full-rank set of judiciously chosen integer linear combinations of the quantized signals, and then inverts it. In general, the linear combinations have smaller average powers than the original signals. This allows to increase the density of the coarse lattice, which in turn translates to smaller compression rates. We also propose and analyze a one-shot version of IF source coding, that is simple enough to potentially lead to a new design principle for analog-to-digital converters that can exploit spatial correlations between the sampled signals.Comment: Submitted to IEEE Transactions on Information Theor

    Source-Channel Diversity for Parallel Channels

    Full text link
    We consider transmitting a source across a pair of independent, non-ergodic channels with random states (e.g., slow fading channels) so as to minimize the average distortion. The general problem is unsolved. Hence, we focus on comparing two commonly used source and channel encoding systems which correspond to exploiting diversity either at the physical layer through parallel channel coding or at the application layer through multiple description source coding. For on-off channel models, source coding diversity offers better performance. For channels with a continuous range of reception quality, we show the reverse is true. Specifically, we introduce a new figure of merit called the distortion exponent which measures how fast the average distortion decays with SNR. For continuous-state models such as additive white Gaussian noise channels with multiplicative Rayleigh fading, optimal channel coding diversity at the physical layer is more efficient than source coding diversity at the application layer in that the former achieves a better distortion exponent. Finally, we consider a third decoding architecture: multiple description encoding with a joint source-channel decoding. We show that this architecture achieves the same distortion exponent as systems with optimal channel coding diversity for continuous-state channels, and maintains the the advantages of multiple description systems for on-off channels. Thus, the multiple description system with joint decoding achieves the best performance, from among the three architectures considered, on both continuous-state and on-off channels.Comment: 48 pages, 14 figure

    Multiple Description Quantization via Gram-Schmidt Orthogonalization

    Full text link
    The multiple description (MD) problem has received considerable attention as a model of information transmission over unreliable channels. A general framework for designing efficient multiple description quantization schemes is proposed in this paper. We provide a systematic treatment of the El Gamal-Cover (EGC) achievable MD rate-distortion region, and show that any point in the EGC region can be achieved via a successive quantization scheme along with quantization splitting. For the quadratic Gaussian case, the proposed scheme has an intrinsic connection with the Gram-Schmidt orthogonalization, which implies that the whole Gaussian MD rate-distortion region is achievable with a sequential dithered lattice-based quantization scheme as the dimension of the (optimal) lattice quantizers becomes large. Moreover, this scheme is shown to be universal for all i.i.d. smooth sources with performance no worse than that for an i.i.d. Gaussian source with the same variance and asymptotically optimal at high resolution. A class of low-complexity MD scalar quantizers in the proposed general framework also is constructed and is illustrated geometrically; the performance is analyzed in the high resolution regime, which exhibits a noticeable improvement over the existing MD scalar quantization schemes.Comment: 48 pages; submitted to IEEE Transactions on Information Theor

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/
    • …
    corecore