4,329 research outputs found

    On the Stability of Random Multiple Access with Feedback Exploitation and Queue Priority

    Full text link
    In this paper, we study the stability of two interacting queues under random multiple access in which the queues leverage the feedback information. We derive the stability region under random multiple access where one of the two queues exploits the feedback information and backs off under negative acknowledgement (NACK) and the other, higher priority, queue will access the channel with probability one. We characterize the stability region of this feedback-based random access protocol and prove that this derived stability region encloses the stability region of the conventional random access (RA) scheme that does not exploit the feedback information

    Band Allocation for Cognitive Radios with Buffered Primary and Secondary Users

    Full text link
    In this paper, we study band allocation of Ms\mathcal{M}_s buffered secondary users (SUs) to Mp\mathcal{M}_p orthogonal primary licensed bands, where each primary band is assigned to one primary user (PU). Each SU is assigned to one of the available primary bands with a certain probability designed to satisfy some specified quality of service (QoS) requirements for the SUs. In the proposed system, only one SU is assigned to a particular band. The optimization problem used to obtain the stability region's envelope (closure) is shown to be a linear program. We compare the stability region of the proposed system with that of a system where each SU chooses a band randomly with some assignment probability. We also compare with a fixed (deterministic) assignment system, where only one SU is assigned to one of the primary bands all the time. We prove the advantage of the proposed system over the other systems.Comment: Accepted in WCNC 201

    On Orthogonal Band Allocation for Multi-User Multi-Band Cognitive Radio Networks: Stability Analysis

    Full text link
    In this work, we study the problem of band allocation of MsM_s buffered secondary users (SUs) to MpM_p primary bands licensed to (owned by) MpM_p buffered primary users (PUs). The bands are assigned to SUs in an orthogonal (one-to-one) fashion such that neither band sharing nor multi-band allocations are permitted. In order to study the stability region of the secondary network, the optimization problem used to obtain the stability region's envelope (closure) is established and is shown to be a linear program which can be solved efficiently and reliably. We compare our orthogonal allocation system with two typical low-complexity and intuitive band allocation systems. In one system, each cognitive user chooses a band randomly in each time slot with some assignment probability designed such that the system maintained stable, while in the other system fixed (deterministic) band assignment is adopted throughout the lifetime of the network. We derive the stability regions of these two systems. We prove mathematically, as well as through numerical results, the advantages of our proposed orthogonal system over the other two systems.Comment: Conditional Acceptance in IEEE Transactions on Communication

    Cognitive Communications in White Space: Opportunistic Scheduling, Spectrum Shaping and Delay Analysis

    Get PDF
    abstract: A unique feature, yet a challenge, in cognitive radio (CR) networks is the user hierarchy: secondary users (SU) wishing for data transmission must defer in the presence of active primary users (PUs), whose priority to channel access is strictly higher.Under a common thread of characterizing and improving Quality of Service (QoS) for the SUs, this dissertation is progressively organized under two main thrusts: the first thrust focuses on SU's throughput by exploiting the underlying properties of the PU spectrum to perform effective scheduling algorithms; and the second thrust aims at another important QoS performance of the SUs, namely delay, subject to the impact of PUs' activities, and proposes enhancement and control mechanisms. More specifically, in the first thrust, opportunistic spectrum scheduling for SU is first considered by jointly exploiting the memory in PU's occupancy and channel fading. In particular, the underexplored scenario where PU occupancy presents a {long} temporal memory is taken into consideration. By casting the problem as a partially observable Markov decision process, a set of {multi-tier} tradeoffs are quantified and illustrated. Next, a spectrum shaping framework is proposed by leveraging network coding as a {spectrum shaper} on the PU's traffic. Such shaping effect brings in predictability of the primary spectrum, which is utilized by the SUs to carry out adaptive channel sensing by prioritizing channel access order, and hence significantly improve their throughput. On the other hand, such predictability can make wireless channels more susceptible to jamming attacks. As a result, caution must be taken in designing wireless systems to balance the throughput and the jamming-resistant capability. The second thrust turns attention to an equally important performance metric, i.e., delay performance. Specifically, queueing delay analysis is conducted for SUs employing random access over the PU channels. Fluid approximation is taken and Poisson driven stochastic differential equations are applied to characterize the moments of the SUs' steady-state queueing delay. Then, dynamic packet generation control mechanisms are developed to meet the given delay requirements for SUs.Dissertation/ThesisPh.D. Electrical Engineering 201

    Cross-layer Scheduling with Feedback for QoS Support

    Get PDF
    AbstractNext-Generation Networks (NGNs) will support Quality of Service (QoS) over a mixed wired and wireless IP-based infrastructure. A relative model of service differentiation in Differentiated Services architecture is a scalable solution for delivering multimedia traffic. However, considering the dynamic nature of radio channels typically, it is difficult to achieve a given service provisioning working at the IP and lower layers separately as in the classical approach, without a run-time adaptation of the system towards the target quality. This work describes an IP cross-layer scheduler able to support a Proportional Differentiation Model (PDM) for delay guarantees with content-awareness, also over wireless. The key idea is to leverage feedbacks from the lower layers about the actual delays experienced by packets in order to tune at run-time the priority of the IP service classes in a closed-loop control with the objective of supporting a PDM at the network node on the whole, considering the cumulative latency in crossing the first three layers of the protocol stack, as relevant for the end-user. A simulation analysis demonstrates the prominent improvements in reliability and robustness of the proposal in the case of time-variant performance of the MAC and PHY layers with respect to the classical non-cross-layer approach and the open- loop control. Furthermore, considerations on the required functionality and likely deployment scenarios highlight the scalability and backward compatibility of the designed solution in supporting the concept of network transparency for the delivering of critical applications, as of the e-health domain

    TOWARD LAYERLESS COOPERATION AND RATE CONTROL IN WIRELESS MULTI-ACCESS CHANNELS

    Get PDF
    In wireless networks, a transmitted message may successfully reach multiple nodes simultaneously, which is referred to as the Wireless Multicast Advantage. As such, intermediate nodes have the ability to capture the message and then contribute to the communication toward the ultimate destination by cooperatively relaying the received message. This enables cooperative communication, which has been shown to counteract the effects of fading and attenuation in wireless networks. There has been a great deal of work addressing cooperative methods and their resulting benefits, but most of the work to date has focused on physical-layer techniques and on information-theoretic considerations. While compatible with these, the main thrust of this dissertation is to explore a new approach by implementing cooperation at the network layer. First, we illustrate the idea in a multi-hop multi-access wireless network, in which a set of source users generate packets to deliver to a common destination. An opportunistic and dynamic cooperation protocol is proposed at the network level, where users with a better channel to the destination have the capability and option to relay packets from users that are farther afield. The proposed mode of cooperation protocol is new and relies on MAC/Network-level of relaying, but also takes into account physical-layer parameters that determine successful reception at the destination and/or the relay. We explicitly characterize the stable throughput and average delay performance. Our analysis reveals that cooperation at the network layer leads to substantial performance gains for both performance metrics. Next, on top of the network-layer cooperation, we investigate enhanced cooperative techniques that exploit more sophisticated physical-layer properties. Specifically, we consider dynamic decode-and-forward, superposition coding, and multipacket reception capability, and we quantify the extent to which the enhancement techniques can further improve the stable throughput region. Then we revert back to the two-user multi-access channel with single-packet reception, which has been extensively studied in the case of no cooperation. After cooperation is permitted between the two users, we revisit the relationship between the stability region and the throughput region under both scheduled access and random access schemes. Finally, we shift our focus from the packet-level to bit-level multi-access channels. By exploiting the bit-nature of a packet, we create a bridge between traditional physical-layer-based transmission rates and classical MAC/Network-layer-based throughput rates. We first obtain the closed form of the stability region in bits/slot. Then, as a separate, but related issue, we look at the minimum delivery time policy; for any initial queue size vector, the optimal policy that empties all bits in the system within the shortest time is characterized
    • …
    corecore