4,497 research outputs found

    Spanning Properties of Theta-Theta Graphs

    Full text link
    We study the spanning properties of Theta-Theta graphs. Similar in spirit with the Yao-Yao graphs, Theta-Theta graphs partition the space around each vertex into a set of k cones, for some fixed integer k > 1, and select at most one edge per cone. The difference is in the way edges are selected. Yao-Yao graphs select an edge of minimum length, whereas Theta-Theta graphs select an edge of minimum orthogonal projection onto the cone bisector. It has been established that the Yao-Yao graphs with parameter k = 6k' have spanning ratio 11.67, for k' >= 6. In this paper we establish a first spanning ratio of 7.827.82 for Theta-Theta graphs, for the same values of kk. We also extend the class of Theta-Theta spanners with parameter 6k', and establish a spanning ratio of 16.7616.76 for k' >= 5. We surmise that these stronger results are mainly due to a tighter analysis in this paper, rather than Theta-Theta being superior to Yao-Yao as a spanner. We also show that the spanning ratio of Theta-Theta graphs decreases to 4.64 as k' increases to 8. These are the first results on the spanning properties of Theta-Theta graphs.Comment: 20 pages, 6 figures, 3 table

    The Price of Order

    Full text link
    We present tight bounds on the spanning ratio of a large family of ordered θ\theta-graphs. A θ\theta-graph partitions the plane around each vertex into mm disjoint cones, each having aperture θ=2π/m\theta = 2 \pi/m. An ordered θ\theta-graph is constructed by inserting the vertices one by one and connecting each vertex to the closest previously-inserted vertex in each cone. We show that for any integer k1k \geq 1, ordered θ\theta-graphs with 4k+44k + 4 cones have a tight spanning ratio of 1+2sin(θ/2)/(cos(θ/2)sin(θ/2))1 + 2 \sin(\theta/2) / (\cos(\theta/2) - \sin(\theta/2)). We also show that for any integer k2k \geq 2, ordered θ\theta-graphs with 4k+24k + 2 cones have a tight spanning ratio of 1/(12sin(θ/2))1 / (1 - 2 \sin(\theta/2)). We provide lower bounds for ordered θ\theta-graphs with 4k+34k + 3 and 4k+54k + 5 cones. For ordered θ\theta-graphs with 4k+24k + 2 and 4k+54k + 5 cones these lower bounds are strictly greater than the worst case spanning ratios of their unordered counterparts. These are the first results showing that ordered θ\theta-graphs have worse spanning ratios than unordered θ\theta-graphs. Finally, we show that, unlike their unordered counterparts, the ordered θ\theta-graphs with 4, 5, and 6 cones are not spanners

    On a family of strong geometric spanners that admit local routing strategies

    Full text link
    We introduce a family of directed geometric graphs, denoted \paz, that depend on two parameters λ\lambda and θ\theta. For 0θ<π20\leq \theta<\frac{\pi}{2} and 1/2<λ<1{1/2} < \lambda < 1, the \paz graph is a strong tt-spanner, with t=1(1λ)cosθt=\frac{1}{(1-\lambda)\cos\theta}. The out-degree of a node in the \paz graph is at most 2π/min(θ,arccos12λ)\lfloor2\pi/\min(\theta, \arccos\frac{1}{2\lambda})\rfloor. Moreover, we show that routing can be achieved locally on \paz. Next, we show that all strong tt-spanners are also tt-spanners of the unit disk graph. Simulations for various values of the parameters λ\lambda and θ\theta indicate that for random point sets, the spanning ratio of \paz is better than the proven theoretical bounds

    A signature invariant for knotted Klein graphs

    Full text link
    We define some signature invariants for a class of knotted trivalent graphs using branched covers. We relate them to classical signatures of knots and links. Finally, we explain how to compute these invariants through the example of Kinoshita's knotted theta graph.Comment: 23 pages, many figures. Comments welcome ! Historical inaccuracy fixe
    corecore