9,112 research outputs found

    Deploying AI Frameworks on Secure HPC Systems with Containers

    Full text link
    The increasing interest in the usage of Artificial Intelligence techniques (AI) from the research community and industry to tackle "real world" problems, requires High Performance Computing (HPC) resources to efficiently compute and scale complex algorithms across thousands of nodes. Unfortunately, typical data scientists are not familiar with the unique requirements and characteristics of HPC environments. They usually develop their applications with high-level scripting languages or frameworks such as TensorFlow and the installation process often requires connection to external systems to download open source software during the build. HPC environments, on the other hand, are often based on closed source applications that incorporate parallel and distributed computing API's such as MPI and OpenMP, while users have restricted administrator privileges, and face security restrictions such as not allowing access to external systems. In this paper we discuss the issues associated with the deployment of AI frameworks in a secure HPC environment and how we successfully deploy AI frameworks on SuperMUC-NG with Charliecloud.Comment: 6 pages, 2 figures, 2019 IEEE High Performance Extreme Computing Conferenc

    Artificial Intelligence in the Context of Human Consciousness

    Get PDF
    Artificial intelligence (AI) can be defined as the ability of a machine to learn and make decisions based on acquired information. AI’s development has incited rampant public speculation regarding the singularity theory: a futuristic phase in which intelligent machines are capable of creating increasingly intelligent systems. Its implications, combined with the close relationship between humanity and their machines, make achieving understanding both natural and artificial intelligence imperative. Researchers are continuing to discover natural processes responsible for essential human skills like decision-making, understanding language, and performing multiple processes simultaneously. Artificial intelligence attempts to simulate these functions through techniques like artificial neural networks, Markov Decision Processes, Human Language Technology, and Multi-Agent Systems, which rely upon a combination of mathematical models and hardware

    Energetics of the brain and AI

    Full text link
    Does the energy requirements for the human brain give energy constraints that give reason to doubt the feasibility of artificial intelligence? This report will review some relevant estimates of brain bioenergetics and analyze some of the methods of estimating brain emulation energy requirements. Turning to AI, there are reasons to believe the energy requirements for de novo AI to have little correlation with brain (emulation) energy requirements since cost could depend merely of the cost of processing higher-level representations rather than billions of neural firings. Unless one thinks the human way of thinking is the most optimal or most easily implementable way of achieving software intelligence, we should expect de novo AI to make use of different, potentially very compressed and fast, processes
    • …
    corecore