24,487 research outputs found

    On approximate decidability of minimal programs

    Full text link
    An index ee in a numbering of partial-recursive functions is called minimal if every lesser index computes a different function from ee. Since the 1960's it has been known that, in any reasonable programming language, no effective procedure determines whether or not a given index is minimal. We investigate whether the task of determining minimal indices can be solved in an approximate sense. Our first question, regarding the set of minimal indices, is whether there exists an algorithm which can correctly label 1 out of kk indices as either minimal or non-minimal. Our second question, regarding the function which computes minimal indices, is whether one can compute a short list of candidate indices which includes a minimal index for a given program. We give some negative results and leave the possibility of positive results as open questions

    Finding subsets of positive measure

    Full text link
    An important theorem of geometric measure theory (first proved by Besicovitch and Davies for Euclidean space) says that every analytic set of non-zero ss-dimensional Hausdorff measure Hs\mathcal H^s contains a closed subset of non-zero (and indeed finite) Hs\mathcal H^s-measure. We investigate the question how hard it is to find such a set, in terms of the index set complexity, and in terms of the complexity of the parameter needed to define such a closed set. Among other results, we show that given a (lightface) Σ11\Sigma^1_1 set of reals in Cantor space, there is always a Π10(O)\Pi^0_1(\mathcal{O}) subset on non-zero Hs\mathcal H^s-measure definable from Kleene's O\mathcal O. On the other hand, there are Π20\Pi^0_2 sets of reals where no hyperarithmetic real can define a closed subset of non-zero measure.Comment: This is an extended journal version of the conference paper "The Strength of the Besicovitch--Davies Theorem". The final publication of that paper is available at Springer via http://dx.doi.org/10.1007/978-3-642-13962-8_2

    Pure patterns of order 2

    Get PDF
    We provide mutual elementary recursive order isomorphisms between classical ordinal notations, based on Skolem hulling, and notations from pure elementary patterns of resemblance of order 22, showing that the latter characterize the proof-theoretic ordinal of the fragment Π11\Pi^1_1-CA0\mathrm{CA}_0 of second order number theory, or equivalently the set theory KPl0\mathrm{KPl}_0. As a corollary, we prove that Carlson's result on the well-quasi orderedness of respecting forests of order 22 implies transfinite induction up to the ordinal of KPl0\mathrm{KPl}_0. We expect that our approach will facilitate analysis of more powerful systems of patterns.Comment: corrected Theorem 4.2 with according changes in section 3 (mainly Definition 3.3), results unchanged. The manuscript was edited, aligned with reference [14] (moving former Lemma 3.5 there), and argumentation was revised, with minor corrections in (the proof of) Theorem 4.2; results unchanged. Updated revised preprint; to appear in the APAL (2017

    Graph-Based Shape Analysis Beyond Context-Freeness

    Full text link
    We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both

    Tracking chains revisited

    Full text link
    The structure C2:=(1∞,≤,≤1,≤2){\cal C}_2:=(1^\infty,\le,\le_1,\le_2), introduced and first analyzed in Carlson and Wilken 2012 (APAL), is shown to be elementary recursive. Here, 1∞1^\infty denotes the proof-theoretic ordinal of the fragment Π11\Pi^1_1-CA0\mathrm{CA}_0 of second order number theory, or equivalently the set theory KPl0\mathrm{KPl}_0, which axiomatizes limits of models of Kripke-Platek set theory with infinity. The partial orderings ≤1\le_1 and ≤2\le_2 denote the relations of Σ1\Sigma_1- and Σ2\Sigma_2-elementary substructure, respectively. In a subsequent article we will show that the structure C2{\cal C}_2 comprises the core of the structure R2{\cal R}_2 of pure elementary patterns of resemblance of order 22. In Carlson and Wilken 2012 (APAL) the stage has been set by showing that the least ordinal containing a cover of each pure pattern of order 22 is 1∞1^\infty. However, it is not obvious from Carlson and Wilken 2012 (APAL) that C2{\cal C}_2 is an elementary recursive structure. This is shown here through a considerable disentanglement in the description of connectivity components of ≤1\le_1 and ≤2\le_2. The key to and starting point of our analysis is the apparatus of ordinal arithmetic developed in Wilken 2007 (APAL) and in Section 5 of Carlson and Wilken 2012 (JSL), which was enhanced in Carlson and Wilken 2012 (APAL) specifically for the analysis of C2{\cal C}_2.Comment: The text was edited and aligned with reference [10], Lemma 5.11 was included (moved from [10]), results unchanged. Corrected Def. 5.2 and Section 5.3 on greatest immediate ≤1\le_1-successors. Updated publication information. arXiv admin note: text overlap with arXiv:1608.0842

    Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma

    Full text link
    Dickson's Lemma is a simple yet powerful tool widely used in termination proofs, especially when dealing with counters or related data structures. However, most computer scientists do not know how to derive complexity upper bounds from such termination proofs, and the existing literature is not very helpful in these matters. We propose a new analysis of the length of bad sequences over (N^k,\leq) and explain how one may derive complexity upper bounds from termination proofs. Our upper bounds improve earlier results and are essentially tight

    A fast semi-direct least squares algorithm for hierarchically block separable matrices

    Full text link
    We present a fast algorithm for linear least squares problems governed by hierarchically block separable (HBS) matrices. Such matrices are generally dense but data-sparse and can describe many important operators including those derived from asymptotically smooth radial kernels that are not too oscillatory. The algorithm is based on a recursive skeletonization procedure that exposes this sparsity and solves the dense least squares problem as a larger, equality-constrained, sparse one. It relies on a sparse QR factorization coupled with iterative weighted least squares methods. In essence, our scheme consists of a direct component, comprised of matrix compression and factorization, followed by an iterative component to enforce certain equality constraints. At most two iterations are typically required for problems that are not too ill-conditioned. For an M×NM \times N HBS matrix with M≥NM \geq N having bounded off-diagonal block rank, the algorithm has optimal O(M+N)\mathcal{O} (M + N) complexity. If the rank increases with the spatial dimension as is common for operators that are singular at the origin, then this becomes O(M+N)\mathcal{O} (M + N) in 1D, O(M+N3/2)\mathcal{O} (M + N^{3/2}) in 2D, and O(M+N2)\mathcal{O} (M + N^{2}) in 3D. We illustrate the performance of the method on both over- and underdetermined systems in a variety of settings, with an emphasis on radial basis function approximation and efficient updating and downdating.Comment: 24 pages, 8 figures, 6 tables; to appear in SIAM J. Matrix Anal. App

    On the information carried by programs about the objects they compute

    Get PDF
    In computability theory and computable analysis, finite programs can compute infinite objects. Presenting a computable object via any program for it, provides at least as much information as presenting the object itself, written on an infinite tape. What additional information do programs provide? We characterize this additional information to be any upper bound on the Kolmogorov complexity of the object. Hence we identify the exact relationship between Markov-computability and Type-2-computability. We then use this relationship to obtain several results characterizing the computational and topological structure of Markov-semidecidable sets
    • …
    corecore