1,763 research outputs found

    An Experiment in Ping-Pong Protocol Verification by Nondeterministic Pushdown Automata

    Get PDF
    An experiment is described that confirms the security of a well-studied class of cryptographic protocols (Dolev-Yao intruder model) can be verified by two-way nondeterministic pushdown automata (2NPDA). A nondeterministic pushdown program checks whether the intersection of a regular language (the protocol to verify) and a given Dyck language containing all canceling words is empty. If it is not, an intruder can reveal secret messages sent between trusted users. The verification is guaranteed to terminate in cubic time at most on a 2NPDA-simulator. The interpretive approach used in this experiment simplifies the verification, by separating the nondeterministic pushdown logic and program control, and makes it more predictable. We describe the interpretive approach and the known transformational solutions, and show they share interesting features. Also noteworthy is how abstract results from automata theory can solve practical problems by programming language means.Comment: In Proceedings MARS/VPT 2018, arXiv:1803.0866

    A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties

    Full text link
    We propose a simultaneous quantum secure direct communication scheme between one party and other three parties via four-particle GHZ states and swapping quantum entanglement. In the scheme, three spatially separated senders, Alice, Bob and Charlie, transmit their secret messages to a remote receiver Diana by performing a series local operations on their respective particles according to the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell measurement results, Diana can infer the secret messages. If a perfect quantum channel is used, the secret messages are faithfully transmitted from Alice, Bob and Charlie to Diana via initially shared pairs of four-particle GHZ states without revealing any information to a potential eavesdropper. As there is no transmission of the qubits carrying the secret message in the public channel, it is completely secure for the direct secret communication. This scheme can be considered as a network of communication parties where each party wants to communicate secretly with a central party or server.Comment: 4 pages, no figur

    Quantum Conference

    Full text link
    A notion of quantum conference is introduced in analogy with the usual notion of a conference that happens frequently in today's world. Quantum conference is defined as a multiparty secure communication task that allows each party to communicate their messages simultaneously to all other parties in a secure manner using quantum resources. Two efficient and secure protocols for quantum conference have been proposed. The security and efficiency of the proposed protocols have been analyzed critically. It is shown that the proposed protocols can be realized using a large number of entangled states and group of operators. Further, it is shown that the proposed schemes can be easily reduced to protocol for multiparty quantum key distribution and some earlier proposed schemes of quantum conference, where the notion of quantum conference was different.Comment: 12 pages, 1 figur

    Deterministic secure direct communication using GHZ states and swapping quantum entanglement

    Full text link
    We present a deterministic secure direct communication scheme via entanglement swapping, where a set of ordered maximally entangled three-particle states (GHZ states), initially shared by three spatially separated parties, Alice, Bob and Charlie, functions as a quantum information channel. After ensuring the safety of the quantum channel, Alice and Bob apply a series local operations on their respective particles according to the tripartite stipulation and the secret message they both want to send to Charlie. By three Alice, Bob and Charlie's Bell measurement results, Charlie is able to infer the secret messages directly. The secret messages are faithfully transmitted from Alice and Bob to Charlie via initially shared pairs of GHZ states without revealing any information to a potential eavesdropper. Since there is not a transmission of the qubits carrying the secret message between any two of them in the public channel, it is completely secure for direct secret communication if perfect quantum channel is used.Comment: 9 pages, no figur

    Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols

    Full text link
    Cryptanalysis is an important branch in the study of cryptography, including both the classical cryptography and the quantum one. In this paper we analyze the security of two three-party quantum key distribution protocols (QKDPs) proposed recently, and point out that they are susceptible to a simple and effective attack, i.e. the dense-coding attack. It is shown that the eavesdropper Eve can totally obtain the session key by sending entangled qubits as the fake signal to Alice and performing collective measurements after Alice's encoding. The attack process is just like a dense-coding communication between Eve and Alice, where a special measurement basis is employed. Furthermore, this attack does not introduce any errors to the transmitted information and consequently will not be discovered by Alice and Bob. The attack strategy is described in detail and a proof for its correctness is given. At last, the root of this insecurity and a possible way to improve these protocols are discussed.Comment: 6 pages, 3 figure

    Quantum Secure Telecommunication Systems

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing
    corecore