16 research outputs found

    Cryptography from tensor problems

    Get PDF
    We describe a new proposal for a trap-door one-way function. The new proposal belongs to the "multivariate quadratic" family but the trap-door is different from existing methods, and is simpler

    SFLASHv3, a fast asymmetric signature scheme

    Get PDF
    SFLASH-v2 is one of the three asymmetric signature schemes recommended by the European consortium for low-cost smart cards. The latest implementation report published at PKC 2003 shows that SFLASH-v2 is the fastest signature scheme known. This is a detailed specification of SFLASH-v3 produced in 2003 for fear of v2 being broken. HOWEVER after detailed analysis by Chen Courtois and Yang [ICICS04], Sflash-v2 is not broken and we still recommend the previous version Sflash-v2, already recommended by Nessie, instead of this version

    Building Secure Public Key Encryption Scheme from Hidden Field Equations

    Get PDF
    Multivariate public key cryptography is a set of cryptographic schemes built from the NP-hardness of solving quadratic equations over finite fields, amongst which the hidden field equations (HFE) family of schemes remain the most famous. However, the original HFE scheme was insecure, and the follow-up modifications were shown to be still vulnerable to attacks. In this paper, we propose a new variant of the HFE scheme by considering the special equation x2=x defined over the finite field F3 when x=0,1. We observe that the equation can be used to further destroy the special structure of the underlying central map of the HFE scheme. It is shown that the proposed public key encryption scheme is secure against known attacks including the MinRank attack, the algebraic attacks, and the linearization equations attacks. The proposal gains some advantages over the original HFE scheme with respect to the encryption speed and public key size

    Cryptanalysis of multi-HFE

    Get PDF
    Multi-HFE (Chen et al., 2009) is one of cryptosystems whose public key is a set of multivariate quadratic forms over a finite field. Its quadratic forms are constructed by a set of multivariate quadratic forms over an extension field. Recently, Bettale et al. (2013) have studied the security of HFE and multi-HFE against the min-rank attack and found that multi-HFE is not more secure than HFE of similar size. In the present paper, we propose a new attack on multi-HFE by using a diagonalization approach. As a result, our attack can recover equivalent secret keys of multi-HFE in polynomial time for odd characteristic case. In fact, we experimentally succeeded to recover equivalent secret keys of several examples of multi-HFE in about fifteen seconds on average, which was recovered in about nine days by the min-rank attack

    Enhanced STS using Check Equation --Extended Version of the Signature scheme proposed in the PQCrypt2010--

    Get PDF
    We propose solutions to the problems which has been left in the Enhanced STS, which was proposed in the PQCrypto 2010. Enhanced STS signature scheme is dened as the public key with the Complementary STS structure, in which two STS public keys are symmetrically joined together. Or, the complementary STS is the public key where simply two STS public keys are joined together, without the protection with Check Equation. We discuss the following issues left in the Enhanced STS, which was prosented in the PQCrypt2010: (i) We implied that there may exist a way to cryptanalyze the Complementary STS structure. Although it has been proposed that the system be protected by Check Equations [35][37], in order to cope with an unknown attack, we did not show the concrete procedure. We show the actual procedure to cryptanalyze it and forge a signature. (ii) We assumed that the Check Equation should be changed every time a document is signed. This practice is not always allowed. We improved this matter. The Check Equation which was proposed in the PQCrypto 2010 dened the valid life as a function of the number of times the documents are signed, because the secret key of Check Equation is analyzed by collecting valid signatures. Now we propose a new method of integrating the Check Equation into the secret key and eliminate the risk of the hidden information drawn from the existing signature

    Proposal of a Signature Scheme based on STS Trapdoor

    Get PDF
    A New digital signature scheme based on Stepwise Triangular Scheme (STS) is proposed. The proposed trapdoor has resolved the vulnerability of STS and secure against both Gröbner Bases and Rank Attacks. In addition, as a basic trapdoor, it is more efficient than the existing systems. With the efficient implementation, the Multivariate Public Key Cryptosystems (MPKC) signature public key has the signature longer than the message by less than 25 %, for example

    PUBLIC KEY CRYPTOGRAPHY USING PERMUTATION P-POLYNOMIALS OVER FINITE FIELDS

    Get PDF
    In this paper we propose an efficient multivariate public key cryptosystem based on permutation p-polynomials over finite fields. We first characterize a class of permutation p-polynomials over finite fields FqmF_{q^{m}} and then construct a trapdoor function using this class of permutation p-polynomials. The complexity of encryption in our public key cryptosystem is O(m3)O(m^{3}) multiplication which is equivalent to other multivariate public key cryptosystems. However the decryption is much faster than other multivariate public key cryptosystems. In decryption we need O(m2)O(m^{2}) left cyclic shifts and O(m2)O(m^{2}) xor operations

    Proposal of PPS Multivariate Public Key Cryptosystems

    Get PDF
    In this paper we propose a new MPKC, called PPS, based on (i) the 2-layer nonlinear piece in hand method, (ii) PMI, and (iii) STS. The PPS is a specific MPKC obtained by applying the 2-layer nonlinear piece in hand method to STS, in the manner that the rank and randomness of the lower rank steps in the original secret polynomial vector of STS are enhanced by adding a perturbation polynomial vector and moreover PMI is used in the auxiliary part. The PPS overcomes the drawbacks of the three schemes by the advantage of the three schemes themself. Thus, PPS can be thought to be immune simultaneously from the algebraic attacks, such as the Groebner bases attacks, from the rank attacks, and from the differential attacks

    The Inverse S-Box, Non-linear Polynomial Relations and Cryptanalysis of Block Ciphers

    Full text link
    Abstract. This paper is motivated by the design of AES. We consider a broader question of cryptanalysis of block ciphers having very good non-linearity and diffusion. Can we expect anyway, to attacks such ciphers, clearly designed to render hopeless the main classical attacks? Recently a lot of attention have been drawn to the existence of multivariate algebraic relations for AES (and other) S-boxes. Then, if the XSL-type algebraic attacks on block ciphers [11] are shown to work well, the answer would be positive. In this paper we show that the answer is certainly positive for many other constructions of ciphers. This is not due to an algebraic attack, but to new types of generalised linear cryptanalysis, highly-nonlinear in flavour. We present several constructions of somewhat special practical block ciphers, seemingly satisfying all the design criteria of AES and using similar S-boxes, and yet being extremely weak. They can be generalised, and evolve into general attacks that can be applied- potentially- to any block cipher. Key Words: block ciphers, AES, Rijndael, interpolation attack on block ciphers, fractional transformations, homographic functions, multivariate equations
    corecore