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Abstract

Multi-HFE (Chen et al., 2009) is one of cryptosystems whose public key is a set of
multivariate quadratic forms over a finite field. Its quadratic forms are constructed by a set
of multivariate quadratic forms over an extension field. Recently, Bettale et al. (2013) have
studied the security of HFE and multi-HFE against the min-rank attack and found that
multi-HFE is not more secure than HFE of similar size. In the present paper, we propose a
new attack on multi-HFE by using a diagonalization approach. As a result, our attack can
recover equivalent secret keys of multi-HFE in polynomial time for odd characteristic case.
In fact, we experimentally succeeded to recover equivalent secret keys of several examples of
multi-HFE in about fifteen seconds on average, which was recovered in about nine days by
the min-rank attack.

Keywords. multivariate public-key cryptosystems, multi-HFE, post-quantum cryptography

1 Introduction

A multivariate public key cryptosystem (MPKC) is a cryptosystem whose public key is a set
of multivariate quadratic forms over a finite field. It is known that the problem of finding a
solution of a system of multivariate quadratic forms over a finite field is NP hard [19] and then
MPKC has been expected as a candidate of Post-Quantum Cryptography.

One of major ideas to design MPKCs is to generate quadratic forms by a polynomial map
over an extension field. Matsumoto-Imai’s scheme [26] and Hidden Field Equations (HFE) [28]
are representative schemes constructed in this way; in fact, their quadratic forms are derived
from a high degree univariate monomial/polynomial over an extension field. Multi-HFE [7]
is also one of such MPKCs, whose quadratic forms are constructed by a set of multivariate
quadratic forms over an extension field. While its security against the Grébner basis attack is
considered to be enough [7], Bettale et al. [4] found that multi-HFE is not more secure than HFE
of similar size against the min-rank attack. However, the complexity of the min-rank attack on
multi-HFE [4] highly depends on the number of variables of quadratic forms over the extension
field and then the min-rank attack is not feasible when its number is not small.

In the present paper, we propose a new attack on multi-HFE. Since the coefficient matrices
of the quadratic forms in the public key of multi-HFE are described by linear transforms of
diagonal type matrices, a key recovery attack using an approach similar to diagonalization of
matrices is available for odd characteristic case. Our attack is much faster than the min-rank
attack [4]. In fact, we succeeded to recover equivalent secret keys of an example of multi-HFE
in about fifteen seconds on average, which was recovered in about nine days by the min-rank
attack. Furthermore, different to the min-rank attack, the complexity of our attack does not
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Table 1: Examples of MPKCs constructed by a polynomial map over an extension field

‘ univariate ‘ multivariate
quadratic Square [8, 5] MFE [31, 11], multi-HFE [7, 4]
high degree | MI [26, 27, HFE [28], ZHFE [30] IIC [13, 18]

variants ‘ Sflash [1, 14], Quartz [29, 9], etc.

depend on the number of variables of the quadratic forms over the extension field. This means
that our attack can reduce the security of (not only multi-HFE but) most MPKCs constructed
by a “quadratic” map over an extension field.

2 Multi-HFE

2.1 Construction

A multivariate public key cryptosystem (MPKC) is a cryptosystem whose public key is a set of
multivariate quadratic forms

Al a) = > a,(-;-)l‘mjﬂL > bV + ),

1<i<j<n 1<i<n

ulars ) = 3 oyt Y 6l

1<i<j<n 1<i<n
over a finite field. We now describe the construction of multi-HFE.

Let n, N,r > 1 be integers with Nr = n and ¢ a power of prime. Denote by k a finite field
of order ¢ and K an extension field of k¥ with [K : k] = r. Then multi-HFE is as follows.

Multi-HFE

Secret Keys: Two affine maps 5,7 : k™ — k™ and a quadratic map G : KV — K.
G( X1, ., XN) = (G1( X1, o, XN),s o, ON (X, o, X))
Gi(X1,....Xn) = Y alxix;+ Y aVX 440,

1<i<j<N 1<i<N

gn(Xq,..., XN) = Z Ozgjv)Xin-l- Z ﬁi(N)XZ-—i—V(N),
1<i<j<N 1<i<N

where ozg-), i(l),v(l) € K.

Public Key: The quadratic map F:=To¢ 1oGopoS: k" — k™ where ¢ : k" — KV is
a one-to-one map.

-1
Fogn S & gN G gV 2 I,
Encryption: For a plain-text = € k™, the cipher y € k™ is y = F(x).

Decryption: First, compute ' := T~ (y) and put Y’ := ¢(y/). Next, find Z € KV with
G(Z)=Y'. Finally, let z := ¢~ 1(Z) and compute x = S~1(2).
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N quadratic equations of N variables over K

Multi-HFE . . .
————=|n quadratic equations of n variables over k

2.2 Efficiency

When N is small enough, G is inverted efficiently by the Grobner basis algorithm. See Table
1 of [7] for several examples of efficiency of multi-HFE with N = 2,3,4. However, when N is
not small enough and G is chosen randomly, the decryption by the Grébner basis algorithm is
not efficient. Then for such N, a special structure of G like MFE [31, 11] is required for fast
decryptions.

2.3 Security against known attacks

Direct attacks. The direct attack is to find a common solution = € k™ of f1(z) = y1,..., fu(x) =
yn for a given cipher text (yi,...,y,)! € k" directly. One of major approaches of the direct at-
tack is by using the Grobner basis algorithm [15, 16, 2, 3]. In [3], the complexity is estimated
by O(2m(3-31-3.62/log29)) if log, ¢ < n and {fi(x) — y1,. .., fu(®) — yn} is “semi-regular”. On
HFE, it is known that the “degree of regularity” of the system {fi(x) — y1,..., fu(z) — yn} is
bounded by (¢ — 1)[log D] + 2 [21, 10], where D is the degree of the central univariate poly-
nomial of HFE over an extension field. This means that HFE with smaller ¢ is less secure. For
multi-HFE, while there have been less results compared with HFE, the authors of [7] claimed
that the complexity against Grobner basis attack is almost same to the random systems.

Min-Rank attacks. The min-rank attacks have been proposed by Kipnis-Shamir [23] for HFE
and improved by Bettale-Faugere-Perret [4] for HFE and (generalized) multi-HFE. On HFE and
multi-HFE, it is known that the coefficient matrices of the quadratic forms Fy, ..., F}, are linear
sums of matrices of small rank over K (its rank is at most N on multi-HFE given in §2.1,). The
min-rank attack is to recover (partial information of) 7' by finding «a1,...,a, € K such that
a1 Fy + -+ + ap Fy, is of small rank. In Proposition 13 and its proof of [4], the complexity of the

min-rank attack is estimated by O (("}ﬁf)w) under several conditions, where 2 < w < 3 is

the exponent of the Gaussian elimination.

3 Proposed attacks on multi-HFE

In this section, we propose our attack on multi-HFE. First we prepare notations and several
lemmas to explain our attack.

3.1 Notations and lemmas

For integers ni,ng > 1, let My, n,(k) be the set of n; X ng matrices of k entries. Denote by
I, € M, (k) the identity matrix and by Oy, n, € My, n,(k) the zero matrix. For simplicity,
we write M, (k) := My, (k) and 0, := 0,,. For a matrix A = (asj);;, a polynomial g(t) =
co+ et + -+ - + cgt? and an integer [ > 1, put

AD = (aﬁj)i L V) =44l

,
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For square matrices A1 € My, (k),..., 4 € My, (k), A1 & --- & A; means
Ay
A1 @ DA = € My, +vpmy (K).
Ay
We now recall that n, N,r > 1 are integers with n = Nr, g is a power of prime, k is a finite

field of order ¢ and K is an extension field of k with [K : k] = r. Choose a basis {01,...,60,}
of K over k and a one-to-one map ¢ : k” — K. For simplicity, suppose that ¢ is chosen such

that ¢(a11,...,a1N,a21,-y---sarN) = (@1101 + - + @10y, ..., a1n01 + - + arn0;). Let Ly
be a subset of K™ with
N
Ly := {(al,...,aN,a‘f,...,...,a?\, 1) |ai,...,an GK},
¢ : Ly — KV a one-to-one map with 1 (al,...,aN,ag,...,...,a’]]\;il) = (ai1,...,an)? and
© € M,,(K) a matrix with
011N 021N 0,1n
i—1 G%IN 9§IN 0,?IN
@;:(eg JN) = . o .
1<4,5<r : : . :
0;17‘71[]\7 egrfllN o 627'71IN

Then the following lemma holds.

Lemma 3.1. The matriz © gives a one-to-one map from k™ to Ly and it holds ¢ = 1) 0 ©.

Proof. For a = (a11,...,a1N,a21,---,-..,a;N)" € k™, we have
r—1
Oa = (a1,...,an,al,........a4 ), (1)
where a; := a1;01 + - - - + a0, € K. Then O gives a map from k™ to Ly and we can easily check
that it is one-to-one. Furthermore, due to (1), we have ¥(0a) = (a,...,an)! = ¢(a). O

For an integer m > 1, define the sets A,;, C My (K),Byn C Myn(K),C C My (K) of
matrices as follows.

A
Al
A = : A€ Mym(K) Y,
A(q;_l)
B, = {(ng(q), .. 7B(fi“”) B e MmN(K)} ,
4 Cy C,
01(}1) OYI) . Cﬁ‘i)l

C:= ( ((;ZzlglodrHl)lgiJS’"

7*71)

Céqrfl) Céq

Lemma 3.2. For any m > 1, we have
A =0 M, (k), Bn=Mpun(k)-071, C=0-M,k)-0°% (2)
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Proof. First, choose A1, ..., A, € My, (k) arbitrary. We have

Ar A1 + -+ A0, A1+ -+ A0,

Ao A107 + -+ A,0° (A16, +"'+Ar-97-)(q)
ol | = | _ .

Ar A07 4k A0 (A101 + -+ A,0,) )

This means that © - My, ,,(k) C A;,. Since #(0 - My, (k) = #A, = ¢, we obtain A, =
Next, choose B € M,,, y(K) arbitrary. We have

r—1

(B,BD, - BY) 0 =(Bo + BOof + -+ B of
., BO, + BYgI 4 ... + B(q“l)eg“l)
Since B() = B and sz = 0;, we see that

(BO+BDY + -4 B o) W _p@gr 4.+ BO g 4 B,

—1

:BQZ + B(Q)Q? 4+ B(q7'71)9§1T
for 1 <1 < r. It is well-known that a € K satisfies a¢ = a if and only if a € k. This means

that By, - © C My, (k). It is clear that #B,, = # (an(k) . @_1) = ¢"". We then obtain
By, = My, (k) - 071

Finally, choose C,...,C, € My(K) arbitrary and put C := (C(q R

(j—% mod T)—H)lﬁi,jﬁr e C.
The (i,7)-block Cj; in C'- © is

)HQT !

_o@h (¢ 1) (¢"
C, =C(i +19 +C 07 + '+Cr it+1

(1—i mod r) (2—imod r)+1"J
r—1\ (@) i
— (C&@j +oot G 1) ! — (Cy,) o)

This means that C - © C A, = © - M,(k). Since #C = # (0 -Mu(k)-071) = ¢"°, we obtain

C=06- -M,(k)-07%L O
For a monic polynomial h(t) = co + c1t + - -+ + cq_1t?1 + 7 of degree d, let
0 -~ 0 —co
1 0 —C1
C(h) = :
0 1 —0;171

The matrix C'(h) is called the companion matrix of h(t). Then the following lemma holds.

Lemma 3.3. (see [22]) For a matriz H € M,,(k), let h(t) := det(t- I, — H) be the characteristic
polynomial of H and h(t) = hi(t)---hi(t) is the factorization of h(t) over k. Suppose that h(t)
is square free and put d; := deg(h;(t)) for 1 <i <. Then the following (i) and (ii) hold.
(i) There exists an invertible matriz P € M, (k) such that

P'HP=C(h) @ @®C(hy).
(i) If Pi,Py € M, (k) satisfy P,*HP, = Py 'HPy = C(h1) @ --- © C(ly), then there exist
matrices My € Mg, (k), ..., M; € Mg, (k) such that

Pl =M & - M,.
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3.2 Quadratic forms in multi-HFE

In this subsection, we study the structure of the quadratic forms in multi-HFE.
Recall that the public key of multi-HFE is a quadratic map F : k™ — k™ is given by

F=To¢ toGopos,

where S, T : k" — k™ are invertible affine maps, G : KV — KV is a quadratic map and
¢ : k™ — KV is a one-to-one map. Due to Lemma 3.1, we have

F=(To® o oGoy)o(B0S).
Then, by the definition of ¢ and G, we see that
F(z) =(T o007 h).

(91((@osm,...,gN(@OS)x),gl((905)x)Q,...,...,gN<(905)x)qH)t. (3)
For X = (X1,...,Xn) € KN, let X := ¢~ 1(X) = (Xl,...,XN,X;I,...,...,X%'”)t € L.

Since G1(X),...,Gn(X) are quadratic forms, there exists matrices Gy,...,Gny € My(K), low
vectors f1,...,n € My y(K) and constants 71, ...,yn € K such that

GX)=X'GX+3X+v, (1<I<N).

Then the polynomials G;(X),G(X)%,...,G/(X)? " are expressed as quadratic forms of X as
follows.

GI(X) =X"(G & 0,—N)X + (B, 01 n—n) X + 7,

GI(X)! =X' (01,1\/ oG q 01,n—2N) X+ (01,1\/, B, 01,n—2N> X+,
(4)

G(x)7 :.Xt (0n_N ® Gl(‘ffl)) X+ (Ol,n_N, ﬂ,(qrfl)) X407

Since the affine maps S, T are given by Sz = Spx + s, Ty = Toy +t with matrices Sp, Tp € My, (k)
and column vectors s,t € M, 1(k), the quadratic forms fi(z),..., fn(z) in the public key F' are
described as follows.

fi(z) =2t Sto! (El oEY® . o E}q“l)> 0S5z
+a'st0" (BB o o BT V)es+s0 (BoE” o 0BT ) sz (5)
+ (bl, bl(q), . ,bl(qril) ©Sox + (constant),
where E1, ..., E, € My(K) are matrices and by, ...,b, € My y(K) are low vectors given by
(B1,..., Bt =(To® ) (Gy,...,GN,0n,...,0n),

6
(biy ... bp) =(To® Y)(Br, ..., BN, 0n,...,0N)0 ©)

3.3 Proposed attack on multi-HFE

We now propose our attack on multi-HFE for odd characteristic case as follows.
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Proposed Attack on multi-HFE

Input: Public key F(x) = (fi(x),..., fu(z))" of multi-HFE.
Output: Two invertible matrices S’, 7" € M,,(k) such that
poT oFoS o¢pt: KN - KN
is a quadratic map.
Step 1. Let Fi,..., F, € M, (k) be the symmetric matrices with
fi(x) = ' Fyz + (linear).
Take two linear sums Wy, Wy of Iy, ..., F, such that W; is invertible and put
W =W, 'Wa.

Step 2. Compute the characteristic polynomial w(t) := det (t- I, — W) of W and factor
w(t) over K. Choose a polynomial wg(t) of degree N such that

w(t) = wo(tyug (1) - wi (t).

Step 3. If w(t) is square free and wy(¢) is irreducible, go to the next step. If not, go back to
Step 1.

Step 4. Find a matrix Py € M,, y(K) satisfying wo(W)FPy = 0 and put
P = (PO>P0(q)> e 7P(§q7‘71)) S Mn(k‘) . @_1.

Step 5. If P is invertible, go to the next step. If not, go back to Step 4.
Step 6. Let £} := P*FyP. Find a matrix Qg € My ,,(K) with

Fl El &5} Oan
Q| | = :
Fn EN @ Oan
Step 7. If
Qo
QE)Q)
Q=1 . |eo- Mk
Q((]q.ril)

is invertible, go to the next step. If not, go back to Step 7.
Step 8. Output S’ = PO and T' = ©71Q.

Once S’,T' are recovered, the problem of inverting F' is reduced to the problem of finding
a common solution of N quadratic equations of N variables. This means that, if G is chosen
randomly, the decryption without secret keys is as fast as the decryption with secret keys. Even
if G has a special structure for fast decryptions, the security is much less than expected since
solving N equations of N variables is much faster than solving n equations of n variables in
general.

n quadratic equations of n variables over k

Our Attack . . :
o 22, | N quadratic equations of N variables over K

We now explain why our attack is available.
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Table 2: Probability (%) that det (¢ - Iy — Wp) is irreducible for ¢ = 31
N 2 3 4 5 6 7 8 9 |10 |-
Prob. || 49.2 | 33.4 | 25.2 | 19.5 | 174 | 13.7 | 12.7 | 11.2 | 9.9

The equation (5) gives
Fi=(05) (Be o)) ©5)

the matrix W is written by

W= (08)" (W aw{ ) (05) (7)
for some Wy € My (K) and the polynomial w(t) is

w(t) = det (t - Iy — Wo) - - det (t Iy — Wé‘f’l))
If det (¢ - In — W) is irreducible, we have
wo(t) = det (t Ty — qu”) 8)

l
for some 0 <[ <r — 1. Then it is easy to see that there exists L € My (K) with LilWéq )L =
C(wo) and it holds

(Ul (L DD L(qT_l)))_l (Wo G- P Wéqril)) (ol <L D L(qr_1)>>

r—1 (9)
= C(wp) @~ @ Clw) "),
In
where o := € M, (k) is a permutation matrix. On the other hand, due to (i)
In
In

of Lemma 3.3, we see that there exists an invertible matrix P € M,,(K) such that

PYWP =C(w) @ ® Clwg) ) (10)

and it is easy to check that P in Step 4 satisfies (10). Applying (7), (9), (10) into (ii) of Lemma
3.3, we get

0S)P = o (S@---@S(QH)), (11)
for some invertible matrix S € My (K). Then the matrix F} in Step 6 is given by
Fy =P'FyP = (©S,P)! (El RS E,(q’"_l)) (OSyP) =By & @ BT ) (12)
for some E; € My(K). Due to (6), we see that there exists Qg in Step 7 and it is found by the
Gaussian elimination. It is easy to see that @) in Step 8 satisfies
Qo =0 (T aT) (13)

for some 0 < I} <r—1and T € My(K). Combining (5), (11) and (13), we can conclude that
the map

QSoT’oFoS’ogSfl :@bo(@oT/oTo@*l)o(q/flogow)o(@oSoS/o@fl)oqﬁ*l
=10 (QoToO® No(ptoGoy)o(@oSoP)ory!

is a quadratic map from KV to KV. ]
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Table 3: Experimental results of our attack for ¢ = 31

‘ n ‘ N ‘ T H min-rank attack H our attack
30| 3 |10 37.2bit (1h38m) 1.23s
45| 3 | 15 42.5bit (2d1h) 4.96s
54 | 3 | 18 44.8bit (9d16h) 15.0s
60 | 3 | 20 46.3bit 22.3s
75 3 |25 49.2bit 75.58
40 | 4 | 10 48.5bit 3.37s
60 | 4 | 15 55.1bit 15.6s
72 4 | 18 58.2bit 45.58
50 | 5 | 10 59.9bit 7.65s
60 | 5 | 12 63.4bit 12.8s
751 5 |15 67.9bit 33.9s
60| 6 | 10 71.3bit 15.0s
721 6 | 12 75.4bit 40.6s
70| 7 |10 82.7bit 38.9s
721819 91.0bit 38.0s
7219 | 8 98.3bit 41.7s
701 10| 7 104.bit 34.7s

Complexity. In Step 1, the attacker takes several basic computations of n x n matrices over k
and then the complexity of Step 1is < n3. Step 2 is for computing the characteristic polynomial
of n x n matrix W and factoring a polynomial w(t) of degree n over K (r-extension of k). Then
the complexity of Step 2 is < n? - 7.

It is well known that the probability that randomly chosen polynomial of degree N is ir-
reducible is about N~1 [24]. In this case, while it is difficult to prove that W is distributed
randomly since Wi, Wy are symmetric, Table 2 shows that its probability seems about N 1.

Step 4 is for finding kernel matrix of wo(W) and then its complexity is < n3-r. In Step 6
and 7, the attacker takes the Gaussian eliminations and basic linear operations n x n matrices
over K.

We thus conclude that the total complexity of our attack is < n3r- N < n? on average.

Experiments. In Table 3, we compare our attack with the min-rank attack [4] for ¢ = 31.
In this table, “min-rank attack” means the complexity (";FVJXJ{I)W of the min-rank attack (see
Proposition 13 and its proof of [4]) with w = 2.4 and the experimental results in Table 5 of
[4] by using Magma [25] ver.2.16-10 on 2.93 GHz Intel® Xeon® CPU, and “our attack” means
the average of the running times of 100 times experiments of our attack by using Magma [25]
ver.2.15-10 on Windows 7, Core-i7 2.67GHz. Table 3 shows that our attack is much faster than

the min-rank attack and it is feasible also for larger NNV.

3.4 Remarks on even characteristic cases

When ¢ is odd, we can choose symmetric matrices Fi, ..., F, as coefficient matrices of quadratic
forms in the public key F'. On the other hand, F; cannot be symmetric when ¢ is even. Then
we should use F} + F} instead of Fj when ¢ is even. It is easy to see that these matrices are
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symmetric and their diagonal entries matrices are zero. For such matrices, the following lemma
holds.

Lemma 3.4. Let k be a finite field of even characteristic, N > 1 an integer and A, B € My (k)
symmetric matrices. Suppose that the diagonal entries of A, B are zero. Then we have

(i) if N is odd then det A = det B = 0.

(i3) if N is even and det A # 0, then the polynomial det (t - Iy — A1 B) is a square of another
polynomial of degree N/2.

Proof. When Fk is of even characteristic, the determinant of the matrix X = (z4j)1<ij<n €
Mp (k) is given by

det X = Z T15(1)T20(2) " ** TNo(N)> (14)
ceGN
where G is the set of permutations among 1,..., N. It is easy to see that

T15-1(1)T20-1(2) """ TNo—1(N) = Lo(1)1%5(2)2 " Lo(N)N-
Then, when X is symmetric and its diagonal entries are zero, we have
det X = Z T15(1)T20(2) " " TNo(N)> (15)
0665\2,)
where 65\2,) = {0 € 6y | 0% =1id,0(i) #i,1 < Vi < N}. For a permutation o € 653), there
exist pairs (i1,71), ..., (is, js) such that o(i;) = ji, o(5i) =@, {i1,51,---,1s,Js; = {1,..., N} and

i1, J1,--.,1s, js are distinct to each other When N is odd, there are no such pairs. This means

that 653) is empty and then (i) holds. When N is even, there are such pairs and, for o € 65\?),

2
L1o(1) """ TNo(N) = (xiljl o 'xiN/szp) :

Since k is of even characteristic, we have

2
det X = Z Liqjg1 ”':EiN/2jN/2 N (16)
06655)
where {(i1, 1), ..., (in/2,jn/2)} depends on o. Since det (tIy — A™'B) = (det A)~! det (tA — B),
(ii) follows immediately from (16). O

This lemma shows that our attack on multi-HFE given in §3.3 cannot be used for even
characteristic cases directly, since W5 in Step 1 cannot be invertible when N is odd and wq(t)
in Step 3 cannot be irreducible when N is even. We will arrange it in the future.

4 Conclusion

We propose a new attack on multi-HFE to recover equivalent secret keys for odd characteristic
cases, which is much faster than the the min-rank attack [4]. While our attack is not presently
available for even characteristic cases, we can claim that MPKCs derived from a “quadratic”
map over an extension field cannot be recommended for practical use.

Acknowledgment. The author is partially supported by JSPS Grant-in-Aid for Young Scien-
tists (B) no. 26800020.
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