5,038 research outputs found

    Quantitative analysis of the reconstruction performance of interpolants

    Get PDF
    The analysis presented provides a quantitative measure of the reconstruction or interpolation performance of linear, shift-invariant interpolants. The performance criterion is the mean square error of the difference between the sampled and reconstructed functions. The analysis is applicable to reconstruction algorithms used in image processing and to many types of splines used in numerical analysis and computer graphics. When formulated in the frequency domain, the mean square error clearly separates the contribution of the interpolation method from the contribution of the sampled data. The equations provide a rational basis for selecting an optimal interpolant; that is, one which minimizes the mean square error. The analysis has been applied to a selection of frequently used data splines and reconstruction algorithms: parametric cubic and quintic Hermite splines, exponential and nu splines (including the special case of the cubic spline), parametric cubic convolution, Keys' fourth-order cubic, and a cubic with a discontinuous first derivative. The emphasis in this paper is on the image-dependent case in which no a priori knowledge of the frequency spectrum of the sampled function is assumed

    Exponential Splines of Complex Order

    Full text link
    We extend the concept of exponential B-spline to complex orders. This extension contains as special cases the class of exponential splines and also the class of polynomial B-splines of complex order. We derive a time domain representation of a complex exponential B-spline depending on a single parameter and establish a connection to fractional differential operators defined on Lizorkin spaces. Moreover, we prove that complex exponential splines give rise to multiresolution analyses of L2(R)L^2(\mathbb{R}) and define wavelet bases for L2(R)L^2(\mathbb{R})

    Periodic Splines and Gaussian Processes for the Resolution of Linear Inverse Problems

    Get PDF
    This paper deals with the resolution of inverse problems in a periodic setting or, in other terms, the reconstruction of periodic continuous-domain signals from their noisy measurements. We focus on two reconstruction paradigms: variational and statistical. In the variational approach, the reconstructed signal is solution to an optimization problem that establishes a tradeoff between fidelity to the data and smoothness conditions via a quadratic regularization associated to a linear operator. In the statistical approach, the signal is modeled as a stationary random process defined from a Gaussian white noise and a whitening operator; one then looks for the optimal estimator in the mean-square sense. We give a generic form of the reconstructed signals for both approaches, allowing for a rigorous comparison of the two.We fully characterize the conditions under which the two formulations yield the same solution, which is a periodic spline in the case of sampling measurements. We also show that this equivalence between the two approaches remains valid on simulations for a broad class of problems. This extends the practical range of applicability of the variational method

    Orthonormal bases of regular wavelets in spaces of homogeneous type

    Get PDF
    Adapting the recently developed randomized dyadic structures, we introduce the notion of spline function in geometrically doubling quasi-metric spaces. Such functions have interpolation and reproducing properties as the linear splines in Euclidean spaces. They also have H\"older regularity. This is used to build an orthonormal basis of H\"older-continuous wavelets with exponential decay in any space of homogeneous type. As in the classical theory, wavelet bases provide a universal Calder\'on reproducing formula to study and develop function space theory and singular integrals. We discuss the examples of LpL^p spaces, BMO and apply this to a proof of the T(1) theorem. As no extra condition {(like 'reverse doubling', 'small boundary' of balls, etc.)} on the space of homogeneous type is required, our results extend a long line of works on the subject.Comment: We have made improvements to section 2 following the referees suggestions. In particular, it now contains full proof of formerly Theorem 2.7 instead of sending back to earlier works, which makes the construction of splines self-contained. One reference adde

    Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant

    Get PDF
    The purpose of this paper is to establish that for any compact, connected C^{\infty} Riemannian manifold there exists a robust family of kernels of increasing smoothness that are well suited for interpolation. They generate Lagrange functions that are uniformly bounded and decay away from their center at an exponential rate. An immediate corollary is that the corresponding Lebesgue constant will be uniformly bounded with a constant whose only dependence on the set of data sites is reflected in the mesh ratio, which measures the uniformity of the data. The analysis needed for these results was inspired by some fundamental work of Matveev where the Sobolev decay of Lagrange functions associated with certain kernels on \Omega \subset R^d was obtained. With a bit more work, one establishes the following: Lebesgue constants associated with surface splines and Sobolev splines are uniformly bounded on R^d provided the data sites \Xi are quasi-uniformly distributed. The non-Euclidean case is more involved as the geometry of the underlying surface comes into play. In addition to establishing bounded Lebesgue constants in this setting, a "zeros lemma" for compact Riemannian manifolds is established.Comment: 33 pages, 2 figures, new title, accepted for publication in SIAM J. on Math. Ana

    Fractional Operators, Dirichlet Averages, and Splines

    Full text link
    Fractional differential and integral operators, Dirichlet averages, and splines of complex order are three seemingly distinct mathematical subject areas addressing different questions and employing different methodologies. It is the purpose of this paper to show that there are deep and interesting relationships between these three areas. First a brief introduction to fractional differential and integral operators defined on Lizorkin spaces is presented and some of their main properties exhibited. This particular approach has the advantage that several definitions of fractional derivatives and integrals coincide. We then introduce Dirichlet averages and extend their definition to an infinite-dimensional setting that is needed to exhibit the relationships to splines of complex order. Finally, we focus on splines of complex order and, in particular, on cardinal B-splines of complex order. The fundamental connections to fractional derivatives and integrals as well as Dirichlet averages are presented
    corecore