374,868 research outputs found

    OMiLAB: the Role of Model-driven Digital Innovation in Information Systems Development

    Get PDF
    OMiLAB is a community of practice interested in the value of conceptual models and the role they play in Information Systems development or operation. One key value proposition of the OMiLAB is a Digital Innovation environment having conceptual modeling at its core, as a means for integrating a business-oriented view with a technical view. The business-oriented view is based on a Digital Design Thinking method, whereas the technical view benefits from a diverse set of model-driven IoT devices for cyber-physical experimentation. The semantic and functional integrator between the two views is the BEE-UP modeling tool, together with the Agile Modeling Method Engineering framework - which can be employed to expand the modeling tool\u27s semantic space with domain-specific and technology-specific concepts or functionality. Academic and industry partners are joining the OMiLAB ecosystem as OMiLAB Nodes, sharing knowledge assets and artifacts developed with the help of OMiLAB\u27s Digital Innovation environment. These are disseminated via dedicated research streams and scientific events such as the NEMO summer school (initiated in 2014), the PROSE workshop (initiated in 2017) and a Springer book series on domain-specific conceptual modeling (initiated in 2016). Tool-specific tutorials have been held in recent Business Informatics and Information Systems conferences (e.g. HICSS, BIR, PoEM) to raise awareness on the value of conceptual models for such communities. Recently, the OMiLAB-FSEGA node was established at Babeș-Bolyai University, Faculty of Economics and Business Administration. The thematic focus of the node is Digital Business Models, targeting topics such as semantics of Product-Service Systems, their dynamic pricing, supplying and automated delivery from a design-oriented research perspective. In relation to this thematic specificity, the talk will highlight the value of this node for both research and education

    Project dynamics: An analysis of the purpose and value of system dynamics applied to information technology project management

    Get PDF
    Project failure in the Information Technology (IT) sector is well documented in the literature; project managers miss their target budgets and schedules more than twice as often as they meet them. Traditional project management methodologies initially developed for the large-scale engineering projects of the 1950’s, while still relevant and useful, are reductionist in nature and are therefore missing a systems approach that concentrates on knowledge creation before, during and after a project. The research presented herein will demonstrate the role of system dynamics in augmenting a project’s control processes, as well as the skill set used by the project manager. Research from a wide variety of projects within the information technology sector will be synthesized, some using system dynamics methodologies, and will serve as the basis to comparatively analyze the value added using this novel project management approach. The project dynamics and lessons learned within will illustrate the complex interactions and feedback structures inherent in all projects, as well as seek to educate project managers on their cause-effect relationships. Furthermore, the research will illustrate problematic project dynamics, using various conceptual models, and suggest the need to integrate system dynamics methodologies for project management into traditional project management processes and bodies of knowledge instead of solely relying on them as a post-mortem tool for project analysis

    An integrated product and process information modelling system for on-site construction

    Get PDF
    The inadequate infrastructure that exists for seamless project team communications has its roots in the problems arising from fragmentation, and the lack of effective co-ordination between stages of the construction process. The use of disparate computer-aided engineering (CAE) systems by most disciplines is one of the enduring legacies of this problem and makes information exchange between construction team members difficult and, in some cases, impossible. The importance of integrating modelling techniques with a view to creating an integrated product and process model that is applicable to all stages of a construction project's life cycle, is being recognised by the Construction Industry. However, improved methods are still needed to assist the developer in the definition of information model structures, and current modelling methods and standards are only able to provide limited assistance at various stages of the information modelling process. This research investigates the role of system integration by reviewing product and process information models, current modelling practices and modelling standards in the construction industry, and draws conclusions with similar practices from other industries, both in terms of product and process representation, and model content. It further reviews various application development tools and information system requirements to support a suitable integrated information structure, for developing an integrated product and process model for design and construction, based on concurrent engineering principles. The functional and information perspectives of the integrated model, which were represented using IDEFO and the unified modelling language (UML), provided the basis for developing a prototype hyper-integrated product and process information modelling system (HIPPY). Details of the integrated conceptual model's implementation, practical application of the prototype system, using house-building as an example, and evaluation by industry practitioners are also presented. It is concluded that the effective integration of product and process information models is a key component of the implementation of concurrent engineering in construction, and is a vital step towards providing richer information representation, better efficiency, and the flexibility to support life cycle information management during the construction stage of small to medium sized-building projects

    An enterprise engineering approach for the alignment of business and information technology strategy

    Full text link
    Information systems and information technology (IS/IT, hereafter just IT) strategies usually depend on a business strategy. The alignment of both strategies improves their strategic plans. From an external perspective, business and IT alignment is the extent to which the IT strategy enables and drives the business strategy. This article reviews strategic alignment between business and IT, and proposes the use of enterprise engineering (EE) to achieve this alignment. The EE approach facilitates the definition of a formal dialog in the alignment design. In relation to this, new building blocks and life-cycle phases have been defined for their use in an enterprise architecture context. This proposal has been adopted in a critical process of a ceramic tile company for the purpose of aligning a strategic business plan and IT strategy, which are essential to support this process. © 2011 Taylor & Francis.Cuenca, L.; Boza, A.; Ortiz, A. (2011). An enterprise engineering approach for the alignment of business and information technology strategy. International Journal of Computer Integrated Manufacturing. 24(11):974-992. https://doi.org/10.1080/0951192X.2011.579172S9749922411(1993). CIMOSA: Open System Architecture for CIM. doi:10.1007/978-3-642-58064-2Ang, J., Shaw, N., & Pavri, F. (1995). Identifying strategic management information systems planning parameters using case studies. International Journal of Information Management, 15(6), 463-474. doi:10.1016/0268-4012(95)00049-dAvison, D., Jones, J., Powell, P., & Wilson, D. (2004). Using and validating the strategic alignment model. The Journal of Strategic Information Systems, 13(3), 223-246. doi:10.1016/j.jsis.2004.08.002Avgerou, & McGrath. (2007). Power, Rationality, and the Art of Living through Socio-Technical Change. MIS Quarterly, 31(2), 295. doi:10.2307/25148792Bergeron, F., Raymond, L., & Rivard, S. (2004). Ideal patterns of strategic alignment and business performance. Information & Management, 41(8), 1003-1020. doi:10.1016/j.im.2003.10.004Bernus, P., Nemes, L., & Schmidt, G. (Eds.). (2003). Handbook on Enterprise Architecture. doi:10.1007/978-3-540-24744-9Bleistein, S. J., Cox, K., Verner, J., & Phalp, K. T. (2006). B-SCP: A requirements analysis framework for validating strategic alignment of organizational IT based on strategy, context, and process. Information and Software Technology, 48(9), 846-868. doi:10.1016/j.infsof.2005.12.001Buchanan, S., & Gibb, F. (1998). The information audit: An integrated strategic approach. International Journal of Information Management, 18(1), 29-47. doi:10.1016/s0268-4012(97)00038-8Buchanan, S., & Gibb, F. (2007). The information audit: Role and scope. International Journal of Information Management, 27(3), 159-172. doi:10.1016/j.ijinfomgt.2007.01.002Chen, D., & Vernadat, F. (2004). Standards on enterprise integration and engineering—state of the art. International Journal of Computer Integrated Manufacturing, 17(3), 235-253. doi:10.1080/09511920310001607087Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Chen, H.-M., Kazman, R., & Garg, A. (2005). BITAM: An engineering-principled method for managing misalignments between business and IT architectures. Science of Computer Programming, 57(1), 5-26. doi:10.1016/j.scico.2004.10.002Cuenca, L., Ortiz, A., & Vernadat, F. (2006). From UML or DFD models to CIMOSA partial models and enterprise components. International Journal of Computer Integrated Manufacturing, 19(3), 248-263. doi:10.1080/03081070500065841Davis, G. B. (2000). Information Systems Conceptual Foundations: Looking Backward and Forward. IFIP Advances in Information and Communication Technology, 61-82. doi:10.1007/978-0-387-35505-4_5Gindy, N., Morcos, M., Cerit, B., & Hodgson, A. (2008). Strategic technology alignment roadmapping STAR® aligning R&D investments with business needs. International Journal of Computer Integrated Manufacturing, 21(8), 957-970. doi:10.1080/09511920801927148Goethals, F. G., Lemahieu, W., Snoeck, M., & Vandenbulcke, J. A. (2007). The data building blocks of the enterprise architect. Future Generation Computer Systems, 23(2), 269-274. doi:10.1016/j.future.2006.05.004Greefhorst, D., Koning, H., & Vliet, H. van. (2006). The many faces of architectural descriptions. Information Systems Frontiers, 8(2), 103-113. doi:10.1007/s10796-006-7975-xGregor, S., Hart, D., & Martin, N. (2007). Enterprise architectures: enablers of business strategy and IS/IT alignment in government. Information Technology & People, 20(2), 96-120. doi:10.1108/09593840710758031Hartono, E., Lederer, A. L., Sethi, V., & Zhuang, Y. (2003). Key predictors of the implementation of strategic information systems plans. ACM SIGMIS Database, 34(3), 41-53. doi:10.1145/937742.937747Henderson, J. C., & Venkatraman, H. (1993). Strategic alignment: Leveraging information technology for transforming organizations. IBM Systems Journal, 32(1), 472-484. doi:10.1147/sj.382.0472Hirschheim, R., & Sabherwal, R. (2001). Detours in the Path toward Strategic Information Systems Alignment. California Management Review, 44(1), 87-108. doi:10.2307/41166112Hoogervorst, J. A. P. (2009). Enterprise Governance and Enterprise Engineering. doi:10.1007/978-3-540-92671-9Johnson, A. M., & Lederer, A. L. (2010). CEO/CIO mutual understanding, strategic alignment, and the contribution of IS to the organization. Information & Management, 47(3), 138-149. doi:10.1016/j.im.2010.01.002JONKERS, H., LANKHORST, M., VAN BUUREN, R., HOPPENBROUWERS, S., BONSANGUE, M., & VAN DER TORRE, L. (2004). CONCEPTS FOR MODELING ENTERPRISE ARCHITECTURES. International Journal of Cooperative Information Systems, 13(03), 257-287. doi:10.1142/s0218843004000985King, W. R. (1978). Strategic Planning for Management Information Systems. MIS Quarterly, 2(1), 27. doi:10.2307/249104Leonard, J. (2007). Sharing a Vision: comparing business and IS managers’ perceptions of strategic alignment issues. Australasian Journal of Information Systems, 15(1). doi:10.3127/ajis.v15i1.299Luftman, J. N., Lewis, P. R., & Oldach, S. H. (1993). Transforming the enterprise: The alignment of business and information technology strategies. IBM Systems Journal, 32(1), 198-221. doi:10.1147/sj.321.0198Luftman, J., Ben-Zvi, T., Dwivedi, R., & Rigoni, E. H. (2010). IT Governance. International Journal of IT/Business Alignment and Governance, 1(2), 13-25. doi:10.4018/jitbag.2010040102Melville, Kraemer, & Gurbaxani. (2004). Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Quarterly, 28(2), 283. doi:10.2307/25148636Newkirk, H. E., & Lederer, A. L. (2006). Incremental and Comprehensive Strategic Information Systems Planning in an Uncertain Environment. IEEE Transactions on Engineering Management, 53(3), 380-394. doi:10.1109/tem.2006.877446Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Noran, O. (2005). A systematic evaluation of the C4ISR AF using ISO15704 Annex A (GERAM). Computers in Industry, 56(5), 407-427. doi:10.1016/j.compind.2004.12.005Ortiz, A., Lario, F., & Ros, L. (1999). Enterprise Integration—Business Processes Integrated Management: a proposal for a methodology to develop Enterprise Integration Programs. Computers in Industry, 40(2-3), 155-171. doi:10.1016/s0166-3615(99)00021-4Panetto, H., Baïna, S., & Morel, G. (2007). Mapping the IEC 62264 models onto the Zachman framework for analysing products information traceability: a case study. Journal of Intelligent Manufacturing, 18(6), 679-698. doi:10.1007/s10845-007-0040-xPapp, R. (Ed.). (2001). Strategic Information Technology. doi:10.4018/978-1-87828-987-2Peñaranda, N., Mejía, R., Romero, D., & Molina, A. (2010). Implementation of product lifecycle management tools using enterprise integration engineering and action-research. International Journal of Computer Integrated Manufacturing, 23(10), 853-875. doi:10.1080/0951192x.2010.495136Reich, B. H., & Benbasat, I. (2000). Factors That Influence the Social Dimension of Alignment between Business and Information Technology Objectives. MIS Quarterly, 24(1), 81. doi:10.2307/3250980Sledgianowski, D., & Luftman, J. (2005). IT-Business Strategic Alignment Maturity. Journal of Cases on Information Technology, 7(2), 102-120. doi:10.4018/jcit.2005040107Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for information systems architecture. IBM Systems Journal, 31(3), 590-616. doi:10.1147/sj.313.0590Van Grembergen, W., & De Haes, S. (2010). A Research Journey into Enterprise Governance of IT, Business/IT Alignment and Value Creation. International Journal of IT/Business Alignment and Governance, 1(1), 1-13. doi:10.4018/jitbag.2010120401Xueying Wang, Xiongwei Zhou, & Longbin Jiang. (2008). A method of business and IT alignment based on Enterprise Architecture. 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. doi:10.1109/soli.2008.468649

    Ontology-driven conceptual modeling: A'systematic literature mapping and review

    Get PDF
    All rights reserved. Ontology-driven conceptual modeling (ODCM) is still a relatively new research domain in the field of information systems and there is still much discussion on how the research in ODCM should be performed and what the focus of this research should be. Therefore, this article aims to critically survey the existing literature in order to assess the kind of research that has been performed over the years, analyze the nature of the research contributions and establish its current state of the art by positioning, evaluating and interpreting relevant research to date that is related to ODCM. To understand and identify any gaps and research opportunities, our literature study is composed of both a systematic mapping study and a systematic review study. The mapping study aims at structuring and classifying the area that is being investigated in order to give a general overview of the research that has been performed in the field. A review study on the other hand is a more thorough and rigorous inquiry and provides recommendations based on the strength of the found evidence. Our results indicate that there are several research gaps that should be addressed and we further composed several research opportunities that are possible areas for future research

    Conceptual Modelling and The Quality of Ontologies: Endurantism Vs. Perdurantism

    Full text link
    Ontologies are key enablers for sharing precise and machine-understandable semantics among different applications and parties. Yet, for ontologies to meet these expectations, their quality must be of a good standard. The quality of an ontology is strongly based on the design method employed. This paper addresses the design problems related to the modelling of ontologies, with specific concentration on the issues related to the quality of the conceptualisations produced. The paper aims to demonstrate the impact of the modelling paradigm adopted on the quality of ontological models and, consequently, the potential impact that such a decision can have in relation to the development of software applications. To this aim, an ontology that is conceptualised based on the Object-Role Modelling (ORM) approach (a representative of endurantism) is re-engineered into a one modelled on the basis of the Object Paradigm (OP) (a representative of perdurantism). Next, the two ontologies are analytically compared using the specified criteria. The conducted comparison highlights that using the OP for ontology conceptualisation can provide more expressive, reusable, objective and temporal ontologies than those conceptualised on the basis of the ORM approach

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF
    corecore