
ESTIMATION FULFILLMENT
IN SOFTWARE DEVELOPMENT PROJECTS

Inaugural-Dissertation
zur Erlangung des Doktorgrades

des Fachbereichs Wirtschaftswissenschaften
der Johann-Wolfgang-Goethe-Universität

Frankfurt am Main

vorgelegt von
Matthias Biggeleben

aus Münster

Frankfurt am Main, 2011

Table of Contents III

TABLE OF CONTENTS

LIST OF FIGURES ... VII	

LIST OF TABLES ... IX	

LIST OF ABBREVIATIONS ... XI	

1	 EXPOSITION ... 1	
1.1	 Motivation .. 1	
1.2	 Problem Statement and Purpose of Study .. 3	
1.3	 Research Approach and Methodology ... 5	
1.4	 Research Design ... 9	
1.5	 Organization of Thesis ... 13	

2	 LITERATURE REVIEW ... 17	
2.1	 Software Engineering ... 17	
2.2	 Software Size Estimation ... 19	

2.2.1	 Code-based Size Measures ... 20	
2.2.2	 Function Points ... 21	

2.2.2.1	 Counting Technique .. 21	
2.2.2.2	 Backfiring Technique ... 23	
2.2.2.3	 Criticism on the Function Point Analysis 24	

2.2.3	 Variants of the Function Point Analysis ... 25	
2.2.3.1	 Data Points .. 25	
2.2.3.2	 Feature Points ... 26	
2.2.3.3	 Object Points ... 26	
2.2.3.4	 SPR Function Points ... 27	
2.2.3.5	 3D Function Points ... 28	
2.2.3.6	 Use Case Points .. 28	
2.2.3.7	 COSMIC FFP ... 31	

2.3	 Software Effort Estimation .. 34	
2.3.1	 Model-based Techniques .. 36	

2.3.1.1	 Software Life-cycle Model ... 37	
2.3.1.2	 Constructive Cost Model .. 39	
2.3.1.3	 Intermediate and Detailed COCOMO 45	
2.3.1.4	 COCOMO II ... 47	

2.3.2	 Expertise-based Techniques ... 54	
2.3.2.1	 Delphi Technique .. 56	
2.3.2.2	 Work Breakdown Structure .. 57	
2.3.2.3	 Three-Point Estimate .. 58	

2.3.3	 Learning-oriented Techniques .. 60	
2.3.3.1	 Case Studies .. 60	
2.3.3.2	 Neural Networks ... 61	

2.3.4	 Dynamics-based Techniques .. 63	
2.4	 Summary of Estimation Techniques and their Adoption in Practice 64	

IV Table of Contents

3	 THE CRUX OF SOFTWARE DEVELOPMENT AND ITS RELATIONSHIP TO
EFFORT ESTIMATION .. 69	
3.1	 The Software Crisis Revisited .. 71	

3.1.1	 Reliability .. 74	
3.1.2	 Control .. 76	

3.1.2.1	 The Era of Sequential Software Development 76	
3.1.2.2	 The Era of Iterative Software Development 78	
3.1.2.3	 The Era of Agile Software Development 80	

3.1.3	 Cost-Effectiveness .. 81	
3.1.3.1	 The Myth of the Chaos Report 82	
3.1.3.2	 The Lead of Traditional Engineering Disciplines 84	
3.1.3.3	 Optimism Bias and the Winner’s Curse 86	
3.1.3.4	 Productivity Measurement .. 88	
3.1.3.5	 Productivity Studies .. 89	
3.1.3.6	 Productivity over Time ... 92	
3.1.3.7	 Individual Differences .. 95	

3.1.4	 Discussion ... 99	
3.2	 Economies of Software Development .. 100	

3.2.1	 Economies of Scale in Traditional Industries 100	
3.2.2	 Economies of Scale in Software Development 102	
3.2.3	 Economies of Scope in Software Development 104	
3.2.4	 Discussion ... 107	

3.3	 Summary .. 108	

4	 EXPLORATION AND QUANTITATIVE ANALYSIS OF STUDENTS’
PROGRAMMING PERFORMANCE ... 113	
4.1	 Research Method .. 113	
4.2	 Data Collection and Pretesting ... 117	

4.2.1	 Summer Semester 2008 .. 117	
4.2.1.1	 Data Collection and Data Processing 117	
4.2.1.2	 Statistical Analysis .. 120	

4.2.2	 Winter Semester 2008/2009 .. 125	
4.3	 Data Exploration .. 128	

4.3.1	 Analysis of Solution Capability .. 129	
4.3.2	 Analysis of Solution Effort ... 133	
4.3.3	 Analysis of Working Speed .. 136	
4.3.4	 Simple Random Sampling .. 139	

4.3.4.1	 Groups of Solution Capability 140	
4.3.4.2	 Paradoxical Averages ... 144	

4.3.5	 Analysis of Estimation Accuracy ... 147	
4.3.6	 Applying PARKINSON’S Law ... 151	
4.3.7	 Impact of Project Control ... 156	
4.3.8	 Consideration of Individual Differences 159	

4.4	 Summary .. 160	

Table of Contents V

5	 ESTIMATION FULFILLMENT THEORY .. 163	
5.1	 Explanatory Component .. 165	

5.1.1	 Building Block 1: Role of Project Lead 165	
5.1.2	 Building Block 2: Behavior and Competence of Developers 167	

5.1.2.1	 Learning Curve Effect .. 167	
5.1.2.2	 Conscious Competence Learning Model 169	
5.1.2.3	 DUNNING-KRUGER Effect ... 171	
5.1.2.4	 Impact on the Causal Model ... 173	

5.1.3	 Building Block 3: Craftsmanship of Skilled Individuals 175	
5.1.4	 Building Block 4: Accidental Complexity and Invisibility of

Software .. 177	
5.1.4.1	 Complexity ... 177	
5.1.4.2	 Conformity .. 178	
5.1.4.3	 Changeability .. 179	
5.1.4.4	 Invisibility ... 179	
5.1.4.5	 General Impact on Software Development 180	
5.1.4.6	 Impact on the Causal Model ... 182	

5.1.5	 Summary of Causal Relationships .. 183	
5.2	 Predictive Component .. 184	

5.2.1	 Central Theory Statement ... 184	
5.2.2	 Assumptions ... 185	
5.2.3	 Propositions .. 186	

5.3	 Statistical Perspective .. 187	
5.3.1	 Estimation Fingerprints .. 187	
5.3.2	 Fingerprint Classification ... 191	

5.4	 Survey of Closely Related Research .. 192	

6	 TEST OF ESTIMATION FULFILLMENT THEORY .. 199	
6.1	 Research Method and Research Design ... 199	

6.1.1	 Design of Expert Interviews ... 199	
6.1.2	 Analysis of Expert Interviews .. 201	

6.2	 Interview Results ... 205	
6.2.1	 Expert Interview #1 .. 206	
6.2.2	 Expert Interview #2 .. 209	
6.2.3	 Expert Interview #3 .. 212	
6.2.4	 Expert Interview #4 .. 215	
6.2.5	 Expert Interview #5 .. 219	
6.2.6	 Expert Interview #6 .. 222	
6.2.7	 Expert Interview #7 .. 224	

6.3	 Discussion of Findings ... 227	
6.4	 Expert Review .. 231	

6.4.1	 Review of Causal Relationships ... 232	
6.4.2	 Review of Assumptions, Propositions, and Central Theory

Statement .. 234	

7	 CONCLUSION ... 237	
7.1	 Reprise ... 237	

VI Table of Contents

7.2	 Contributions .. 238	
7.3	 Implications for Research and Practice .. 240	

7.3.1	 Misinterpreted Research Results .. 240	
7.3.2	 Immeasurability of Productivity ... 241	
7.3.3	 Impact on Estimation Accuracy .. 242	

7.4	 Limitations ... 242	
7.5	 Outlook ... 244	

REFERENCES .. 247	

APPENDIX ... 271	
A.1	 SQL Trainer Exercises ... 271	
A.2	 Exemplary Extreme Solution Attempt (Exercise 2) 275	
A.3	 Expert Interview Script .. 276	
A.4	 Further Lessons Learned .. 279	

List of Figures VII

LIST OF FIGURES

Fig. 1.1: Cyclical nature of the three levels of understanding 6
Fig. 1.2: Ontological and epistemological positions ... 7
Fig. 1.3: Steps of addressing the three levels of understanding during

research .. 11
Fig. 1.4: Thesis structure ... 16
Fig. 2.1: Sizing model of COSMIC FFP ... 32
Fig. 2.2: History and evolution of size estimation methods 33
Fig. 2.3: Cone of uncertainty ... 35
Fig. 2.4: The RAYLEIGH model .. 38
Fig. 2.5: Basic COCOMO estimates for organic mode projects 40
Fig. 2.6: Basic COCOMO estimates depending on development mode 43
Fig. 2.7: Productivity ranges in COCOMO II ... 51
Fig. 2.8: Exemplary Work Breakdown Structure .. 58
Fig. 2.9: Distribution of Optimistic, Most Likely, and Pessimistic Case 59
Fig. 2.10: Exemplary Feed-Forward Backpropagation Neural Network 62
Fig. 2.11: Exemplary System Dynamics model notation .. 63
Fig. 3.1: The BELADY-LEHMAN graph ... 75
Fig. 3.2: Waterfall model of the software process ... 76
Fig. 3.3: Spiral model of the software development process 79
Fig. 3.4: Project resolutions reported by the STANDISH GROUP between 1994

and 2000 .. 83
Fig. 3.5: Average cost overruns reported between 1984 and 2004 84
Fig. 3.6: Over-optimism in a bidding process ... 87
Fig. 3.7: Impact of classification variables on productivity variance prior to

1997 ... 90
Fig. 3.8: Comparison of average productivity across business sectors and

studies .. 91
Fig. 3.9: Impact of classification variables on productivity variance after

1997 ... 91
Fig. 3.10: Factors affecting individual programming performance 96
Fig. 3.11: Comparison of industrial mass production and software

development .. 102
Fig. 3.12: Dimensions to classify critical innovations ... 105
Fig. 3.13: Typical input/output relations in software development 108
Fig. 4.1: Exemplary log file entry of the SQL playground 117
Fig. 4.2: Sessions per day from June 4th to July 14th, 2008 (grouped by

language) ... 120
Fig. 4.3: Scatter plot of iterations and total time spent per session 122
Fig. 4.4: Classes identified by the time-per-iteration ratio (Python only) 124
Fig. 4.5: Web-based SQL Trainer .. 126

VIII List of Figures

Fig. 4.6: Correct solutions of exercise 13 .. 127
Fig. 4.7: Solution attempts and correct solutions in original order 131
Fig. 4.8: Solution attempts and correct solutions in altered order 132
Fig. 4.9: Exemplary distribution of solution time of exercise 10 135
Fig. 4.10: Box-plot of identified working speed classes .. 138
Fig. 4.11: Drawing simple random subsamples ... 141
Fig. 4.12: Mean deviation of actual effort per group ... 144
Fig. 4.13: Distribution of z0 for the 1st group ... 148
Fig. 4.14: Distribution of z0 for the 10th group .. 149
Fig. 4.15: The impact of PARKINSON’S Law on working speed 152
Fig. 4.16: Distribution of z0, z50, and z100 of the 10th group under project

control .. 157
Fig. 5.1: Most likely direction of renegotiations ... 166
Fig. 5.2: Project management triangle ... 167
Fig. 5.3: Growth of productivity according to learning curve effects 168
Fig. 5.4: Common learning curve models .. 169
Fig. 5.5: Four stages of competence .. 170
Fig. 5.6: Systematic cost overruns caused by PARKINSON and procrastination ... 175
Fig. 5.7: Shortening the gap between requirements and their implementation ... 178
Fig. 5.8: Past and recent proportions of essential and accidental complexity 181
Fig. 5.9: Balanced, unbiased, low spread effort estimation 188
Fig. 5.10: Balanced, unbiased, highly spread effort estimation 188
Fig. 5.11: Biased effort estimation ... 189
Fig. 5.12: Biased effort estimation due to continuous overestimation 189
Fig. 5.13: Pseudo-perfect effort estimation ... 190
Fig. 5.14: Right-skewed, unbalanced effort estimation ... 191
Fig. 5.15: Estimation Fulfillment ... 191
Fig. 5.16: Simplified classification tree for estimation fingerprints 192
Fig. 5.17: The feedback impact of schedule estimates as suggested by ABDEL-

HAMID and MADNICK .. 196
Fig. 6.1: Corroboration of the EFT .. 203
Fig. 6.2: Unsupported assumptions .. 204
Fig. 6.3: Falsification of the EFT ... 205

List of Tables IX

LIST OF TABLES

Tab. 1.1: Taxonomy of theory types in information systems research 8
Tab. 2.1: UFP complexity weights ... 22
Tab. 2.2: UFP to SLOC conversion ratios .. 23
Tab. 2.3: Technical complexity factors .. 30
Tab. 2.4: Environmental complexity factors .. 30
Tab. 2.5: Basic COCOMO effort and schedule equations 42
Tab. 2.6: Software development effort multipliers ... 46
Tab. 2.7: Effort multipliers of COCOMO II .. 50
Tab. 2.8: Calibrated parameter values of COCOMO II ... 52
Tab. 2.9: Scale factor values SFj for COCOMO II models 53
Tab. 2.10: Summary of prominent size and effort estimation techniques 64
Tab. 3.1: Comparison of cost overrun surveys ... 83
Tab. 3.2: Inaccuracy of transportation project cost estimates by type of

project .. 85
Tab. 3.3: Previous studies of cost estimation ... 92
Tab. 3.4: Basic summary of the edited dataset used by PREMRAJ et al. 93
Tab. 3.5: Productivity comparison of 1978-1994 and 1997-2003 by PREMRAJ

et al. ... 93
Tab. 3.6: Productivity factors identified by PREMRAJ et al. 94
Tab. 3.7: Levels of software method understanding and use 98
Tab. 4.1: Overview of the variables of dataset A ... 119
Tab. 4.2: Non-parametric correlations (SPEARMAN) .. 122
Tab. 4.3: Data logged by the SQL Trainer ... 127
Tab. 4.4: Solution attempts grouped and ordered by the original exercise

numbers ... 130
Tab. 4.5: Correlation of difficulty and solution time .. 132
Tab. 4.6: Solution attempts grouped and ordered by the altered exercise

numbers ... 133
Tab. 4.7: Correlation of SQL- and Python-related working speeds 137
Tab. 4.8: Correlation of SQL- and Python-related working speeds

(subsample) ... 137
Tab. 4.9: Classification of working speed .. 138
Tab. 4.10: Exemplary random subsample .. 142
Tab. 4.11: Overview of the Bootstrap Dataset (basic kernel) 143
Tab. 4.12: Correlation of individual working speed and solution capability 145
Tab. 4.13: Standard error per group ... 146
Tab. 4.14: Standard error per group (corrected estimates) 147
Tab. 4.15: MMRE and Pred(25) of all groups (basic estimation kernel) 150
Tab. 4.16: Mean effort deviation for different PARKINSON effect intensities 153

X List of Tables

Tab. 4.17: Estimation accuracy statistics of different intensities of the
PARKINSON effect .. 155

Tab. 4.18: Estimation accuracy statistics under simulated project control 157
Tab. 4.19: Impact of the PARKINSON effect on overall effort under project

control .. 158
Tab. 4.20: Project leaders’ potential perception of development projects 159
Tab. 4.21: Impact of individual differences on effort and estimation accuracy 160
Tab. 6.1: Biographical details of BOB .. 206
Tab. 6.2: Employers of BOB ... 206
Tab. 6.3: Biographical details of TOM .. 210
Tab. 6.4: Employer of TOM .. 210
Tab. 6.5: Biographical details of VINCE ... 213
Tab. 6.6: Employer of VINCE .. 213
Tab. 6.7: Biographical details of PETE and MARC .. 216
Tab. 6.8: Employer of PETE and MARC .. 216
Tab. 6.9: Biographical details of MARCUS ... 219
Tab. 6.10: Employer of MARCUS .. 219
Tab. 6.11: Biographical details of HALE ... 222
Tab. 6.12: Biographical details of KAY and CHRIS ... 225
Tab. 6.13: Employer of KAY and CHRIS ... 225
Tab. 6.14: Summary of interview findings ... 230
Tab. 7.1: Additional contributions of the study .. 239

List of Abbreviations XI

LIST OF ABBREVIATIONS

ACAP Analyst Capability (EM; COCOMO)
ACT Annual Change Traffic
AEXP Applications Experience (EM; COCOMO)
AFP Adjusted Function Point
CASE Computer-Aided Software Engineering
CBR Case-Based Reasoning
CET Central European Time
CFP COSMIC Function Point
CFSU COSMIC Functional Size Unit
CHF Swiss (Confoederatio Helvetica) Franc
CM Change Management
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
CMS Competence Measurement System
COCOMO Constructive Cost Model (Version I; published in 1981)
COCOMO II Constructive Cost Model (Version II; published in 2000)
COCOMO'81 Constructive Cost Model (Version I; published in 1981)
COSMIC Common Software Measurement International Consortium
COTS Commercial off-the-Shelf (Software)
CPLX Product Complexity (EM; COCOMO)
CPM Critical Path Method
DATA Database Size (EM; COCOMO)
DAX German Stock Index ("Deutscher Aktienindex")
DI Degree of Influence
DOCU Documentation Match (EM; COCOMO)
DRY “Don’t Repeat Yourself” (Principle)
DSI Delivered Source Instructions
DSL Domain-Specific Language
DSLOC Delivered Source Lines of Code
EAF Effort Adjustment Factor
ECF Environmental Complexity Factor
ECM Enterprise Content Management
EDA Exploratory Data Analysis
EF Estimation Fulfillment
EFT Estimation Fulfillment Theory
EM Effort Multiplier
EP Explanation and Prediction
EPC Energy, Procurement and Construction
ERP Enterprise Resource Planning
ETRM Energy Trading and Risk Management
FFP Full Function Point
FLEX Development Flexibility (SF; COCOMO II)
FP Function Point

XII List of Abbreviations

FPA Function Point Analysis
FSP Full Time Equivalent Software Personnel
GDP Gross Domestic Product
GUI Graphical User Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IBM International Business Machines (Corporation)
ICASE Integrated Computer-Aided Software Engineering
ID Identifier
IDD Iterative and Incremental Development
IEC International Electro-technical Commission
IEEE Institute of Electrical and Electronics Engineers
IFPUG International Function Point Users Group
Inc. Incorporated
IP Internet Protocol
IS Information System
ISO International Organization for Standardization
IT Information Technology
J2EE Java 2 Platform, Enterprise Edition
KDSI Thousand (Kilo) Delivered Source Instructions
KLOC Thousand (Kilo) Lines of Code
KSLOC Thousand (Kilo) Source Lines of Code
LOC Lines of Code
LSS Logical Source Statements
LTEX Language and Tool Experience (EM; COCOMO)
MDD Model-Driven Development
MIS Management Information Systems
MM Man-Month
MMRE Mean Magnitude of Relative Error
MS Microsoft (Corporation)
MS-DOS Microsoft Disk Operating System
NASA National Aeronautics and Space Administration
NATO North Atlantic Treaty Organization
NN Neural Network
NS Nominal Schedule
OECD Organization for Economic Cooperation and Development
OLS Ordinary Least Squares
OOD&A Object-Oriented Design and Analysis
PCAP Programmer Capability (EM; COCOMO)
PCON Personnel Continuity (EM; COCOMO)
PERT Program Evaluation and Review Technique
PF Productivity Factor
PHP Hypertext Preprocessor
PIM Personal Information Management
PLEX Platform Experience (EM; COCOMO)
PMAT Process Maturity (SF; COCOMO II)

List of Abbreviations XIII

PREC Precedentedness (SF; COCOMO II)
PVOL Platform Volatility (EM; COCOMO)
QSM Quantitative Software Management
R&D Research and Development
RELY Required Software Reliability (EM; COCOMO)
RESL Risk Resolution (SF; COCOMO II)
RUSE Planned Reusability (EM; COCOMO)
SAAS Software as a Service
SCED Required Development Schedule (EM; COCOMO)
SE Standard Error
SF Scale Factor
SITE Multisite Development (EM; COCOMO)
SLIM Software Life-Cycle Model
SLOC Source Lines of Code
SPR Software Productivity Research
SQL Structured Query Language
STOR Main Storage Constraint (EM; COCOMO)
SW-CMM Capability Maturity Model for Software
TCF Technical Complexity Factor
TDEV Development Schedule ("Time to develop")
TEAM Team Cohesion (SF; COCOMO II)
TIME Execution Time Constraint (EM; COCOMO)
TOOL Use of Software Tools (EM; COCOMO)
UAW Unadjusted Actor Weight
UCP Use Case Point
UFP Unadjusted Function Point
UML Unified Modeling Language
UUCP Unadjusted Use Case Point
UUCW Unadjusted Use Case Weight
US United States
UTC Coordinated Universal Time
VAF Value Adjustment Factor
WBS Work Breakdown Structure

Chapter 1: Exposition 1

1 EXPOSITION

1.1 Motivation

“You can manage quality into a software product.”1 According to ROBERT GLASS,
this is not a fact but a fallacy. Quality2 is not a management job. Yet, managers can
contribute to achieve and ensure quality:

“[Managers] can establish a culture in which the task of achieving
quality is given high priority. They can remove barriers that pre-
vent technologists from instituting quality. They can hire quality
people, by far the best way of achieving product quality. And they
can get out of the way of those quality people, once the barriers are
down and the culture is established, and let them do what they have
wanted to do all long – build something they can be proud of.”3

Accordingly, good software is exclusively created by good developers.4 Developers
always take the final steps in development processes. While an appropriate manage-
ment of software development is sufficient in order to facilitate good software, the
talents, capabilities, and experiences of developers represent the necessary condition:

1 GLASS (2002), p. 158.
2 Concerning software, the term “quality” has been defined differently in the past (IEEE

COMPUTER SOCIETY (2008a)): CROSBY (1979), p. 15, defined quality as the “conformance to re-
quirements,” whereas Humphrey (1989), proposed “achieving excellent levels of fitness for use.”
Recently, quality has been defined as “the degree to which a set of inherent characteristics fulfils
requirements” (ISO (2008)). An overview of the most common quality definitions is given by
Jones (2008), p. 455. Alternatively, software quality can be described as follows: High quality
software is simply “good software.” Each of us might have experienced good or bad software.
While we not necessarily recognize good software, we keep in mind the bad things, no matter
how marginal they are. A lack of software quality causes dissatisfaction. Let it be technical for-
matting problems of word-processing software, missing multi-user support of bibliography man-
agement software, or synchronization problems with PIM (Personal Information Management)
software. Everyone who has ever spent half the day with manually deleting duplicate contacts
and appointments, caused by faulty synchronization tools, has developed a personal, but yet ap-
propriate understanding of software quality.

3 GLASS (2002), p. 159.
4 BOEHM (1981); DEMARCO, LISTER (1987); GLASS (2002).

2 Chapter 1: Exposition

“The most important factor in software work is not the tools and
techniques used by programmers, but rather the quality of the pro-
grammers themselves. […] People matter in building software.
That’s the message of this particular fact. […] And yet we keep be-
having as if it were not true. Perhaps it’s because people are a
harder problem to address than tools, techniques, and process.”5

In order to support this thought, GLASS provides a set of sources, including
DEMARCO and LISTER, who highlight that “the major problems of our work are not
so much technological as sociological in nature,” as well as DAVIS stating that
“people are the key to success – highly skilled people with appropriate experience,
talent, and training are [the] key. The right people with insufficient tools, languages,
and process will succeed. The wrong people with appropriate tools, languages, and
process will probably fail,” followed by HIGHSMITH, who encouraged to “peel back
the facade of rigorous methodology projects and ask why the project was successful,
and the answer [will be] people,” and, finally, RUBEY, who wrote, “when all is said
and done, the ultimate factor in software productivity is the capability of the individ-
ual software practitioner.”6

Accordingly, developers have a major impact on the success of software projects.
REEL discusses a set of success factors of which one is having the right team.7
“Building the right team means getting good people.”8 Economists would ask about
the productivity of developers. However, in the context of software development,
productivity is difficult – if not impossible – to measure.9 While it is uncomplicated
to quantify the input, which is the invested development time, it is difficult to capture
or quantify the output. Software is intangible and lacks physical dimensions. Besides,
a software system is developed once. Consequently, it is senseless to ask about how
many units of software “X” have been developed during a time interval “Y” in order
to measure and compare productivity. However, developers as well as projects per-
form differently.10

In view of that, why is one project successful while the other is not? Have all unsuc-
cessful projects been cancelled? How has previous research addressed this issue?
Software projects become measureable, quantifiable, and traceable by estimates. Ef-
fort estimation bridges the gap between managers and the invisible and almost artis-

5 GLASS (2002), p. 11.
6 GLASS (2002), p. 13; DEMARCO, LISTER (1987), p. 4; DAVIS (1994), p. 96; HIGHSMITH (2002), p.

90; RUBEY (1978).
7 REEL (1999).
8 REEL (1999), p. 20.
9 The measurement of productivity is discussed in Section 3.1.3.
10 For a detailed discussion, see Section 3.1.3.1.

Chapter 1: Exposition 3

tic domain of developers. Estimated and actual efforts provide a relative comparison.
Projects that were completed with less effort than estimated or with small effort over-
runs of, for example, 10% might be labeled successful, while projects that exceeded
the estimates by 100% or more are usually labeled unsuccessful.

Accordingly, effort estimates are of utmost importance. They give a means to man-
agers to track and control projects. They determine project costs as well as the total
customer price. However, if software development is rather sociological in nature,
and if people represent a key factor, what happens when developers are confronted
with estimates representing the major instrument of management control? Do esti-
mates influence developers, or are they unaffected? Is it irrational to expect that de-
velopers start to communicate and discuss estimates, conform to them, work strategi-
cally, hide progress or delay, take their time or rush if necessary? Similarly, do pro-
ject leaders behave as if they watch a mechanical, automated process in which they
cannot intervene until completion?

The question whether or not actual project effort is independent of estimated effort
must be asked. Correspondingly, MCCONNELL states that “an estimate is a predic-
tion of how long a project will take or how much it will cost. But estimation on soft-
ware projects interplays with business targets, commitments, and control.”11 Ac-
cordingly, this thesis addresses the posed questions by analyzing effort estimation in
general as well as the relationship of estimated and actual effort in particular.

1.2 Problem Statement and Purpose of Study

Effort estimation is an essential issue in software development projects. Estimates
influence the project planning and the allocation of resources. They determine how
much the customer has to pay and whether a company wins or loses a bidding pro-
cess.12 Moreover, estimates affect the overall success of a project. Therefore, effort
estimation is relevant for both practitioners and researchers. Numerous estimation
approaches have been developed over the past decades, starting with ALLAN

ALBRECHT’S Function Point Analysis in the late 1970s.13 Besides the development of
new estimation approaches, the evolution and advancement of established approach-

11 MCCONNELL (2006), p. 3.
12 Bidding processes, the impact of optimism, and the Winner’s Curse are briefly discussed in Sec-

tion 3.1.3.3
13 ALBRECHT (1979). See Section 2.2.2.

4 Chapter 1: Exposition

es, as well as the abandonment of approaches that never prevailed, effort estimation
techniques have constantly been subject to research on estimation accuracy.14

Accuracy is the central property of estimation techniques. It represents the goodness
of an estimation technique. Actual project effort can be underestimated, overestimat-
ed, or perfectly predicted. Underestimated projects – unless deliberately underesti-
mated due to strategic reasons – are problematic, as they lead to effort overruns, and,
consequently, to less profit or even financial loss. Yet, overestimation is problematic
as well, since it might hinder the successful acquisition of new projects. Analogous
to the number of available estimation approaches, there are numerous accuracy
measures. Additionally, there are debates about the usefulness, applicability, and
comparability of such measures.15

This thesis neither aims at the development of yet another estimation approach, nor
does it address the development or improvement of accuracy measures. Instead, this
thesis focuses on the general nature of estimates and on how they are utilized in
software development organizations. Estimation approaches as well as the relation-
ship between actual and estimated effort are generally described, discussed, and sub-
ject to research studies as if actual and estimated effort were independent measures.16
However, there is doubt that the assumption of independence always holds true. Ac-
cordingly,

Research question 1: Is it reasonable to assume a general independency of esti-
mated and actual software development effort?

The purpose of this thesis is to build a theory that emerges from this research ques-
tion. Software development projects are not understood as purely technical processes
that are determined and carried out by formal process definitions, rigorous planning,
perfect specifications, routine work, as well as objective and non-influencing esti-
mates. Instead, software development projects are understood as creative, team-
based, less formal, as well as highly communicative processes, which establish the
setting for the innovative and non-routine work of developers. As long as people
matter in building software, development projects are sociological in nature. The

14 E.g., FINNIE et al. (1997); FROHNHOFF (2008); MUKHOPADHYAY et al. (1992); SHEPPERD,

SCHOFIELD (1997).
15 KITCHENHAM et al. (2001).
16 E.g., FROHNHOFF (2008) focuses on estimation accuracy by comparing two estimation approach-

es. The author highlights the importance of accurate measures without doubting the independ-
ence of actual and estimates effort. There is only little research that explicitly addressed the po-
tential impact of estimates on actual project performance, e.g., ABDEL-HAMID, MADNICK (1991);
ABDEL-HAMID, MADNICK (1986); BOEHM (1981); JORGENSEN, SJOBERG (2001); MCCONNELL
(2006); SOMMERVILLE (2006). An in-depth discussion of this issue is given in Section 5.4.

Chapter 1: Exposition 5

theory construction takes this idea into account and addresses the interplay of project
lead and developers throughout a project. The central goal of the theory is to explain
and to predict how estimates influence project lead and developers, how developers
influence estimates, and why software development projects miss their target values
under specific circumstances. Correspondingly,

Research question 2: How do developers and project lead influence the relation-
ship between estimated and actual software development ef-
fort?

1.3 Research Approach and Methodology

In the field of Information Systems (IS) research, there are ongoing discussions and
academic debates on research methodology.17 These debates are often driven by dif-
ferent, partially conflicting philosophical convictions. One debate, for example, ad-
dresses the controversy of rigor and relevance in IS research.18 Another major debate
focuses on interpretivism vs. positivism.19 Commonly, these debates emerge from
different epistemological and ontological positions.20 Although positions are differ-
ent and often regarded as mutually exclusive21, they all aim at ensuring rigorous re-
search.

The questions concerning the existence of a real world (ontological perspective) as
well as the relationship between cognition and the object of cognition (epistemologi-
cal perspective) have been intensively discussed in the IS literature.22 Different onto-
logical and epistemological positions are essential to the debate of positivism and
interpretivism.23 LEE developed a framework that integrates both interpretivism and
positivism.24 This framework incorporates three levels of understanding (see Fig.
1.1).

17 E.g., GREGOR (2006); HEVNER et al. (2004).
18 LEE (1999).
19 LEE (1991).
20 E.g., HOLTEN et al. (2004).
21 E.g., BURRELL, MORGAN (1979).
22 E.g., BECKER, NIEHAVES (2007); CHEN, HIRSCHHEIM (2004); FALCONER, MACKAY (1999);

FITZGERALD, HOWCROFT (1998); FITZGERALD et al. (1985); HIRSCHHEIM (1985); LEE (1991);
WALSHAM (1995); WEBER (2004).

23 E.g., BECKER, NIEHAVES (2007); HOLTEN et al. (2004); LEE (1991); WEBER (2004).
24 LEE (1991).

6 Chapter 1: Exposition

Fig. 1.1: Cyclical nature of the three levels of understanding25

First, the subjective understanding belongs to the observed individuals. This level of
understanding refers to common sense and everyday meanings, which determine how
individuals perceive themselves and how they behave in particular socially con-
structed settings. Second, the interpretive understanding belongs to the observing
researcher. This understanding results from the observation, perception, and interpre-
tation of the subjective, common-sense understanding. Third, the positivist under-
standing also belongs to the observing researcher who created this level of under-
standing in order to explain the investigated empirical reality. An explanation or sci-
entific theory, respectively, is based on constructs that belong exclusively to the re-
searcher. Moreover,

“The explanation consists of formal propositions that typically pos-
it the existence of unobservable entities (like social structure). […]
In taking the form of formal propositions and in referring to factors
unknown to the human subjects themselves, the theoretical expla-
nation at the third [positivist] level is qualitatively different from
both the common-sense understanding located at the first [subjec-
tive] level and the interpretation of the common-sense understand-
ing located at the second [interpretive] level. In addition, the theo-
retical explanation located at the third level must obey the same
rules of formal logic and controlled empirical testing that apply to
scientific explanations in general.”26

Accordingly, the subjective understanding represents the basis from which the inter-
pretive understanding emerges. The interpretive understanding is the basis used to

25 LEE (1991).
26 LEE (1991), p. 351.

The Interpretive
Understanding

The Positivist
Understanding

The Subjective
Understanding

Observed
Individuals

Observing
Researcher

Observing
Researcher

Chapter 1: Exposition 7

develop the positivist understanding by generating propositions or hypotheses, as
well as confronting and testing them with empirical content.27

Regarding software development projects, it is assumed that the process of building
software takes place in a “real” world that exists independently of cognition,
thought, and speech (ontological realism; see Fig. 1.2).28 Yet, the observation of
software development processes is regarded as “subjective” or “private” for all par-
ticipants, i.e., managers, developers, as well as observing researchers (subjective
cognition; see Fig. 1.2).29 Concerning the relationship between cognition and the
object of cognition, “the continuum ranges from the assumption that the cognition of
an objective reality is interpreted by the subject [interpretivism] to the assumption
that cognition is private, because of the idea that there does not exist such thing as
an objective reality [radical constructivism].”30

Fig. 1.2: Ontological and epistemological positions31

This thesis assumes that there is both an objective and a subjective reality in software
development projects, and that both realities are relevant for investigating and under-
standing phenomena of software development. With reference to the necessity to
integrate objective and subjective realities in IS research, RECKER gives an illustra-
tive example:

“A process modeling initiative may succeed or fail based on
whether the models were completed on-time and on-budget (which
would be factual, objective reality). However, the different stake-
holders involved in the initiative may still have their own percep-
tions on whether that particular initiative was a success or failure
and why (which would be a subjective reality). Each of these view-

27 E.g., ROSENKRANZ, HOLTEN (2007).
28 E.g., BECKER, NIEHAVES (2007); HOLTEN et al. (2004).
29 E.g., BECKER, NIEHAVES (2007); HOLTEN et al. (2004).
30 BECKER, NIEHAVES (2007), p. 203.
31 C.p. HOLTEN et al. (2004), p. 178; cp. NIEHAVES et al. (2004), p. 4234.

Ontological
position

Epistemological position

Interpretivism

Radical
constructivism

Positivism
A real world
is existent

(ontological realism)

No real
world exists
(idealism)

Objective cognition
is impossible

(subjective cognition)

Objective cognition
is possible

(epistemological realism)

8 Chapter 1: Exposition

points provides its own lens through which a phenomenon can be
investigated, and both can contribute to understanding. In fact, a
number of researches have lamented that relying on just one meth-
od, theory, or methodology would lead to an inconsistency between
theory and actual practice (i.e., there is more to IS practice than IS
theories can explain).”32

This thesis affirms the necessity to take both realities into account, and, in conse-
quence, its research design makes use of interpretive as well as positivist approaches.
Due to the given combination of ontological and epistemological assumptions, this
thesis belongs to the position of interpretivism. However, with reference to LEE’S
suggestions on the integration of interpretivism and positivism, an interpretive posi-
tion is not contradictory to theory construction.

Following GREGOR, theory construction should address (at least) one of the follow-
ing four primary goals: 1) Analysis and Description, 2) Explanation, 3) Prediction,
or 4) Prescription.33 The goals of explanation and prediction (EP) can be combined.
Accordingly, GREGOR derives five theory types, which are briefly outlined in Tab.
1.1.

Tab. 1.1: Taxonomy of theory types in information systems research34

Theory Type Distinguishing Attributes

I. Analysis Says what is.
The theory does not extend beyond analysis and description. No causal
relationships among phenomena are specified and no predictions are
made.

II. Explanation Says what is, how, why, when, and where.
The theory provides explanations, but does not aim to predict with any
precision. There are no testable propositions.

III. Prediction Says what is and what will be.
The theory provides predictions and has testable propositions, but does
not have well-developed justificatory causal explanations.

IV. Explanation and
prediction

Says what is, how, why, when, where, and what will be.
The theory provides predictions and has both testable propositions and
causal explanations.

V. Design and action Says how to do something.
The theory gives explicit prescriptions (e.g., methods, techniques, princi-
ples of form and function) for constructing an artifact.

This thesis aims at the development of a so-called EP Theory which focuses on both
explanation and prediction: “EP theory implies both understanding of underlying
causes and prediction, as well as description of theoretical constructs and the rela-

32 RECKER (2008), p. 25.
33 GREGOR (2006).
34 GREGOR (2006), p. 620.

Chapter 1: Exposition 9

tionships among them.“35 In consequence, the theory will describe the relevant con-
structs, explain their relationships, provide a causal model as well as testable propo-
sitions in order to answer all relevant “what is, how, why, when, and what will be”
questions.36 As a second step, the theory will be tested by confronting it with empiri-
cal content based on expert interviews conducted with software professionals.

1.4 Research Design

Exploratory study

This research begins with an exploratory study.37 This type of study is helpful when
not much is known about a particular situation or phenomenon.38 While the tech-
niques of effort estimation are regarded as well studied and extensively document-
ed39, and while the deviation of estimated and actual effort has been subject to previ-
ous research40, there is no information available that addresses the distribution of
effort invested by individuals when no effort estimates are given. This particular
phenomenon is the central subject of the exploratory study. Above and beyond, the
study’s motivation is to identify interesting or controversial causal relationships in
the data, as well as getting an inspiration for a potential theory development from its
analysis.

The exploratory study represents the first phase of this research. It is based on empir-
ical data gained from an e-learning platform nicknamed “Playgrounds,” on which
students learn and practice SQL and Python programming.41 The platform provides
several e-learning applications with different focuses. Two datasets were generated
from more than 150,000 SQL and Python codes, written and executed over two se-
mesters. The major part of the exploratory study uses a particular data subset that
was gained from sessions of one e-learning application, called “SQL Trainer.” After
data cleansing, this data subset contains 16,577 SQL queries that were executed by
170 second semester bachelor students.

35 GREGOR (2006), p. 626.
36 GREGOR (2006), p. 626.
37 See Chapter 4.
38 E.g., SEKARAN (2003), BLESS et al. (2007), KOTLER et al. (2006), STEINBERG, STEINBERG

(2005), BLANCHE et al. (2008), BORTZ, DÖRING (2006). For a detailed discussion of exploratory
studies as a research method, see Section 4.1.

39 See Chapter 2.
40 See Section 2.4 as well as Section 3.1.3.
41 SQL (abbr.): Structured Query Language.

10 Chapter 1: Exposition

The study concentrates on a quantitative analysis based on the given dataset. Since
this phase is exploratory, it is not designed to test hypotheses but to develop insights,
assumptions, and/or propositions. With reference to the importance of individual
differences between software developers as well as the doubted independence of ac-
tual and estimated effort, the method of Simple Random Sampling is used in order to
generate small simulated development projects that are then subjected to different
statistical analyses. The result of each data analysis is interpreted. These interpreta-
tions largely concentrate on how well development effort can be estimated.

Theory Development

The second phase of this research focuses on the construction of a new theory that
offers both explanation and prediction (EP-type).42 At first, a causal model is devel-
oped that predominantly explains the interplay of managers and developers in soft-
ware development projects. This causal model incorporates the interests and behavior
of project leaders, the interests and behavior of developers, the influence of individu-
al capabilities of developers, as well as the impact of the inherent properties of soft-
ware systems.43 The developed causal relationships represent the explanatory com-
ponent of the EP theory (“what is, why, and how”).44

Based on the causal model, the central theory statement and two sets of assumptions
and propositions are developed. The assumptions describe under which circumstanc-
es a particular phenomenon can be observed. The set of propositions describes the
implications of this phenomenon. The assumptions (“when and where”) and proposi-
tions (“what will be”) represent the predictive component of the EP theory.45

Theory Validation

The third phase addresses the validation of the developed EP theory.46 The validation
is divided into two steps. First, the propositions are tested by semi-structured expert
interviews (qualitative inquiry).47 Accordingly, professional software developers,
who have relevant project experience and who are concerned with effort estimation,
were contacted and chosen as interviewees. If possible, the heads of development
were chosen as interview partners. Based on their responses, it can be determined
whether or not the assumptions and the propositions of the theory are supported. The
goal of this first step is to test if the interview responses corroborate the theory, or if

42 GREGOR (2006). See Chapter 5.
43 BROOKS (1975). See Section 5.1.4.
44 C.p. GREGOR (2006). See Section 5.1.
45 C.p. GREGOR (2006). See Section 5.2.
46 See Chapter 6.
47 FONTANA, FREY (2000); MYERS, NEWMAN (2007). See Section 6.1.1.

Chapter 1: Exposition 11

the interview responses lead to a falsification.48 Besides, the responses are analyzed
as to whether they imply counter-findings, which do not falsify the theory in general,
but which provide reasonable and comprehensible limitations.49

Finally, the process and the result of the theory construction, including its causal
model, its assumptions, its propositions, as well as the conclusion taken during theo-
ry development, is subject to an expert review conducted with one professional soft-
ware developer and project manager.50 The goal of the expert review is to determine
whether or not practitioners can comprehend and agree upon the theory construction.
In addition, it can be discussed whether the findings from the expert interviews ap-
pear to be correctly understood, and whether they lead to acceptable conclusions
from the practitioner’s perspective.

Integration of Interpretivism and Positivism

During this thesis, all three levels of understanding, i.e., the subjective, the interpre-
tive, and the positivist understanding, are addressed. With reference to the framework
suggested by LEE, the following Fig. 1.3 visualizes the stepwise interplay of interpre-
tivism and positivism in this research.

Fig. 1.3: Steps of addressing the three levels of understanding during research

48 LEE (1991); POPPER (1959). See Section 6.1.2.
49 KUHN (1970).
50 See Section 6.4.

The Interpretive
Understanding

The Positivist
Understanding

The Subjective
Understanding

Observed
Individuals

Observing
Researcher

Observing
Researcher

3

1

5

7

9

2
4
6

8

10

12 Chapter 1: Exposition

Step 1 represents the initial subjective knowledge and points of view of the research-
er. This knowledge is influenced by personal experiences with software development
projects, academic education, literature, as well as previous research. Moreover, this
knowledge was subjected to interpretation before this research has been started (Step
2). The developed interpretive understanding (Step 3) has an impact on both the de-
sign and focus of the exploratory study (Step 4).

The exploratory phase consists of two steps. Step 5 addresses the construction of
data, i.e., the particular setting by which the data is gained. Accordingly, this step
belongs to the subjective understanding.51 With respect to the considerations on gen-
eralizability of LEE and BASKERVILLE, the exploratory study

“[…] generalizes from empirical statements (as inputs to general-
izing) to other empirical statements (as outputs of generalizing).
[…] The generalizability of data to a measurement, observation, or
other description (such as a descriptive statistic or a thick descrip-
tion) and the generalizability of the resulting measurement, obser-
vation, or other description beyond the sample or domain from
which the researcher has actually collected data […].”52

The construction of data addresses the “first-level constructs [that] refer to the un-
derstandings held by the observed people themselves.”53 LEE argues that

“The subjective understanding provides the basis on which to de-
velop the interpretive understanding.”54

Analyses based on the data are “second-level constructs [that] refer to the under-
standing held by the observing researcher.”55 Step 5, i.e., the construction of data, is
the foundation for Step 6, which addresses the analysis of this data. Step 6 makes use
of quantitative methods in order to explore the field. While the data, understood as a
set of values, is regarded as objective and precise, since it is exclusively based on
time measures, its perception, analysis, and interpretation is still regarded as subjec-
tive. Hence, Step 6 belongs to the interpretive understanding:

“This understanding is the researcher's reading or interpretation
of the first-level common-sense understanding.”56

51 ROSENKRANZ, HOLTEN (2007).
52 LEE, BASKERVILLE (2003), pp. 232-233.
53 LEE, BASKERVILLE (2003), p. 230.
54 LEE (1991), p. 351.
55 LEE, BASKERVILLE (2003), p. 230.
56 LEE (1991), p. 351.

Chapter 1: Exposition 13

In consequence, the interpretation and analysis of the data contribute to and influence
the existing interpretive understanding (Step 7). This level of understanding is the
basis for developing the EP theory (Step 8). Since the theory has a predictive com-
ponent, consisting of propositions that can be tested by empirical, quantitative data,
the theory belongs to the positivist understanding (Step 9):

“[The positivist] understanding is one that the researcher creates
and tests in order to explain the empirical reality that he or she is
investigating. This explanation, which is also called scientific theo-
ry, is made up of constructs that belong exclusively to the research-
er (as opposed to the observed human subjects). The explanation
consists of formal propositions that typically posit the existence of
unobservable entities (like social structure). […] In addition, the
theoretical explanation located at the third level must obey the
same rules of formal logic and controlled empirical testing that
apply to scientific explanations in general.”57

Finally, the validation of the theory, by conducting semi-structured expert inter-
views, confronts the positivist understanding, i.e., the theory, with private experienc-
es of the observed individuals, and, accordingly, with their subjective understandings
(Step 10):

“The subjective understanding, through the publicly observable
behaviors arising from it, may serve to confirm or disconfirm the
predictions of the positivist understanding. […] The theoretical
propositions must satisfy the rules of formal logic, the rules of hy-
pothetico-deductive logic, and the four requirements of positivism,
falsifiability, logical consistency, relative explanatory power, and
survival.”58

1.5 Organization of Thesis

Following this introduction, Chapter 2 focuses on the theoretical foundations of this
thesis. The second chapter starts with a brief discussion of Software Engineering and
its relation to Software Development (Section 2.1). Before turning to Effort Estima-
tion as the central subject of this thesis, relevant concepts of Software Sizing, includ-
ing common size measures (Section 2.2.1), the technique of Backfiring (Section
2.2.2.2), as well as Function Points Analysis (Section 2.2.2) and its variants (Section
2.2.3), are introduced. Section 2.3 focuses on Effort Estimation. Each discussed esti-
mation technique is classified as either being model-based (Section 2.3.1), expertise-

57 LEE (1991), p. 351.
58 LEE (1991), p. 353.

14 Chapter 1: Exposition

based (Section 2.3.2), learning-oriented (Section 2.3.3), or dynamics-based (Section
2.3.4). Section 2.4 gives a brief summary and discussion of the most common esti-
mation techniques.

Chapter 3 addresses software development from an economic perspective. For that
reason, the emergence and the evolution of the so-called Software Crisis are dis-
cussed (Section 3.1). This discussion focuses on the reliability, control, and cost-
effectiveness of software development. Section 3.1.2 discusses the evolution as well
as the possibilities and limitations of managing software projects. During this discus-
sion, different eras of software development, i.e., sequential, iterative, and agile
software development, are presented. Section 3.1.3 addresses the aspect of cost-
effectiveness, and, therefore, puts a strong emphasis on the economic perspective.
Among other issues, this section discusses the myth of the Chaos Report, the lead of
traditional engineering over software engineering, as well as the measurement of
productivity of software development. The corresponding findings are the basis for
elaborating the crux of software development (Section 3.3). Before, the production of
software is opposed to traditional mass production and its special economies, i.e.,
economies of scale and economies of scope (Section 3.2). This section aims at char-
acterizing the nature of software development and explaining why software devel-
opment is generally different from traditional production. Finally, the implications on
effort estimation are described (Section 3.3).

Chapter 4 describes the conducted exploratory study. First, the student datasets and
the corresponding data retrieval processes during the summer semester of 2008 and
the winter semester of 2008/09 are explained (Section 4.2). The main part of Chap-
ter 4 addresses the exploration of one particular data subset (Section 4.3). The data
analysis concentrates on the solution capability (Section 4.3.1), the overall solution
effort (Section 4.3.2), as well as the individual working speed of students (Section
4.3.3). Afterwards, the concept of Simple Random Sampling is introduced, which is
required to simulate small development projects (Section 4.3.4). The analysis of es-
timation accuracy is introduced in Section 4.3.5. Section 4.3.6 incorporates the
PARKINSON effect into the random sampling process. In following analyses, different
intensities of the PARKINSON effect as well as simple forms of project control are
tested (sections 4.3.6 and 4.3.7). Section 4.4 summarizes the gained insights, ob-
served phenomena, and drawn conclusions based on the exploratory study.

Chapter 5 addresses the development of the EP theory. Section 5.1 describes the
causal model, including the role and interests of project lead (Section 5.1.1), the role
and interests of developers (Section 5.1.2), the craftsmanship of skilled individuals

Chapter 1: Exposition 15

(Section 5.1.3), as well as the impact of accidental complexity on effort (Section
5.1.4). Afterwards, Section 5.2 presents the central theory statement, its assumptions,
and its propositions. Section 5.3 describes the empirical observability of the theory
and introduces the concept of estimation fingerprints. Subsequent to the presentation
of the EP theory, the most closely related research is discussed in Section 5.4.

Chapter 6 reports on the theory validation. Section 6.1 focuses on the interview de-
sign (Section 6.1.1) and the qualitative research method used to analyze the expert
responses (Section 6.1.2). Biographical information about the experts and the most
important answers and statements given during the interviews can be found in Sec-
tion 6.2. Next, Section 6.3 discusses the findings gained from the interviews. Section
6.4 presents the expert review, including the review of the causal model (Section
6.4.1), the review of the assumptions and the propositions as well as the review of
the central theory statement and the estimation fingerprints (Section 6.4.2).

Chapter 7 concludes this thesis. At first, the research process is summarized (Section
7.1). Afterwards, Section 7.2 discusses the major contributions of this research in
brief. Section 7.3 presents the implications for research and practice, followed by
Section 7.4 reporting on limitations. At last, Section 7.5 suggests future research.

Fig. 1.4 visualizes the corresponding thesis structure.

16 Chapter 1: Exposition

Fig. 1.4: Thesis structure

EP Theory Development

Major drivers of theory development

Exposition

Motivation Problem
Statement

Research
Approach

Research
Design

Thesis
Structure

Estimation Fulfillment Theory

Causal Model Assumptions Propositions Estimation
Fingerprints

Theory Validation

Interview
Design

Expert
Interviews

Interview
Analysis

Expert
Review

Conclusion

Summary Contributions Implications Limitations Future
Research

Explorative Study

Data
Retrieval

Data
Exploration

The Crux of Software Development

Software
Crisis The Crux

Literature Review

Software
Sizing

Effort
Estimation

1

2

3

4

5

6

7

Chapter number

Chapter 2: Literature Review 17

2 LITERATURE REVIEW

2.1 Software Engineering

This thesis focuses on problems, challenges, and research questions as well as the
history and state-of-the-art of software development and software engineering. Be-
fore turning to the review of relevant literature, both terms - “software development”
and “software engineering” - are briefly discussed and distinguished from each other.

The term “software engineering” has been introduced to the public by the “NATO
Conference of Software Engineering” which was held in Germany in 1968.59 Chair-
man of this conference was FRITZ L. BAUER who initially coined the term.60 BRIAN

RANDELL, who was one of the two conference editors, remembers:

“The idea for the first NATO Software Engineering Conference
and in particular that of adopting the then practically unknown
term ‘software engineering’ as its (deliberately provocative) title, I
believe came originally from Professor FRITZ BAUER. Similarly, if
my memory serves me correctly, it was he who stressed the im-
portance of providing a report on the conference and who persuad-
ed PETER NAUR and me to be the editors.”61

Recalling the first two conferences on software engineering in 1968 and 1969,
RANDELL describes how the discipline was perceived at that time:

“Unlike the first conference, at which it was fully accepted that the
term software engineering expressed a need rather than a reality,
in Rome there was already a slight tendency to talk as if the subject
already existed.”62

59 NAUR, RANDELL (1969), p. 1027. NATO (abbr.): North Atlantic Treaty Organization.
60 NAUR, RANDELL (1969).
61 RANDELL (1996), p. 37.
62 RANDELL (1996), p. 41.

18 Chapter 2: Literature Review

This quotation documents that having a name for a new discipline in the 1960s was
much more important than working on clear definitions of software engineering. Fur-
thermore, the term was easy to comprehend due to the existence of many other engi-
neering disciplines, like civil, mechanical, or chemical engineering. The OXFORD

ENGLISH DICTIONARY defines Engineering as “The work done by, or the profession
of, an engineer” as well as “The art and science of the engineer's profession.”63
Moreover, Engineer is defined as “One who contrives, designs, or invents.”64 In
view of that, the definition of Engineer and, therefore, the definition of Engineering
are applicable for software. Additionally, the OXFORD ENGLISH DICTIONARY defines
Software Engineering as “the professional development, production, and manage-
ment of system software.”

A more detailed definition, for example, is given by the IEEE COMPUTER SOCIETY65,
which defines Software Engineering as:

“1) The application of a systematic, disciplined, quantifiable ap-
proach to the development, operation, and maintenance of soft-
ware; that is, the application of engineering to software. 2) The
study of approaches as in 1).”66

In textbooks on software engineering, the central idea of software engineering is de-
scribed in more detail, but the quintessence is identical. For example, SOMMERVILLE

introduces software engineering as follows:

“Software engineering is concerned with the theories, methods,
and tools which are needed to develop the software […]. In most
cases, the software systems […] are large and complex systems.
They are also abstract in that they do not have a physical form.
Software engineering is therefore different from other engineering
disciplines. It is not constrained by materials governed by physical
laws or by manufacturing processes.”67

Another definition of software engineering is given by SCHACH who puts the empha-
sis on the outcome of the underlying production process:

63 SIMPSON, WEINER (1989).
64 SIMPSON, WEINER (1989).
65 IEEE (abbr.): Institute of Electrical and Electronics Engineers.
66 IEEE COMPUTER SOCIETY (2008B); IEEE STANDARDS ASSOCIATION (1990).
67 SOMMERVILLE (1996), p. 4.

Chapter 2: Literature Review 19

“Software engineering is a discipline whose aim is the production
of fault-free software, delivered on time and within budget, that
satisfies the client’s needs.”68

The definitions of the OXFORD ENGLISH DICTIONARY and the IEEE COMPUTER

SOCIETY affirm that software engineering can be rightly regarded as an engineering
discipline. Generally, an engineering discipline is both an art and a science, which
demands systematic and disciplined work from its engineers. Additionally, the se-
cond sentence of the IEEE definition states that studying approaches of software en-
gineering is also part of the discipline.69 This aspect points at the high demand for
self-reflection in the field of software engineering.

Generally, software engineering can be divided into three areas, i.e., software devel-
opment, operation, and maintenance. This specifies the relation of software engineer-
ing to software development. Software development is subordinated to software en-
gineering. Moreover, software development is focused on and limited to the con-
struction of new software products.

The definition of SOMMERVILLE differentiates software engineering from other clas-
sic engineering disciplines, since software is intangible.70 The missing physical form
makes it difficult to visualize software and to determine its size.

Finally, the definition of SCHACH describes constraints in which software develop-
ment is embedded in.71 Limits set by schedules, budgets, and quality standards refer
to the economic motivation for software engineering, especially forms of systematic
and disciplined software development.

2.2 Software Size Estimation

In the context of software development, the primary cost driver is effort.72 Conse-
quently, the total costs of a development project largely depend on the invested
working time. Before estimating effort, however, the size of software must be deter-
mined. As stated above, software is intangible, and, consequently, it has no physical
dimensions that describe its size. Therefore, software engineering must provide tech-
niques for software sizing which represents a pre-stage for effort estimation tech-

68 SCHACH (2005).
69 IEEE COMPUTER SOCIETY (2008B); IEEE STANDARDS ASSOCIATION (1990).
70 SOMMERVILLE (1996).
71 SCHACH (2005).
72 BOEHM (1981).

20 Chapter 2: Literature Review

niques. In the following, the most prominent size measures, i.e., Lines of Code as
well as Function Points and its variants, are briefly presented.

2.2.1 Code-based Size Measures

Lines of Code (LOC) is a quantitative and straightforward size measure for software
systems. Typically, the size of software is measured in KLOC– one thousand Lines
of Code.73 PARK gives a compact overview of the most frequent acronyms in this
context:

“Some common acronyms for physical source lines are LOC,
SLOC, KLOC, KSLOC, and DSLOC, where SLOC stands for
source lines of code, K (kilo) indicates that the scale is in thou-
sands, and D says that only delivered source lines are included in
the measure. Common abbreviations for logical source statements
include LSS, DSI, and KDSI, where DSI stands for delivered source
instructions.”74

However, for a given set of requirements, Lines of Code vary across different pro-
gramming languages and with the extent of automatic code generation.75 Additional-
ly, the definition of SLOC is not standardized. Some counting definitions include
empty lines, comments, and brackets while others do not.76

According to BOEHM, the best approach to estimate the number of Lines of Code,
which are necessary to develop a new software product, is historical data.77 The
number of LOC of a completed project is known ex post since LOC are objectively
measurable once a specific counting definition has been chosen. However, if data of
past projects is available and if that data allows identifying analogies with the current
project, it will be possible to estimate the number of LOC for the new software sys-
tem or its components ex ante.78 If historical data is not available, it will be still pos-
sible to use expert opinions in order to attain estimates of likely, lowest-likely, and
highest-likely size.79

73 BOEHM et al. (2000b).
74 PARK (1992), p. 13.
75 MATSON et al. (1994).
76 MATSON et al. (1994).
77 BOEHM et al. (2000b).
78 E.g., SHEPPERD, SCHOFIELD (1997); SHEPPERD et al. (1996).
79 BOEHM et al. (2000b).

Chapter 2: Literature Review 21

2.2.2 Function Points

The Function Point (FP) estimation technique or Function Point Analysis (FPA) de-
termines the software size by quantifying its information processing functionality.80
This quantification approach was initially published by ALLAN ALBRECHT in 1979.81
Function Points are especially helpful for early estimations since the approach works
with premature, vague information.82 FPA was primarily designed for the domain of
Management Information Systems (MIS), where it has been extensively analyzed and
evaluated.83 Since 1986, FPA is being maintained by the International Function
Point Users Group (IFPUG), which provides certifications and estimation guidelines
for software professionals.84 FPA is still the most widely used formal estimation
technique today.85

2.2.2.1 Counting Technique

Basically, the functional user requirements are categorized and counted in terms of
so-called User Function Types, i.e., External Input, External Output, Internal Logical
File, External Interface File, and External Inquiry.86

In the context of FPA, External Input represents user data or user control input that
enters the external boundary of the software system. Analogously, External Output
represents user data or user control output that leaves the external boundary. Internal
Logical Files refer to logical groups of user data or control information that are gen-
erated, used, or maintained by the system. External Interface Files are passed or
shared between software systems. Finally, External Inquiries refer to unique input-
output combinations, where input causes and generates an immediate output.87

Each instance of the categorized requirements is classified by three complexity lev-
els, i.e., Simple, Average, and Complex.88 Each complexity level refers to a set of
weights ranging from 3 to 15 that influence the Function Point counting (see Tab.
2.1). The resulting counting represents the Unadjusted Function Points (UFP).89

80 BOEHM et al. (2000b).
81 ALBRECHT (1979).
82 BOEHM et al. (2000b).
83 ABRAN, ROBILLARD (1996); JONES (1996); KEMERER (1987); KEMERER (1993); SYMONS (1988).
84 INTERNATIONAL FUNCTION POINT USERS GROUP (1994).
85 GARMUS, HERRON (2001); JANTZEN (2008).
86 ALBRECHT, GAFFNEY JR (1983).
87 ALBRECHT, GAFFNEY JR (1983).
88 ALBRECHT, GAFFNEY JR (1983).
89 BOEHM et al. (2000b).

22 Chapter 2: Literature Review

Tab. 2.1: UFP complexity weights90

 Complexity Weight

Function Type Low Average High

External Inputs 3 4 6

External Outputs 4 5 7

Internal Logical Files 7 10 15

External Interface Files 5 7 10

External Inquiries 3 4 6

UFP is used, for example, by the Constructive Cost Model (COCOMO) to reflect the
software size. A brief introduction of how to count and assess functional user re-
quirements is given by ALBRECHT.91 Detailed guidelines are given by IFPUG.92

ALBRECHT proposes a further step in order to adjust the FP counting. After the re-
quirements have been listed, classified and counted, the resulting UFP can be adjust-
ed by taking general application characteristics into account.93 These characteristics
reflect the Processing Complexity of the software system. ALBRECHT notes 14 gen-
eral characteristics that influence the FP counting.94

For each application characteristic, the Degree of Influence (DI) is rated on a scale
from 0 (“no influence”) to 5 (“strong influence”).95 The sum of all fourteen DI de-
termines the Value Adjustment Factor (VAF), which ranges from 0.65 to 1.35 allow-
ing an overall adjustment of ± 35%.96 The Adjusted Function Points (AFP) are calcu-
lated by multiplying the Value Adjustment Factor with the Unadjusted Function
Points:

[]
14

1
0.65 0.01 0;0.05i i

i

AFP UFP VAF

VAF DI with DI
=

= ×

= + ∈∑
 Eq. 2.1

The Function Point Analysis is often referred to as a technique to estimate effort. It
has to be pointed out that both UFP and AFP are size measures. These measures,
however, can be used for estimating effort by applying a company-specific factor

90 BOEHM et al. (2000b)
91 ALBRECHT, GAFFNEY JR (1983).
92 INTERNATIONAL FUNCTION POINT USERS GROUP (1994).
93 ALBRECHT, GAFFNEY JR (1983).
94 ALBRECHT, GAFFNEY JR (1983); JANTZEN (2008). The 14 general application characteristics are:

data communications, distributed data processing, performance objectives, heavily used equip-
ment, high transaction rates, online data entry, end user efficiency, online updates, complex pro-
cessing, reusability, installation ease, operational ease, multiple installation sites, as well as the
ability to facilitate change.

95 BOEHM et al. (2000b); KEMERER (1987).
96 ALBRECHT, GAFFNEY JR (1983); BOEHM et al. (2000b); JANTZEN (2008).

Chapter 2: Literature Review 23

that transforms Function Points into a time-based effort measure like man-month.
This direct transformation assumes a waterfall-oriented development process.97

2.2.2.2 Backfiring Technique

Based on historical data and regression analyses, it is possible to relate Unadjusted
Function Points to Source Lines of Code.98 The technique of converting UFP to
SLOC – called Backfiring – is language-dependent. The conversion ratios for differ-
ent programming languages are listed in Backfiring Tables. The following Tab. 2.1
presents conversion rates for a set of programming languages based on two different
historical data sources. With reference to the conversion rates given by JONES (Tab.
2.1), the implementation of one UFP requires, for example, 213 source lines of As-
sembler code on average, while the same implementation requires 53 source lines
when programmed in Java.

Tab. 2.2: UFP to SLOC conversion ratios99

 SLOC/UFP

Language Jones (1996)100 QSM (2005)101
1. Generation Language 320 -

2. Generation Language 107 -

3. Generation Language 80 -

4. Generation Language 20 -

5. Generation Language 4 -

Assembler 213 172

C 128 148

C++ 55 60

Cobol 91 73

Excel 6 47

Java 53 60

SQL 12 39

Perl 27 60

Visual Basic 29 50

97 JANTZEN (2008). The waterfall process model is briefly discussed in Section 3.1.2.1.
98 BOEHM et al. (2000b).
99 BOEHM et al. (2000b); JONES (1996).
100 JONES (1996). In the given table, the values for “Assembler” and “Excel” refer to the values of

“Assembly – Macro” and “Spreadsheet” of the original table given by JONES (1996) and BOEHM
et al. (2000b). The value for SQL is taken from JONES (2008).

101 QUANTITATIVE SOFTWARE MANAGEMENT (2005). The presented values are taken from the col-
umn “Average.”

24 Chapter 2: Literature Review

2.2.2.3 Criticism on the Function Point Analysis

In contrast to its popularity and widespread use, the Function Point Analysis has
been criticized since its initial publication. Based on a literature review, JEFFERY et
al. identified five major criticisms related to the counting of Function Points102:

 The level of abstraction is too high, turning a software system into 1)
a black box.103 This is in line with BOEHM, for example, who postu-
lates “to work out as much detail as feasible.”104 BOEHM argues
that

“The more we explore, the better we understand the technical as-
pects […]. The more pieces of software we estimate, the more we
get the law of large numbers working for us […]. The more we
think through all the functions the software must perform, the less
likely we are to miss […] costs […].”105

 The division of functionality into different User Function Types, 2)
i.e., Inputs, Outputs, Inquiries etc., may be technology dependent,
and, in consequence, change with new technologies.106 VERNER et
al. argue that

“Modern interactive systems tend to blur these divisions. […] If a
new technology allows the user to do new things, or to do things
differently, then it would seem to us that user function has changed
with the technology. Its measurement must therefore change al-
so.”107

 The assessment of function types as simple, average, and complex 3)
appears to be inappropriate.108 SYMONS argues that

“[The] classification of all system component types (input, outputs,
etc.) as simple, average, or complex, has the merit of being
straightforward, but seems to be rather oversimplified. A system
component containing, say, over 100 data elements is given at most
twice the points of a component with one data element.”109

102 JEFFERY et al. (1993).
103 VERNER, TATE (1987); VERNER et al. (1989).
104 BOEHM (1981), p. 316.
105 BOEHM (1981), p. 316.
106 VERNER et al. (1989).
107 VERNER et al. (1989), p. 377.
108 SYMONS (1988).
109 SYMONS (1988), p. 3.

Chapter 2: Literature Review 25

 According to ALBRECHT, the choice of weights “was determined by 4)
debate and trial.”110 Accordingly, there is doubt that these weights
are valid in all circumstances.111

 Generally, Function Point counts as a measure of size is not tech-5)
nology independent.112

In addition, there is a controversial discussion of the 14 processing complexity fac-
tors. While SYMONS asks for more factors or an open-ended approach respectively,
JONES argues that 14 factors are not necessary to sufficiently reflect processing com-
plexity.113 During the validation of cost estimation models on the basis of empirical
data, KEMERER found that Unadjusted Function Points have higher correlations with
actual effort than Adjusted Function Points.114 KEMERER concluded that the pro-
cessing complexity factors contribute little to cost estimation processes.115 Moreover,
SYMONS argues that Function Points do not appear to be summable in the way one
would expect.116 Finally, the Function Point Analysis faced lots of criticism for not
being applicable to all types of software.117

2.2.3 Variants of the Function Point Analysis

Due to the criticism, drawbacks, and specificity of the original Function Point Analy-
sis, numerous variants of the FPA have been developed, for example, Data Points,
Feature Points, Object Points, SPR Function Points, 3D Function Points, Use Case
Points, as well as COSMIC FFP.118 In 2008, JONES lists 22 variants of Function
Point metrics.119 A timeline-based overview of the history and evolution of Size Es-
timation methods is given at the end of this subsection (see Fig. 2.2; page 33).

2.2.3.1 Data Points

Inspired by the work of VERNER and TATE on size and effort estimation within the
context of 4th generation development, HARRY SNEED developed the Data Point

110 ALBRECHT (1979); ALBRECHT, GAFFNEY JR (1983); JEFFERY et al. (1993); SYMONS (1988).
111 SYMONS (1988); VERNER et al. (1989).
112 JEFFERY et al. (1993); SYMONS (1988); VERNER et al. (1989).
113 JONES (1988); SYMONS (1988).
114 KEMERER (1987).
115 JEFFERY et al. (1993); KEMERER (1987).
116 SYMONS (1988).
117 CONTE et al. (1986); GALEA (1995); GRADY (1992); HETZEL (1993); JEFFERY et al. (1993);

JONES (1988); JONES (1996); KAN (1993); VERNER et al. (1989); WHITMIRE (1992).
118 BUNDSCHUH, DEKKERS (2008). SPR (abbr.): Software Productivity Research. COSMIC (abbr.):

Common Software Measurement International Consortium. FFP (abbr.): Full Function Point.
119 JONES (2008).

26 Chapter 2: Literature Review

method as an approach to derive a size measure based on a software’s data model.120
Accordingly, this counting technique focuses on data objects, e.g., the user interface,
as well as data elements, e.g., entities, attributes, keys, and relations. The size meas-
ure can be adjusted by eight quality factors and ten project conditions. The Data
Point method has not gained international attention.121

2.2.3.2 Feature Points

In 1986, CAPERS JONES, the founder of Software Productivity Research (SPR), intro-
duced the Feature Point method.122 This variant of the IFPUG FPA extends the User
Function Types by a new sixth type that accounts for algorithms. Additionally, the
Feature Point method restricts itself to two general application characteristics. In the
past, however, the method has been criticized for its vague definition of algorithms
and its lack of correlations with other FPA variants.123 Today, SPR comments on the
Feature Point method as follows:

“Feature Points […] are not in common use today. The approach
was defined in response to concerns about the ‘under representa-
tion’ of certain types of functionality by the IFPUG method. The
current view is that […] this is not an appropriate way to produce
estimates. The primary issue with the Feature Point approach […]
is that it destabilizes the emphasis on pure elementary process con-
tent. […] There are almost no documented guidelines or standards
regarding how to the theoretical construct of Feature Points to ac-
tual estimates in a consistent and repeatable way.”124

2.2.3.3 Object Points

In 1990, LUIZ LARANJEIRA primarily discussed the strengths and weaknesses of ex-
isting size estimation techniques with regard to object-oriented software develop-
ment.125 LARANJEIRA proposed a new method in order to improve estimation accura-
cy by taking the characteristics of object-oriented systems into account. One year
later, BANKER et al. introduced the term “Object Points.”126 Another important pub-

120 SNEED (1990); SNEED (1996); VERNER, TATE (1988).
121 SNEED (1996).
122 JONES (1988); SOFTWARE PRODUCTIVITY RESEARCH (2009b).
123 BUNDSCHUH, DEKKERS (2008).
124 SOFTWARE PRODUCTIVITY RESEARCH (2009a).
125 LARANJEIRA (1990).
126 BANKER et al. (1991).

Chapter 2: Literature Review 27

lication on object-oriented measurement was given by CHIDAMBER and KEMERER in
1994.127

Based on empirical data of 19 development projects, BANKER et al. found that Object
Points correlated with effort just as well as Function Points.128 Likewise, a succes-
sively conducted experiment-based study showed comparable estimation accuracy
for Object Points and Function Points. The average time for creating Object Point
estimates, however, was merely half the time it takes for creating Function Point es-
timates.129

It remains to be seen whether Object Points will gain widespread attention in the
future, or whether FPA will keep its leading position.130 Nevertheless, BOEHM et al.
favor Object Points over Function Points with regard to the COCOMO II Application
Composition Model. In this context, the Object Point counting focuses on the number
of screens, reports, and 3rd generation language modules of a new software system,
of which elements can be classified as Simple, Medium, or Difficult.131

2.2.3.4 SPR Function Points

In 1985, SPR released the first commercial estimating tool that was based on Func-
tion Points.132 This tool primarily supported Backfiring for converting LOC-based
metrics into Function Points. The SPR Function Point method was developed by
CAPERS JONES, who also developed the Feature Point method, in order to get a sim-
plified variant of the IFPUG Function Point method.

The goal of that simplification was creating a method that allows producing esti-
mates in less time compared to the traditional FPA.133 Therefore, the complexity lev-
els of FPA (i.e., simple, average, and complex) were eliminated.134 Additionally, the
14 general application characteristics were reduced to three: problem complexity,

127 BUNDSCHUH, DEKKERS (2008); CHIDAMBER, KEMERER (1994). Another object-oriented estima-

tion approach that can be found in literature, e.g., in JANTZEN (2008) and BOEHM et al. (2000a),
is ObjectMetrix maintained by TASSC (2009).

128 BANKER et al. (1991); BOEHM et al. (2000b).
129 BOEHM et al. (2000b); KAUFFMAN, KUMAR (1993).
130 BUNDSCHUH, DEKKERS (2008).
131 BOEHM et al. (2000b).
132 JONES (2008).
133 JONES (2008).
134 BUNDSCHUH, DEKKERS (2008).

28 Chapter 2: Literature Review

code complexity, and data complexity.135 These characteristics are rated on a five-
point integer-based scale, which also allows floating point ratings.

2.2.3.5 3D Function Points

The 3D Function Point (3D FP) method was developed at Boing Computer Services
by SCOTT WHITMIRE in the early 1990s.136 The method aimed at scientific and real-
time software. Similar to Feature Points’ consideration of algorithms, 3D FP takes
the control flow deliberately into account.137 Accordingly, the method estimates sys-
tem size by analyzing three dimensions: data, control, and process. Today, the 3D
Function Point method seems to be no longer deployed.138

2.2.3.6 Use Case Points

The concept of “Use Cases” has been popularized by the Unified Modeling Lan-
guage (UML).139 Before UML has been developed in the 1990s, IVAR JACOBSON,
who was one of the contributors of UML, developed the technique of specifying Use
Cases.140 According to JONES,

“A Use Case describes what happens to a software system when an
actor (typically a user) sends a message or causes a software sys-
tem to take some action.”141

The concept of Use Case Points (UCP) has been initially described by GUSTAV

KARNER in 1993.142 Goal of the UCP method is estimating effort. However, the
method comprises a sizing technique that differs from traditional FPA.143 The UCP
estimation approach consists of four steps, that is, determining: 1) the Unadjusted
Use Case Points (UUCP), 2) the Technical Complexity Factor (TCF), 3) the Envi-
ronmental Complexity Factor (ECF), as well as 4) the Productivity Factor (PF).144

135 JONES (2008) lists the given three characteristics. Probably incorrectly, BUNDSCHUH, DEKKERS

(2008) only list two remaining characteristics. An introduction to SPR Feature Point counting can
be found in JONES (2008), pp. 149-155.

136 WHITMIRE (1992).
137 BUNDSCHUH, DEKKERS (2008).
138 JONES (2008).
139 BALZERT (2005); FOWLER (2003); OBJECT MANAGEMENT GROUP (2004).
140 JACOBSON et al. (1992).
141 JONES (2008).
142 KARNER (1993). A recent variant of the UCP method, especially for large software projects, is

presented and discussed by FROHNHOFF (2008).
143 BUNDSCHUH, DEKKERS (2008).
144 JANTZEN (2008).

Chapter 2: Literature Review 29

At first, a list of Use Cases and the involved actors is created. Each actor (humans or
other systems) that interfaces with the software system is identified and categorized.
Based on the Actor Type, categorized as simple, average, or complex, the actor re-
ceives a weighting that ranges from 1 to 3.145 The sum of all weighted actors repre-
sents the Unadjusted Actor Weight (UAWtotal).146

Similarly, each Use Case is identified and categorized. Based on the Use Case Type,
the Use Case receives a weighting of 5, 10, or 15.147 The sum of all weighted Use
Cases represents the Unadjusted Use Case Weight (UUCWtotal).

Given the weightings for actors and Use Case for each category, represented by
UAWi and UUCWi, and the numbers of actors and Use Cases per category, represent-
ed by ai and ui, the total number of UUCP is calculated as follows148:

3

1

3

1

total total

total i i
i

total i i
i

UUCP UAW UUCW

UAW UAW a

UUCW UUCW u

=

=

= +

= ×

= ×

∑

∑

Eq. 2.2

The Technical Complexity Factor is based on 13 complexity factors, e.g., “Perfor-
mance,” “Reusability,” “Portability,” and “Concurrency.” Their influences Ii are
rated on a scale from 0 (“no influence”) to 5 (“strong influence”).149 Each complexity
factor has a specific weight wi of either 0.5, 1.0, or 2.0 (see Tab. 2.3). “Portability”
for example, is weighted by 2.0 while “Easy to install” is weighted with 0.5.150 The
TCF is calculated as follows:

13

1
0.6 0.1 i i

i
TCF I w

=

= + ×∑ Eq. 2.3

145 SCHNEIDER, WINTERS (1998).
146 BUNDSCHUH, DEKKERS (2008); JANTZEN (2008).
147 SCHNEIDER, WINTERS (1998).
148 JANTZEN (2008).
149 JANTZEN (2008); SCHNEIDER, WINTERS (1998).
150 JANTZEN (2008); SCHNEIDER, WINTERS (1998).

30 Chapter 2: Literature Review

Tab. 2.3: Technical complexity factors151

Factor Description Weight
1 Distributed system 2.0
2 Performance 1.0
3 End user efficiency 1.0
4 Complex internal

processing
1.0

5 Reusability 1.0
6 Easy to install 0.5
7 Easy to use 0.5

Factor Description Weight
8 Portability 2.0
9 Easy to change 1.0

10 Concurrency 1.0
11 Special security features 1.0
12 Provides direct access for third

parties
1.0

13 Special user training facilities
are required

1.0

Analogously, the Environmental Complexity Factor is based on 8 infrastructure fac-
tors, e.g., “Familiarity with UML,” “Analyst Capability,” and “Difficult Program-
ming Language.” According to the rated influence, a factor can have a weight be-
tween -1.0 and +2.0 (see Tab. 2.4). While “Analyst Capability” has a positive effect
on the ECP expressed by the negative weight -0.5, “Difficult Programming Lan-
guage,” for example, has a negative effect expressed by a positive weight of 1.0. The
ECP is calculated by the following equation:

8

1
1.4 0.03 i i

i
ECF I w

=

= − ×∑ Eq. 2.4

Tab. 2.4: Environmental complexity factors152

Factor Description Weight
1 Familiarity with UML 1.5
2 Part-time workers -1.0
3 Analyst capability 0.5
4 Application experience 0.5

Factor Description Weight
5 Object-oriented experience 1.0
6 Motivation 1.0
7 Difficult progr. languages -1.0
8 Stable requirements 2.0

Given the results of UUCP, TCF, and ECF, it is possible to calculate the (adjusted)
Use Case Points denoted by UCP: 153

UCP UUCP TCF ECF= × × Eq. 2.5

For the sake of completeness, the final step of the UCP method aims at estimating
the development effort by multiplying the overall UCP with the Productivity Fac-
tor.154 Originally, the PF was set to 20 hours per UCP. SCHNEIDER and WINTERS

151 BUNDSCHUH, DEKKERS (2008); JANTZEN (2008).
152 BUNDSCHUH, DEKKERS (2008); JANTZEN (2008).
153 BUNDSCHUH, DEKKERS (2008); JANTZEN (2008); SCHNEIDER, WINTERS (1998)
154 The UCP method is criticized for the linear relationship of effort and size since linearity ignores

the existence of organizational diseconomies of scale (JANTZEN (2008)).

Chapter 2: Literature Review 31

suppose that a range from 20 to 28 h/UCP is realistic for most projects.155 Finally, the
overall effort is determined by the following equation:

Effort UCP PF= × Eq. 2.6

It is obvious that the UCP method has a seamless transition from size estimation to
effort estimation. The Unadjusted Use Case Points represent a pure size measure.
Since the Technical Complexity Factor considers technical, requirement-specific
factors only, it helps at adjusting the UUCP. The result is still a size measure. The
Environmental Complexity Factor, however, introduces project- and developer-
specific factors, which are only relevant when turning to effort estimation.

2.2.3.7 COSMIC FFP

COSMIC FFP is a composition of two acronyms, with one standing for the “Com-
mon Software Measurement International Consortium” and the other standing for
the “Full Function Point” method developed by ALAIN ABRAN.156 FFP was intro-
duced in 1997 as an extension of the FPA for sizing real-time and technical software
systems.157 In 1998, the group around FFP merged with a working group of the
ISO/IEC Joint Technical Committee in order to found COSMIC.158 CHARLES

SYMONS, who previously published the Mark II Function Point method, was member
of this working group.159 The name of the method has been lately changed from
COSMIC FFP to COSMIC.160

In order to estimate the size of a new software system, the software is divided into
unique functional processes. Each functional process consists of sub-processes,
which refer to either data movements or data manipulations.161 A data movement is
based on elementary actions, i.e., Read, Write, Entry, and Exit. The actions Read and
Write trivially refer to reading and writing data to persistent storages. The actions
Entry and Exit describe data exchanges between the software and external entities,
i.e., human users or other software systems.

155 SCHNEIDER, WINTERS (1998). The Productivity Factor is company-specific and must be gained

by analyzing historical project data.
156 COSMIC (2007b).
157 COSMIC (2007b); ST-PIERRE et al. (1997).
158 COSMIC (2008). Working Group 12, ISO/IEC Joint Technical Committee 1, Sub-Committee 7.
159 COSMIC (2008); SYMONS (1988).
160 COSMIC (2007a). ISO (abbr.): International Organization for Standardization, IEC (abbr.):

International Electro-technical Commission
161 COSMIC (2007b); JANTZEN (2008); VOGELEZANG (2006).

32 Chapter 2: Literature Review

Fig. 2.1: Sizing model of COSMIC FFP162

The size of a new software system has formerly been measured in COSMIC Func-
tional Size Units (CFSU), which have recently been renamed to COSMIC Function
Points (CFP).163 The size is determined by collecting all unique functional processes.
For each process, the necessary data movements are counted. For example, a process
consisting of one Entry and one Write has a size of two CFP.

It has to be pointed out that COSMIC FFP does not provide an approach to explicitly
capture the number of required data manipulations. It is assumed that the average
ratio of data movements and data manipulations is constant.164 The assumed correla-
tion of data movements and manipulations implicates that it is sufficient to determine
data movements only in order to get an adequate size estimate. However, this as-
sumption prevents utilizing COSMIC FFP for estimating the size of software systems
that are dominated by data manipulations, for example, algorithm-rich applica-
tions.165

162 COSMIC (2007b); JANTZEN (2008); VOGELEZANG (2006).
163 COSMIC (2007a).
164 VOGELEZANG (2006).
165 COSMIC (2007b); COSMIC (2009).

System Boundary

Human User / Other System

Persistent Storage

Entry Exit

Read Write

Functional Process

Data Manipulation

Chapter 2: Literature Review 33

Fig. 2.2: History and evolution of size estimation methods

34 Chapter 2: Literature Review

2.3 Software Effort Estimation

Software Effort Estimation or Software Cost Estimation respectively aims at forecast-
ing the amount of effort that is necessary to build or maintain a software product.
Similar to the Software Size Estimation, early and typically incomplete or vague in-
formation must be used to extrapolate total project effort. According to BOEHM et al.,
the primary purpose of cost estimation techniques is budgeting.166 Other important
purposes are tradeoff and risk analysis, project planning and control, as well as soft-
ware improvement investment analysis.167

The goodness of an estimation technique is based on its estimation accuracy.168 The
first significant research on software costs is an empirical study conducted by
NELSON, which is based on 169 software development projects that were completed
between 1964 and 1966.169 The empirical data was primarily used to provide guide-
lines that help managers estimating development costs more accurately. To this day,
the motivation to improve estimation accuracy has persisted. Software practitioners
still voice concern over insufficient estimation results.170 Correspondingly, BOEHM et
al. argue:

“The fast changing nature of software development has made it
very difficult to develop parametric models that yield high accura-
cy for software development in all domains. [...] [Therefore] one of
the most important objectives of the software engineering commu-
nity has been the development of useful models that constructively
explain the development life-cycle and accurately predict the cost
of developing a software product.”171

Recent research on software development productivity and cost-overruns reflect the-
se concerns and their topicality.172 Until now, 60-80% of all software development
projects still exceed budgets and schedules with an average cost overrun of approx.

166 BOEHM et al. (2000a). This publication is a shortened, slightly modified version of Chapter 2 of

the dissertation by SUNITA CHULANI (1999).
167 BOEHM et al. (2000a). Tradeoff and risk analysis are important to describe the cost and schedule

sensitivities of software projects decisions. Project planning and control refers to cost and
schedule breakdowns by components, subsystems etc. Software improvement investment analysis
confronts costs with benefits of tools, reuse, and process maturity.

168 BOEHM et al. (2000a).
169 NELSON (1966).
170 KEMERER (1987).
171 BOEHM et al. (2000a), p. 178.
172 GLASS (2005); JORGENSEN (2004); JORGENSEN, GRIMSTAD (2005); JORGENSEN, MOLOKKEN

(2006); JORGENSEN, SHEPPERD (2007); MAXWELL, FORSELIUS (2000); MOLOKKEN, JORGENSEN
(2003); PREMRAJ et al. (2005); PREMRAJ et al. (2004).

Chapter 2: Literature Review 35

30% (see Section 3.1.3 for a detailed discussion of cost-effectiveness in software
development).

Generally, the uncertainty of effort estimates decreases with project progress, be-
cause new and more precise information becomes available at later project stages.
For that reason, the accuracy of effort estimates depends on both the applied tech-
nique as well as the point in time. The relationship of uncertainty and potential esti-
mation accuracy is illustrated by the Cone of Uncertainty (see Fig. 2.3), which was
initially described by BOEHM.173 The term “Cone of Uncertainty,” however, was
coined 15 years later by MCCONNELL.174

Fig. 2.3: Cone of uncertainty175

The ordinate of the corresponding diagram has a logarithmic scale. The diagram
shows the likely deviation of the estimated costs depending on the project stage. At
the beginning of a project (e.g., feasibility study) the uncertainty band is a factor of
16, since the probable cost range spreads from 25% to 400%. This implies that the
actual costs are most likely between 25% and 400% of the initially estimated
costs.176. In the subsequent concept phase, the uncertainty band reduces to 4, i.e., the
actual costs are most likely between 50% and 200% of the estimated costs.177 After

173 BOEHM (1981).
174 LITTLE (2006); MCCONNELL (1996).
175 BOEHM (1981); MCCONNELL (1996).
176 Similar cost ranges are described by LANDIS et al. (1990).
177 LITTLE (2006).

10%

100%

1000%

Feasib ility
Study

Concept Requirements
Specifications

Product Design
Specifications

Detailed Design
Specifications

Accepted
Software

Milestones

Re
la

tiv
e

co
st

 ra
ng

e
(%

)

36 Chapter 2: Literature Review

the detailed specification, the relative cost range becomes manageable spreading
from 80% to 125%. BOEHM argues that:

“If a software development cost estimate is within 20% of the ‘ide-
al’ cost estimate for the job, a good manager can turn it into a self-
fulfilling prophecy.”178

In a survey on software cost estimation, BOEHM et al. present the most influential
past and present estimation approaches.179 In the following, this survey is used as an
orientation for introducing the major estimation techniques. BOEHM et al. differenti-
ate between parametric, dynamics-, and regression-based models as well as exper-
tise-based and learning-oriented techniques.180

2.3.1 Model-based Techniques

This subsection focuses on PUTNAM’S Software Life-cycle Model (SLIM)181 and
BOEHM’S Constructive Cost Model182 since these estimation techniques are well-
documented and have been subject to empirical validation studies in the past.183

178 BOEHM (1981), p. 591.
179 BOEHM et al. (2000a). A similar, brief overview of cost estimation techniques is given by

JANTZEN (2008).
180 BOEHM et al. (2000a). Regression-based techniques are not discussed in this work. Regression-

based techniques are general, statistical approaches that allow building simple, formal models for
effort estimation. Typically, such approaches use linear regression models that are based on the
Ordinary Least Squares (OLS) method. In the context of software development effort estimation,
the goal of regression models is to identify project-specific factors that explain the amount of de-
velopment effort best. Another common application of regression-based techniques is the cali-
bration of parametric cost models.

 According to BOEHM et al. (2000a), OLS is only applicable, when 1) lots of empirical data is
available, 2) no data is missing, 3) the sample does not contain outliers, 4) the input variables are
uncorrelated, 5) the input variables are easy to interpret, and 6) the inputs are either all continu-
ous or all discrete variables.

181 PUTNAM (1978).
182 BOEHM (1981); BOEHM et al. (2000b).
183 Model-based estimation models that are exclusively used in commercial or government contexts

are not discussed in this work (e.g., Checkpoint, PRICE-S, SEER-SEM, SELECT estimator).
Since these models are not completely released to the public, such techniques are neither well
documented nor validated by research. Moreover, ESTIMACS developed by HOWARD A. RUBIN
(1983) is also excluded from this discussion since a) the original publication of 1983 could not be
obtained, b) all relevant publications that note ESTIMACS exclusively refer to that particular
publication, c) there is no subsequent publication of RUBIN on ESTIMCAS, and d) ESTIMACS
is not supported by commercial tools today. The basic idea of ESTIMACS is briefly described by
BOEHM et al. (2000a) and CHULANI (1999).

Chapter 2: Literature Review 37

2.3.1.1 Software Life-cycle Model

In the 1970s, LAWRENCE PUTNAM developed the Software Life-cycle Model as one of
the early cost estimation techniques.184 SLIM is based on the findings of NORDEN
who analyzed Research and Development (R&D) projects in the late 1960s. Based
on his analyses, NORDEN developed a so-called life-cycle pattern in order to describe
R&D projects quantitatively.185 NORDEN found that the life-cycle pattern happens to
follow a RAYLEIGH distribution, which is normally used in physics, e.g., for wind
speed models.186

The mathematical foundation of SLIM is a consequence of the insufficient estimation
approaches that were developed and discussed in the 1970s. Most generally, estima-
tion models have been developed using multiple regression analysis which assumes
linear relationships between input variables, e.g., work effort, and the output varia-
ble, e.g., delivered source lines of code (SLOC). Accordingly, MORIN commented on
her study of existing cost estimating techniques published in 1973 as follows:

“I have failed to uncover an accurate and reliable method which
allows programming managers to solve easily the problems inher-
ent in predicting programming resource requirements. The meth-
ods I have reviewed contain several flaws […] Researchers should
apply nonlinear models of data interpretation […] the use of non-
linear methods may not produce simple, quick-to-apply formulas
for estimating resources, but estimation of computer resources is
not a simple problem of linear cause-effect.”187

Agreeing with MORIN’S position on the preference of nonlinear estimation models,
PUTNAM adopted the NORDEN/RAYLEIGH model to software development. In SLIM,
the RAYLEIGH distribution is used to model the current manpower utilization over
time.188 This is achieved by the following differential equation:

2 212
2

at
d

dy Kate with a t
dt

−= = Eq. 2.7

In this equation, e is EULER’S constant and t represents a point in time. The shape of
the RAYLEIGH curve, and thus the size of the corresponding project, is determined by

184 PUTNAM (1978); PUTNAM, MYERS (1991).
185 NORDEN (1970).
186 Visually, the RAYLEIGH distribution appears similar to the normal distribution. However, the

RAYLEIGH distribution is always right-skewed and, therefore, not symmetrical (cp. Fig. 2.4).
Given two independent and normally distributed variables X and Y with zero means and identical
variances, then 2 2R X Y= + represents a RAYLEIGH distribution.

187 MORIN (1973).
188 PUTNAM (1978).

38 Chapter 2: Literature Review

two further parameters: the total life-cycle effort K as well as the point in time td

where the manpower utilization is at maximum.189 The output of a software project is
specified in SLOC. In order to estimate future project effort, historical data must be
available to calculate a productivity rate. Moreover, the estimation approach needs a
technology constant that describes the current state of technology.190 With the help of
this data, SLIM produces estimations of the amount and distribution of work effort.
An exemplary curve is given in the following Fig. 2.4.

Fig. 2.4: The RAYLEIGH model191

It is obvious that SLIM uses a high degree of abstraction for modeling software de-
velopment projects. As a consequence, this approach does not reflect different tasks
and capabilities of involved developers. Instead, the organizational process is mod-
eled as a black-box, which – as a whole – is supposed to follow a mathematical dis-
tribution. Thus, some of the assumptions do not always hold true. For example, in-
cremental and iterative development methodologies cause flat staffing curves, which
are contradictory to the RAYLEIGH curve.192

In order to comprehend the motivation and mathematical foundation of SLIM, it
might be helpful to know that PUTNAM has graduated in physics and moved from
nuclear engineering to management information systems during his career.193 Inter-
estingly, when publishing his work in the late 1970s, PUTNAM was optimistic about
the accuracy of software cost estimation:

189 PUTNAM (1978).
190 PUTNAM (1978).
191 BOEHM et al. (2000a); PUTNAM (1978).
192 BOEHM et al. (2000a).
193 PUTNAM (1978). The personal background of LAWRENCE H. PUTNAM is briefly summarized at

the end of the referenced publication.

Pe
rc

en
t o

f t
ot

al
 E

ffo
rt

Timet=0 td

1.00
0.02
0.18d

K
a
t

=
=
=

Current manpower
utilization in td

Chapter 2: Literature Review 39

“Using the technique developed in the paper, adequate analysis for
decisions can be made in an hour or two using only a few quick
reference tables and a scientific pocket calculator.”194

Today, SLIM is still used and distributed in a set of commercial tools for planning,
tracking, and benchmarking development projects.195

2.3.1.2 Constructive Cost Model

The Constructive Cost Model was primarily published in 1981 by BARRY BOEHM in
his book “Software Engineering Economics.”196 In Basic COCOMO, the primary
cost driver of a development project is defined by the number of thousands of deliv-
ered source instructions (KDSI). As a start, BOEHM introduces the fundamental
equation of COCOMO for estimating the number of man-month (MM) based on the
number of KDSI:

1.052.4()MM KDSI= Eq. 2.8

In addition to the estimation of effort, COCOMO provides another fundamental
equation for estimating the development schedule (TDEV; “time to develop”):

0.382.5()TDEV MM= Eq. 2.9

The concept behind the estimation of TDEV is that the number of man-month cannot
be shared by an arbitrary number of developers. This is because certain development
tasks must be completed in a sequential order, and certain tasks might be indivisible.
Moreover, adding developers to a project increases the communication overhead
exponentially.197

A third equation is provided by basic COCOMO in order to estimate the average
staffing of a project. FSP (Full Time Equivalent Software Personnel) represents the
number of developers who are simultaneously on a project. BOEHM presents two al-
ternative approaches to estimate the average FSP of a project phase.198

The first alternative is straightforward and utilizes arithmetic means. Given the pro-
ject phase’s percentage pe of total effort, its percentage of total schedule time ps, and
the project’s total number of required MM as well as the corresponding TDEV, then
FSP is estimated by the following equation:

194 PUTNAM (1978), p. 345.
195 BOEHM et al. (2000a); QUANTITATIVE SOFTWARE MANAGEMENT (2008).
196 BOEHM (1981).
197 BROOKS (1995b), p. 25 (“BROOKS’ Law”).
198 BOEHM (1981).

40 Chapter 2: Literature Review

e

s

p MMFSP
p TDEV

= Eq. 2.10

The second alternative for estimating the project staffing is mathematically more
complex as it also makes use of the aforementioned RAYLEIGH distribution.199 Simi-
lar to the ideas of PUTNAM, BOEHM proposes the RAYLEIGH curve as a good approx-
imation of the labor distribution of software projects. The general equation reads as
follows:

2 2(/ 2)
2() Dt t

d

tFSP MM e
t

−= Eq. 2.11

BOEHM recommends using the portion of the RAYLEIGH distribution between 0.3 tD

and 1.7 tD as a sufficient approximation of the full development cycle.200 In this case,
the equation for estimating FSP of a certain point in time t is:

2

2
(0.15 0.7)
0.5()

2

0.15 0.7()
0.25()

TDEV t
TDEVTDEV tFSP MM e

TDEV

+
−+

= Eq. 2.12

Fig. 2.5 visualizes the basic COCOMO estimates for so-called organic-mode devel-
opment projects. While the graph of total effort is nearly linear, since the correspond-
ing exponent for organic-mode projects is near one, the graphs of schedule and aver-
age staffing show a degressive growth.

Fig. 2.5: Basic COCOMO estimates for organic mode projects201

199 See Section 2.3.1.1.
200 BOEHM (1981).
201 A simplified version of this figure is given by BOEHM (1981).

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Product Size (DSI)

Sc
he

du
le

 (m
on

th
) /

 S
ta

ffi
ng

 (F
PS

)

0.0

50.0

100.0

150.0

200.0

250.0

Ef
fo

rt
 (m

an
-m

on
th

)

Esitmated Schedule

Average Staffing

Estimated Effort

Chapter 2: Literature Review 41

Development Modes of Basic COCOMO

So far, the presented equations used parameter values that are typical for organic
mode development. During the development of COCOMO, BOEHM found that pro-
jects with the same size (measured in KDSI) can have different relationships of size
and effort.202 These different relationships helped identifying three typical develop-
ment modes, which are briefly outlined in the following:

• The organic mode represents the most common development
mode, which refers to in-house, familiar software development en-
vironments. Teams are relatively small and share extensive work-
ing experience. All team members have experience in working with
related systems so that the system under development can easily be
understood. Usually, each team member is able to contribute to the
project while communication overhead is marginal. Moreover,
even for larger organic-mode projects, communication overhead
causes only a slight decrease of overall project productivity, and,
therefore, organic-mode projects do not significantly suffer from
organizational diseconomies of scale. BOEHM notes, however, that
very few organic-mode projects exceeded 50 KDSI.203

• The semidetached mode is an intermediate stage that bridges organ-
ic and embedded mode development.204 A project can be classified
as a semidetached-mode project, if all project characteristics are on
an intermediate level, or if the project is a mixture of organic and
embedded mode characteristics. BOEHM gives some exemplary
characteristics in order to explain the difference between semide-
tached- and organic-mode project in terms of “working experience
with related systems”: 1) All team members only have an interme-
diate experience level with related systems, 2) the teams consists of
experienced and inexperienced developers, and/or 3) team mem-
bers have experience with some aspects of the system, but not with
all.205 A semidetached mode project can reach 300 KDSI.

• Embedded-mode development is essentially characterized by tight
constraints. These constraints are based on a complex system of
hardware, software, regulations, and operational procedures, in

202 BOEHM (1981).
203 BOEHM (1981).
204 BOEHM (1981).
205 BOEHM (1981).

42 Chapter 2: Literature Review

which the final software will be embedded.206 The given constraints
are supposed to be unchangeable during the whole project. There-
fore, in contrast to the organic mode, embedded-mode projects do
not have the option to negotiate software changes by modifying the
requirements or the interface specifications during the project.
Therefore, the costs of necessary internal changes and fixes are
high. Besides, much effort is needed to assure that changes are
made correctly. Likewise, much effort must be invested in assuring
that the software meets its requirements. As a result, embedded-
mode projects have a lower productivity and significantly face or-
ganizational diseconomies of scale.207

The different characteristics of organic-mode, semidetached-mode, and embedded-
mode development projects are reflected by different coefficients and scale factors in
the equations for estimating the overall effort (Eq. 2.8) and the development time
(Eq. 2.9). The different equations are given in Tab. 2.5.

Tab. 2.5: Basic COCOMO effort and schedule equations208

Mode Effort Schedule

Organic 1.052.4()MM KDSI= 0.382.5()TDEV MM=

Semidetached 1.123.0()MM KDSI= 0.352.5()TDEV MM=

Embedded 1.203.6()MM KDSI= 0.322.5()TDEV MM=

The following diagram visualizes the different curves for each development mode:

206 BOEHM (1981).
207 BOEHM (1981).
208 BOEHM (1981).

Chapter 2: Literature Review 43

Fig. 2.6: Basic COCOMO estimates depending on development mode

Estimation Example

In order to illustrate how the equations of COCOMO work together, BOEHM gives an
example based on an organic, in-house development project of a chemical products
company.209 Given an initial study that roughly estimated a size of 32 KDSI, CO-
COMO provides the following estimates for the project:

1.05

0.38

Effort: [MM]

Productivity: [DSI/MM]

Schedule: [month]

Average staffing: [MM/month; FSP]

2.4(32) 91

32,000 352
91

2.5(91) 14

91 6.5
14

MM

TDEV

= =

=

= =

=

 Eq. 2.13

Maintenance Effort

In addition to the development estimators, Basic COCOMO offers another simple
estimator for maintenance efforts. The estimation of maintenance effort requires the
projected number of KDSI that will be added or modified during a year of mainte-
nance. As a first step, this data is used to calculate the Annual Change Traffic
(ACT)210:

added modified

development

KDSI KDSI
ACT

KDSI
+

= Eq. 2.14

209 BOEHM (1981).
210 BOEHM (1981).

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Product Size (DSI)

Ef
fo

rt
 (m

an
-m

on
th

)

0.0

5.0

10.0

15.0

20.0

25.0

Sc
he

du
le

 (m
on

th
) /

 S
ta

ffi
ng

 (F
PS

)

MM Embedded

MM Semidetached

MM Organic

TDEV Embedded

TDEV Semidetached

TDEV Organic

44 Chapter 2: Literature Review

Afterwards, the annual maintenance effort MMAM given in man-months is derived
from the previously estimated number of development man-months MMD.211 The
result provides the required annual maintenance staffing FSPAM:

/12
AM D

AM AM

MM ACT MM
FSP MM

= ⋅

=
 Eq. 2.15

Definitions and Assumptions of Basic COCOMO

When using COCOMO as an instrument for development effort estimation, it is im-
portant to be familiar with the underlying definitions and assumptions.212 BOEHM
lists nine assumptions of which the most important ones are briefly summarized in
the following:

• The primary cost driver is the number of delivered source instruc-
tions. The term “delivered” excludes, for example, source code
that was written for testing, and, thus, is not part of the delivered
product. The term “source instruction” refers to source lines of
code without counting comment lines. It has to be pointed out that
KDSI is a measure for the software size, which also has to be esti-
mated.

• The development phase starts after the product design phase and
ends with the software acceptance review (usually after integration
and testing).

• A man-month consists of 152 hours of working time. A calendar
month has 19 working days with 8 working hours per day.

• COCOMO assumes that the requirements specification is not sig-
nificantly changed after the requirements phase.

The last assumption reflects that COCOMO assumes a waterfall development pro-
cess, which is, however, not explicitly noted in the given list.213

211 BOEHM (1981).
212 BOEHM (1981).
213 BOEHM et al. (2000a); BOEHM et al. (2000b); JANTZEN (2008).

Chapter 2: Literature Review 45

2.3.1.3 Intermediate and Detailed COCOMO

The limitations of Basic COCOMO, e.g., inability to accommodate iterative and in-
cremental development as well as the missing incorporation of cost drivers beyond
KDSI, have encouraged the development of more detailed estimation models.
BOEHM comments on the benefits and limitations of Basic COCOMO as follows:

“Basic COCOMO is good for rough order of magnitude estimates
of software costs, but its accuracy is necessarily limited because of
its lack of factors to account for differences in hardware con-
straints, personnel quality and experience, use of modern tools and
techniques, and other project attributes known to have a significant
influence on costs.”214

In order to identify cost drivers other than KSDI, BOEHM examined former studies of
WALSTON and FELIX215, WEINWURM216, as well as NESLON217. In total, these studies
have identified over 100 different factors that are supposed to have an impact on de-
velopment costs.218 With the help of empirical project data, BOEHM eliminated fac-
tors from this list by statistically analyzing general significance and their independ-
ence from product size.

Intermediate COCOMO

Based on this analysis, 15 factors have been identified as relevant cost drivers, which
have been incorporated in the Intermediate COCOMO model. During the estimation
process, each cost driver is rated on a six-point scale, which ranges from “very low”
to “extra high.” A particular rated cost driver represents a so-called effort multiplier
(EM). An overview of all 15 cost drivers and their effort multipliers is given in the
following Tab. 2.6. The different values for each effort multiplier are the result of
multiple regression analyses based on empirical project data. BOEHM gives brief de-
scriptions of each cost driver and each rating in order to guide model users through
the rating process.219

214 BOEHM (1981), p. 58.
215 WALSTON, FELIX (1977).
216 WEINWURM (1970)
217 NELSON (1966).
218 BOEHM (1981).
219 BOEHM (1981).

46 Chapter 2: Literature Review

Tab. 2.6: Software development effort multipliers220

 Ratings

Cost Drivers
Very
low Low Nom. High

Very
High

Extra
High

Product Attributes
EM1 RELY Required software reliability 0.75 0.88 1.00 1.15 1.40 -
EM2 DATA Database size - 0.94 1.00 1.08 1.16 -
EM3 CPLX Product complexity 0.70 0.85 1.00 1.15 1.30 1.65

Computer Attributes
EM4 TIME Execution time constraint - - 1.00 1.11 1.30 1.66
EM5 STOR Main storage constraint - - 1.00 1.06 1.21 1.56
EM6 VIRT Virtual machine constraint - 0.87 1.00 1.15 1.30 -
EM7 TURN Computer turnaround time - 0.87 1.00 1.07 1.15 -

Personnel Attributes
EM8 ACAP Analyst capability 1.46 1.19 1.00 0.86 0.71 -
EM9 AEXP Applications experience 1.29 1.13 1.00 0.91 0.82 -
EM10 PCAP Programmer capability 1.42 1.17 1.00 0.86 0.70 -
EM11 VEXP Virtual machine experience 1.21 1.10 1.00 0.90 - -
EM12 LEXP Progr. language experience 1.14 1.07 1.00 0.95 - -

Project Attributes
EM13 MODP Use of modern progr. practices 1.24 1.10 1.00 0.91 0.82 -
EM14 TOOL Use of software tools 1.24 1.10 1.00 0.91 0.83 -
EM15 SCED Required development schedule 1.23 1.08 1.00 1.04 1.10 -

The nominal value for all effort multipliers is one. For the “nominal” case, the effort
estimation of Intermediate COCOMO is identical to Basic COCOMO. If certain cost
drivers are rated above or below the norm, they have an increasing or decreasing
impact on effort. Therefore, the product of all effort multipliers is called Effort Ad-
justment Factor (EAF).221 Given all rated cost drivers EMi as presented in Tab. 2.6,
the EAF is calculated by the following equation:

15

1
i

i
EAF EM

=

=∏ Eq. 2.16

In Intermediate COCOMO, the adjustment factor extends the equation for effort es-
timation as follows222:

1.052.4()MM KDSI EAF= Eq. 2.17

A simple min-max analysis of all possible values of the 15 effort multipliers shows a
large interval for the EAF ranging from 0.097 to 72.379. Accordingly, since each

220 BOEHM (1981).
221 BOEHM (1981).
222 In this equation, the given coefficient and scale factor refer to organic-mode development.

Chapter 2: Literature Review 47

effort multiplier has a strong mathematical impact on the estimation equation, the
rating of each cost driver must be done carefully.

For example, given two developer teams which are different in terms of analyst and
programmer capability (ACAP, PCAP) – all other being equal, the estimated project
effort for the less capable team doubles, while the estimated project effort for the
more capable team decreases by 50%. Accordingly, different ratings of capability
lead to an effort ratio of 4:1 between different teams.

Detailed COCOMO

The development of Detailed COCOMO is motivated by some limitations of Inter-
mediate COCOMO. BOEHM argues that especially large projects suffer from macro
estimations. For large projects, the estimated distribution of effort per development
phase might be inaccurate. Moreover, the usability of Intermediate COCOMO is lim-
ited especially for projects with many components. In this case, working with Inter-
mediate COCOMO can be cumbersome.223

The corresponding chapters on Detailed COCOMO introduce special estimation
forms for large projects as well as detailed procedures that explain how to work with
those forms. Four chapters focus on an in-depth explanation of the 15 effort multi-
plies and their rating definitions. However, the fundamental ideas of Intermediate
COCOMO do not change. In view of that and, in particular, due to the presence of
COCOMO II, Detailed COCOMO is not discussed in this work.

2.3.1.4 COCOMO II

The development of COCOMO II began in 1994 and was motivated by the limita-
tions and drawbacks of the first COCOMO generation – often referred to as COCO-
MO’81. The first generation, for example, supported neither iterative, rapid devel-
opment, nor object-oriented approaches.224 COCOMO II was initially published in
1995.225 The most extensive documentation, “Software Cost Estimation with CO-
COMO II,” was published by BOEHM et al. in 2000.226

223 BOEHM (1981).
224 BOEHM et al. (2000a).
225 BOEHM et al. (1995).
226 BOEHM et al. (2000b).

48 Chapter 2: Literature Review

COCOMO II Submodels

COCOMO II provides three submodels, the Application Composition Model, the
Early Design Model, and the Post-Architecture Model, each addressing different
estimation issues.227

The Early Design Model has an explorative character. The model is used to make
coarse-grained estimates at project start. Usually, much of a project is unknown and
undefined at this point. The estimation is based on either Function Points or Lines of
Code. Additionally, the estimation is influenced by five scale factors as well as seven
effort multipliers.228

The Early Design Model is extended by the Post-Architecture Model. This model is
used after the completion of top-level design, when detailed information about the
project is available. In terms of structure and formulation, the Post-Architecture
Model is close to the aforementioned Intermediate COCOMO. The estimation of the
Post-Architecture Model is also based on Function Points or Lines of Code as well as
five scale factors. In contrast to the Early Design Model, this model uses 17 effort
multipliers.229

The Application Composition Model can be understood as an extension to the afore-
mentioned models, which is especially used in ICASE230 environments. These envi-
ronments are characterized by the utilization of application frameworks, GUI build-
ers, database management systems, domain-specific components or other reuse as-
sets, as well as development tools for design, construction, and testing.231 The effort
estimation of the Application Composition Model is not based on SLOC or Function
Points. Lines of Code become irrelevant when a significant amount of code is auto-
matically generated. Additionally, Function Points cannot be applied since their level
of abstraction does not match the level of generality and variability of application
composition projects.232 Therefore, size is expressed in Object Points.233 BOEHM et
al. suggest using the Application Composition Model in the first project stages since
these development cycles are highly characterized by prototyping activities. After-
wards, the remaining project effort is estimated by the Early Design Model. Finally,
when more accurate information is available, the effort estimation is adjusted by the
Post-Architecture Model.

227 BOEHM et al. (2000b).
228 BOEHM et al. (2000a); BOEHM et al. (2000b).
229 BOEHM et al. (2000a); BOEHM et al. (2000b).
230 ICASE (abbr.): Integrated Computer-Aided Software Engineering.
231 BOEHM et al. (2000b). GUI (abbr.): Graphical User Interface.
232 BOEHM et al. (2000b).
233 BANKER et al. (1991).

Chapter 2: Literature Review 49

Effort Estimation Equation

Both the Early Design and Post-Architecture models use the following equations for
estimating effort and schedule. The amount of effort in person-month is estimated
by:

1

n
E

NS i
i

PM A Size EM
=

= × ×∏ Eq. 2.18

5

1
0.01 j

j
E B SF

=

= + ×∑ Eq. 2.19

Generally, Size is determined by thousands of Source Lines of Code (KSLOC) or by
Unadjusted Function Points (UFP). In the first equation, the subscript NS indicates a
nominal-schedule estimate, which ignores the effects of schedule compression and
stretch-out.234 The parameter A represents a coefficient that is known from Eq. 2.8 of
Intermediate COCOMO. The product of all effort multipliers has been introduced
before as the Effort Adjustment Factor (cp. Eq. 2.16 and Eq. 2.17). However, the
simple scale factors used in Basic and Intermediate COCOMO have been replaced
by a more complex equation to calculate the exponent E (Eq. 2.19) which is based on
a set of five special Scale Factors denoted by SFj (see Tab. 2.9). The equation is a
replacement of the predefined development modes, i.e., organic, semidetached, and
embedded mode, of COCOMO’81.235 The parameter n in Eq. 2.18, as the upper
bound of the summation of all effort multipliers EMi, is 6 for the Early Design Model
and 16 for the Post-Architecture Model.236

The values of the coefficient A, the constant B, the effort multipliers EM1, …, EM16,
as well as the scale factors SF1, …, SF5 are the result of a model calibration based on
empirical project data of 161 development projects.237

Effort Multipliers of COCOMO II

When updating COCOMO’81 by COCOMO II, the set of effort multipliers was
slightly modified. Two new product-specific factors were added, a few factors were

234 BOEHM et al. (2000b). Nominal-schedule estimates implicate an exclusion of the cost driver for

Required Development Schedule (SCED).
235 BOEHM et al. (2000b).
236 The Post-Architecture Model uses 16 (instead of 17) effort multipliers when making nominal-

schedule estimates.
237 BOEHM et al. (2000b). Experiences and strategies learned in the calibration of the COCOMO II

Post-Architecture Model is given by CLARK et al. (1998). Further information on model calibra-
tion can be found in Chapter 4 in BOEHM et al. (2000b) which is based on CHULANI et al. (1999).

50 Chapter 2: Literature Review

renamed.238. Moreover, all effort multiplier ratings have been recalibrated (see Tab.
2.7).

Tab. 2.7: Effort multipliers of COCOMO II239

 Ratings

Cost Drivers
Very
low Low Nom. High

Very
High

Extra
High

Product Factors
EM1 RELY Required software reliability 0.82 0.92 1.00 1.10 1.26 -
EM2 DATA Database size - 0.90 1.00 1.14 1.28 -
EM3 CPLX Product complexity 0.73 0.87 1.00 1.17 1.34 1.74
EM4 RUSE Developed for reusability - 0.95 1.00 1.07 1.15 1.24
EM5 DOCU Documentation Match 0.81 0.91 1.00 1.11 1.23 -

Platform Factors
EM6 TIME Execution time constraint - - 1.00 1.11 1.29 1.63
EM7 STOR Main storage constraint - - 1.00 1.05 1.17 1.46
EM8 PVOL Platform volatility - 0.87 1.00 1.15 1.30 -

Personnel Factors
EM9 ACAP Analyst capability 1.42 1.19 1.00 0.85 0.71 -
EM10 PCAP Programmer capability 1.34 1.15 1.00 0.88 0.76 -
EM11 PCON Personnel continuity 1.29 1.12 1.00 0.90 0.81 -
EM12 AEXP Applications experience 1.22 1.10 1.00 0.88 0.81 -
EM13 PLEX Platform experience 1.19 1.09 1.00 0.91 0.85 -
EM14 LTEX Language and tool experience 1.20 1.09 1.00 0.91 0.84 -

Project Factors
EM15 TOOL Use of software tools 1.17 1.09 1.00 0.90 0.78 -
EM16 SITE Multisite development 1.22 1.09 1.00 0.93 0.86 0.80
EM17 SCED240 Required development schedule 1.43 1.14 1.00 1.00 1.00 -

Based on the given minima and maxima in Tab. 2.7, it is possible to determine the
productivity range for each cost driver. For example, the minimal impact on effort by
the database size is 0.90 (“low” rating), while the maximal impact is 1.28 (“very
high” rating). For that reason, the productivity range described by this cost driver is

238 The two factors added reflect the degree of planned reusability (RUSE) and the required match of

documentation to life-cycles (DOCU). The list of computer attributes was renamed to Platform
Factors. The Computer Turnaround Time (TURN) was removed and the Virtual Machine Con-
straint (VIRT) was replaced by the Platform Volatility (PVOL). The list of Personnel Factors
was extended by Personnel Continuity (PCON) and Platform Experience (PEXP). The factor
Programming Language Experience (LEXP) was changed to Language and Tool Experience
(LTEX). From the list of Project Factors, the Use of Modern Programming Practices (MODP)
was removed. This list now contains the new factor Multisite Development (SITE)

239 BOEHM et al. (2000b).
240 The values for “nominal,“ “high,“ and “very high“ are all 1.00 since schedule stretch-outs do not

change effort.

Chapter 2: Literature Review 51

1.28/0.90 = 1.42.241 Fig. 2.7 gives an overview of the productivity ranges for each
cost driver. In this diagram, the capability- and experience-oriented cost drivers are
combined.242

Fig. 2.7: Productivity ranges in COCOMO II243

Schedule Estimation Equation

Similar to the effort estimation, the equation to estimate the calendar time, TDEVNS,
which is required to complete the project, has been slightly modified in COCO-
MO II. The coefficient C and the constant D used in the following equations have
also been obtained by the calibration of historical project data.244 The other parame-
ters are used as defined before (see Eq. 2.18 and Eq. 2.19).

()FNS NSTDEV C PM= × Eq. 2.20

241 A productivity range of 1.42 for one factor means that – all other being equal while the scale

factor is 1.00 – the effort varies from 100% (lowest rating) to 142% (highest rating). In other
words, the highest rating causes 42% more effort compared to the lowest rating.

242 ACAP and PCAP are combined as “Experience”. AEXP, PLEX, and LTEX are combined as
“Team Capability”.

243 A comparable diagram is given on the front cover of BOEHM et al. (2000b).
244 BOEHM et al. (2000b).

3,53

3,01

2,38

1,63

1,59

1,54

1,53

1,52

1,50

1,49

1,46

1,43

1,42

1,31

1,00 1,50 2,00 2,50 3,00 3,50 4,00

Team Cabability

Experience

Complexity

Time constraint

Personnel continuity

Reliability

Multisite development

Documentation match

Use of software tools

Platform volatility

Storage constraint

Required Schedule

Database size

Development for reuse

Co
st

 D
riv

er
s

Ratio

52 Chapter 2: Literature Review

5

1
0.2 0.01

0.2 ()

j
j

F D SF

D E B
=

= + × ×

= + × −

∑ Eq. 2.21

The calibrated values for A, B, C and D are given in the following Tab. 2.8:

Tab. 2.8: Calibrated parameter values of COCOMO II245

A B C D

2.94 0.91 3.67 0.28

The scale factors SFj are rated on a six-point scale ranging from “Very low” to “Ex-
tra High.” This type of rating scale has already been introduced in Intermediate
COCOMO (cp. Tab. 2.6).246 A high rating refers to a low value implicating positive
scale effects. Therefore, scale factors that are rated as “Extra high” are expressed by
zero.247 The values for very low ratings range from 5.07 to 7.80 implicating signifi-
cant diseconomies of scale. The scale factors used by COCOMO II are Precedented-
ness (PREC), Development Flexibility (FLEX), Risk Resolution (RESL), Team Co-
hesion (TEAM), and Process Maturity (PMAT).248 Their values are given in the fol-
lowing Tab. 2.9.

245 BOEHM et al. (2000b). Also given in the COCOMO II Manual provided by USC-CSE (2008).
246 Intermediate COCOMO only uses a six-point rating scale to assess the cost drivers. The scale

factor was determined by the development mode.
247 BOEHM et al. (2000b).
248 BOEHM et al. (2000b).

Chapter 2: Literature Review 53

Tab. 2.9: Scale factor values SFj for COCOMO II models249

Scale
Factors Very Low Low Nominal High Very High Extra High

PREC

Thoroughly
unprecedented

Largely un-
precedented

Generally
familiar

Largely
familiar

Thoroughly
familiar

6.20 4.96 3.72 2.48 1.24 0.00

FLEX
Rigorous

Occasional
relaxation

Some
relaxation

General
conformity

Some
conformity

General
goals

5.07 4.05 3.04 2.03 1.01 0.00

RESL
20% 40% 60% 75% 90% 100%

7.07 5.65 4.24 2.83 1.41 0.00

TEAM

Very difficult
interactions

Some difficult
interactions

Basically
cooperative
interactions

Largely
cooperative

Highly
cooperative

Seamless
interactions

5.48 4.38 3.29 2.19 1.10 0.00

PMAT250

CMMI
Level 1

Upper CMMI
Level 1

CMMI
Level 2

CMMI
Level 3

CMMI
Level 4

CMMI
Level 5

7.80 6.24 4.68 3.12 1.56 0.00

BOEHM et al. provide a simple example to illustrate the basic estimation of effort,
schedule, and staff size with COCOMO II.251 The approximated project size is 100
KSLOC. The project is assumed to have average characteristics. Thus, all effort mul-
tipliers are 1.0. In this example, the exponent E is manually set to 1.15 which repre-
sents a mixture of “low” and “nominal” ratings with regard to the five scale fac-
tors.252 Applying the equations for estimating effort and calendar time as well as the
calibrated parameter values (A=2.94, B=0.91, C=3.67, D=0.28), the estimated effort,
project duration, and average amount of required developers are calculated as fol-
lows:

249 BOEHM et al. (2000b).
250 In BOEHM et al. (2000b), the process maturity is expressed in SW-CMM levels (Capability Ma-

turity Model for Software). In the past year, however, SW-CMM has been stopped in favor of
CMMI (Capability Maturity Model Integration).

251 BOEHM et al. (2000b). Also given in the COCOMO II Manual provided by USC-CSE (2008).
252 The values of the five scale factors rated as “nominal” range from 3.04 to 4.68 totaling to 18.97.

The values of the five scale factors rated as “low” total to 25.28. An exponent of 1.15 implicates
a total of 24.0 when B=0.91.

54 Chapter 2: Literature Review

1.15

0.28 0.2 (1.15 0.91)

0.328

NS

NS

Effort:

[man-month]

Schedule:

[month]

Average Staff: [developers]

2.94 (100)
586.61

3.67 (586.61)

3.67 586.61
29.7

PM 586.61 20
TDEV 29.7

NS

NS

PM

TDEV + × −

= ×

≈

= ×

= ×

≈

= ≈

 Eq. 2.22

Finally, in order to illustrate the impact of the experience- and capability-oriented
factors, another effort estimation example is briefly discussed. The approximated
project size is again 100 KSLOC. The exponent E, i.e., the sum of all five scale fac-
tors, is assumed to be 1.05, which implies little diseconomies of scale. The effort is
estimated for two different teams. One team gets the highest possible ratings for ex-
perience and capability, while the other team gets the lowest ratings. Accordingly,
the effort estimations are influenced by all effort multipliers listed as Personnel Fac-
tors except for Personnel Continuity. The efforts for both teams are estimated as fol-
lows:

1.05

1.05

Team 1:

[man-month]

Team 2:

[man-month]

2.94 (100) 0.71 0.76 0.81 0.85 0.84
2.94 125.9 0.312
115.5

2.94 (100) 1.42 1.34 1.22 1.19 1.20
2.94 125.9 3.315
1,227.0

NS

NS

PM

PM

= × × × × × ×
≈ × ×
≈

= × × × × × ×
≈ × ×
≈

 Eq. 2.23

The effort estimates demonstrate the strong impact of developer experience and ca-
pability in COCOMO II. The experienced team needs approx. 115.5 person-months
to complete the project. In contrast, the inexperienced team needs 1,227 person-
months which is a tenfold increase of estimated effort.

2.3.2 Expertise-based Techniques

According to BOEHM et al., expertise-based estimation methods are useful if quanti-
fied, empirical data is not at hand.253 Estimates are produced on the basis of experi-
ence of completed and comparable projects. JORGENSEN and BOEHM identify the
quantification step as the essential difference between formal model-based and ex-

253 BOEHM et al. (2000a).

Chapter 2: Literature Review 55

pert-judgment-based effort estimation.254 The quantification step refers to the final
step of the estimation process that transforms the input into the quantitative effort
measure.255

Following JORGENSEN, experts in this context might be “all individuals with compe-
tence in estimating software,” not only software development professionals but also
students with sufficient experience in effort estimation.256 However, BOEHM et al.
point out that:

“The obvious drawback of this method is that an estimate is only as
good as the expert’s opinion […]. Years of experience do not nec-
essarily translate into high levels of competency. Moreover, even
the most highly competent of individuals will sometimes simply
guess wrong.”257

The characterization of expertise-base techniques ranges from “unaided intuition
(‘gut feeling’) to expert judgment supported by historical data, process guidelines,
and checklists (‘structured estimation’).”258 Correspondingly, JORGENSEN and
BOEHM argue that “[…] there are many other ways of improving judgment-based
processes than selecting the best expert.”259 Nonetheless, SIMON explains the neces-
sity of expertise-based analyses and the need to make decision based upon them:

“Intuition and judgment – at least good judgment – are simply
ana1yses frozen into habit and into the capacity for rapid response
through recognition. Every manager needs to be able to analyze
problems systematically (and with the aid of the modem arsenal of
ana1ytical tools provided by management science and operations
research). Every manager needs also to be able to respond to situa-
tion rapid1y, a skill that requires the cu1tivation of intuition and
judgment over many years of experience and training. The effective
manager does not have the luxury of choosing between ‘ana1ytic’
and ‘intuitive’ approaches to problems.”260

In the following, the Delphi technique, the Work Breakdown Structure, and the
Three-Point estimation are described. These techniques have in common that they

254 JORGENSEN, BOEHM (2009).
255 JORGENSEN (2007).
256 JORGENSEN (2007), p. 450.
257 BOEHM et al. (2000a), p. 192.
258 JORGENSEN (2004), p. 37.
259 JORGENSEN, BOEHM (2009), p. 3.
260 SIMON (1987), p. 63.

56 Chapter 2: Literature Review

are based on expertise on the on hand. However, these techniques also try to mitigate
the problem of far out estimates and mistaken guesses on the other hand.

2.3.2.1 Delphi Technique

The Delphi Technique originally comes from a military context. In the 1950s, the
technique was developed by HELMER and DALKEY at the RAND Corporation261, an
organization working closely with the U.S. armed forces.262 Basically, the Delphi
Technique was developed as a method of making predictions about future events. For
that reason, the technique was named after the famous oracle located near the an-
cient, Greek town of “Delphi.”263 An in-depth introduction to the Delphi technique
is given by LINSTONE and TUROFF.264 In 2002, they list over 1,000 publications that
have been addressing the subject since its development, which gives evidence for
Delphi’s general topicality and widespread use.265

A variant of Delphi, called Wideband Delphi, aims at guiding a group of individuals
to a consensus of opinion.266 Typically, the estimation process is conducted and su-
pervised by a moderator.267 In a first round, each participant is separately and confi-
dentially asked for giving his or her opinion on an issue. Next, the individual re-
sponses are collected, anonymized, tabulated, and handed out to all participants.268

In a second round, all participants are again asked for giving their opinions. At this
time, each participant knows the other participants’ responses given in the first
round. This knowledge usually influences the participants, reducing the variance of
responses, and, thus, moves the opinions towards a reasonable middle ground.269
This effect is related to the Wisdom of the Crowds, which became popular by the
“Ask the Audience” lifeline in the TV show “Who Wants to Be a Millionaire.”270

In contrast to the traditional Delphi technique, group discussions are permitted and
encouraged by Wideband Delphi.271 Based on this procedure, the group is supposed
to reach a consensus on the issue of interest. In the context of software development,

261 RAND is the acronym for “Research and Development.”
262 CUSTER et al. (1999); DALKEY, HELMER (1963).
263 BOEHM et al. (2000a).
264 LINSTONE, TUROFF (1975).
265 LINSTONE, TUROFF (2002).
266 BOEHM et al. (2000a); BOEHM (1981).
267 MOLOKKEN-OSTVOLD, JORGENSEN (2004).
268 BOEHM et al. (2000a).
269 BOEHM et al. (2000a).
270 SUROWIECKI (2004).
271 BOEHM (1981); MOLOKKEN (2004).

Chapter 2: Literature Review 57

this round-based procedure is used to narrow the estimated range of software size or
development effort.

Whether the Delphi or Wideband Delphi techniques are used in software develop-
ment practice is not well-known. Based on a review of surveys on software effort
estimation272, MOLOKKEN notices that

“To the best of our knowledge none of […] the Delphi or the Wide-
band Delphi techniques has been subject to extensive empirical re-
search in a software engineering context during the last 25
years.”273

Likewise, BOEHM et al. only list a few situations in which they have used the Wide-
band technique.274

2.3.2.2 Work Breakdown Structure

The Work Breakdown Structure (WBS) has its roots in the domain of project man-
agement. According to KERZNER:

“The Work Breakdown Structure acts as a vehicle for breaking the
work down into smaller elements, thus providing a greater proba-
bility that every major and minor activity will be accounted for.”275

Generally, the goal of the WBS is organizing project elements into a hierarchy.276
The most common variant of the WBS uses six hierarchy levels, e.g., Task, Subtask,
and Work Package, which can be visualized – at least for simple projects – as a tree
diagram. In order to plan and control costs, the expected effort is attributed to the
bottom elements of the WBS hierarchy. Elements of a superordinated hierarchy level
inherit the totalized efforts of the subordinated elements.277 Since the recursive
breakdown of a project into elementary work packages as well as the specification of
components require both knowledge and experience, the WBS is categorized as an
expertise-based technique.278

In the context of software development, a WBS usually consists of two hierarchies.
One hierarchy describes the solution structure of the software, the other hierarchy

272 MOLOKKEN, JORGENSEN (2003).
273 MOLOKKEN (2004), p. 119.
274 BOEHM et al. (2000a).
275 KERZNER (1984), p. 515.
276 BOEHM et al. (2000a).
277 KERZNER (1984).
278 BOEHM et al. (2000a).

58 Chapter 2: Literature Review

focuses on the activities required for building the software.279 The activity hierarchy
allows fine-grained effort estimation as well as fine-grained monitoring and evaluat-
ing actual efforts. An exemplary software WBS contrasting the product and activity
hierarchies is given in Fig. 2.8.

Fig. 2.8: Exemplary Work Breakdown Structure

2.3.2.3 Three-Point Estimate

The Three-Point or Three-Time Estimate, respectively, was developed as part of the
Program Evaluation and Review Technique (PERT).280 In the late 1950s, PERT was
designed for modeling and managing large, complex projects. Among other features,
the technique allows modeling so-called PERT Networks that are based on a list of
activities and their predecessors. The PERT Network method is related to scheduling
techniques like the Arrow Diagram Method, the Precedence Diagram Method, and
the Critical Path Method (CPM).281

Essentially, the Three-Point Estimate presumes that single-point estimates are biased
by optimism. In this context, MCCONNELL argues that:

“Developers present estimates that are optimistic. Executives like
the optimistic estimates because they imply that desirable business
targets are achievable. Managers like the estimates because they
imply that they can support upper management's objectives. And so
the software project is off and running with no one ever taking a

279 BOEHM et al. (2000a).
280 MCCONNELL (2006).
281 KERZNER (1984).

Software
Application

Database
Layer GUIBusiness Logic

Reservation
System

Development
Activities

Design ProgrammingRequirements

Reservation
System

ImplementationConcept
Validation

Quality
CheckTesting

...

Product
Hierarchy

Activity
Hierarchy

Chapter 2: Literature Review 59

critical look at whether the estimates were well founded in the first
place.”282

In order to mitigate this type of optimism bias, the expected effort EEi of an activity
Ai is calculated on the basis of three estimates: 1) The Most Likely Case (Mi) assumes
that everything proceeds normally, 2) the Optimistic Case (Oi) or best case, respec-
tively, is based on the theoretically minimal time required for task completion, 3) the
Pessimistic Case (Pi) or worst case, respectively, assumes that everything goes
wrong. The mitigation of optimism bias is based on confronting the Most Likely and
Optimistic Case, which are usually close to each other, with the typically remote
Pessimistic Case (see Fig. 2.9):

“When developers are asked to provide single-point estimates, they
often unconsciously present Best Case estimates.”283

Fig. 2.9: Distribution of Optimistic, Most Likely, and Pessimistic Case

Given the estimates for Optimistic, Most Likely, and Pessimistic Case, the following
equation determines the expected effort per activity:284

4
6

i i i
i
O M PEE + +

= Eq. 2.24

The standard deviation (SD) of the total expected effort (EE) required for completing
all n activities can be determined by the next (simplified) equation:285

282 MCCONNELL (2006), p. 47.
283 MCCONNELL (2006), p. 119.
284 MCCONNELL (2006).
285 This equation is only valid for a number of activities less than 10. MCCONNELL (2006) also pro-

vides a more complex approach for larger numbers.

Li
ke
lin
es
s

Effort

Most Likely Case

Expected Case

Optimistic
Case

Pessimistic Case

60 Chapter 2: Literature Review

1

6

n

i i
i
O P

SD =

−
=
∑

Eq. 2.25

The standard deviation can be utilized to get a particular likelihood, which is 50% for
the total effort EE. The sum of EE+SD, for example, has a likelihood of 84%, while
the sum of EE+2SD reaches 98%.286

2.3.3 Learning-oriented Techniques

2.3.3.1 Case Studies

The purpose of Case Studies is learning useful lessons by generalizing and extrapo-
lating from specific examples, i.e., former development projects.287 Estimating de-
velopment effort by examining cases is the oldest manual estimation technique:288

“Case studies represent an inductive process, whereby estimators
and planners try to learn useful general lessons and estimation
heuristics by extrapolation from specific examples. They examine
[cases] describing the environmental conditions and constraints
[…] during the development of previous software projects, the
technical and managerial decisions that were made, and the final
successes or failures that resulted. […] Ideally they look for cases
describing projects similar to the project for which they will be at-
tempting to develop estimates, applying the rule of analogy that
says similar projects are likely to be subject to similar costs and
schedules.“289

The motivation and central idea of estimating development effort by case studies is
similar to the Case Study research method. During a Case Study, the observer gains
detailed insight by asking “how” and “why” questions.290 A Case Study can give
answers, for example, why specific process models, frameworks, and development
tools are chosen, how teams are selected, why certain technical or managerial deci-
sion have been made, and how problems are approached. According to YIN:

“The distinctive need for case studies arises out of the desire to
understand complex social phenomena. In brief, the case study al-
lows an investigation to retain the holistic and meaningful charac-

286 MCCONNELL (2006).
287 BOEHM et al. (2000a).
288 Boehm et al. (2000a).
289 Boehm et al. (2000a), p. 194.
290 YIN (2003).

Chapter 2: Literature Review 61

teristics of real-life events – such as individual life cycles [as well
as] organizational and managerial processes […].”291

Such investigations aim at discovering links between cause and effect that are also
valid in other contexts.292 Preferably, the project to be estimated is similar to the ob-
served project, in a way that analogies can be successfully applied. BOEHM et al.
favor “homegrown” cases, which have been conducted in-house, since new projects
will be most probably run in similar environments and under comparable condi-
tions.293 CHULANI briefly outlines the use of Case-Based Reasoning (CBR) as a for-
malized learning-oriented estimation technique:294

“Case-based reasoning is an enhanced form of estimation by anal-
ogy. A database of completed projects is referenced to relate the
actual costs to an estimate of the cost of a similar new project.
Thus, a sophisticated algorithm needs to exist which compares
completed projects to the project that needs to be estimated.”295

2.3.3.2 Neural Networks

A Neural Network (NN) is an artificial, computational model that simulates biologi-
cal neural networks. Basically, a Neural Network consists of linked, artificial neu-
rons, which are typically grouped to input, hidden, and output layers.296 Depending
on the network structure, different network types can be identified. In contrast to
recurrent networks, Feed-Forward Networks represent a directed acyclic graph. In-
formation is forwarded in one direction only, consecutively processed by the input,
hidden, and output neurons (see Fig. 2.10).297

By reconfiguring its neurons, a Neural Network is able to learn. Since inputs and
outputs are metric298, it is possible to quantify the prediction error, for example, by
calculating the mean-squared deviation. The NN can be trained by propagating the

291 YIN (2003), p. 14
292 BOEHM et al. (2000a).
293 BOEHM et al. (2000a).
294 CHULANI (1999); SHEPPERD, SCHOFIELD (1997).
295 CHULANI (1999), pp. 30-31.
296 A neural network does not necessarily consist of three layers. Single-layer networks (Percep-

trons), for example, are restricted to one input layer. Conversely, neural networks can have mul-
tiple hidden layers for information processing. However, with regard to the Universal Approxi-
mation Theorem, most problems require only one hidden layer (e.g., FUNAHASHI (1989)).

297 HAYKIN (1998).
298 Nominal inputs, for example, can be represented by a set of binary variables.

62 Chapter 2: Literature Review

error within the network in a way that neurons can conform themselves to the new
situation. A common and well-known training approach is Backpropagation.299

Fig. 2.10: Exemplary Feed-Forward Backpropagation Neural Network300

Software effort estimation can be realized by feeding an NN with historical project
data. As illustrated in Fig. 2.10, data like project size, problem complexity, or staff
skill can be used as model input. The error is determined by comparing the model
output with the actual project effort. The NN learns and improves its prediction accu-
racy by iterating over the training data set until a predefined, minimal delta is
reached. This delta prevents the network form overtraining.301

In a study on the prediction of program faults, KHOSHGOFTAAR et al. identified accu-
racy deficiencies of traditional multiple-regression methods compared to Neural
Networks.302 They conclude that:

“[…] neural network methods produce predictive models having
better predictive quality than models produced with traditional
multivariate regression methods. […] Neural network models […]
are particularly suited for modeling of software complexity data,
and offer an effective alternative to regression techniques that are
often weakened in this environment by assumptions that are not
met.”303

299 RUMELHART et al. (1986).
300 Cp. BOEHM et al. (2000a); CHULANI (1999).
301 BOEHM et al. (2000a).
302 KHOSHGOFTAAR et al. (1995)
303 KHOSHGOFTAAR et al. (1995), p. 153.

Input
Layer

Hidden
Layers

Output
Layer

Data Inputs

Project Size

Complexity

Languages

Skill Levels

Estimation Algorithm Model Output

Effort Estimate

Actual Effort

Feed forward

Training by Backpropagation

Chapter 2: Literature Review 63

In a comparative study on common cost estimation techniques, BRIAND et al. provide
a noteworthy comparison of previous research:304 MUKHOPADYAY et al. found that
their analogy-based model using CBR outperformed COCOMO.305 Based on empiri-
cal data of 299 projects, FINNIE et al. compared CBR with different regression mod-
els. Once again, CBR showed a better accuracy than regression models. However,
Neural Networks outperformed CBR.306

2.3.4 Dynamics-based Techniques

In the mid-1950s, JAY FORRESTER started the primary research on System Dynamics.
The fundamental publications were released in the 1960s.307 System Dynamics is a
simulation methodology that models complex problems as systems of Feedback
Loops as well as so-called Stocks and Flows (see Fig. 2.11). FORRESTER developed
System Dynamics as an instrument to simulate, understand, and improve complex
organizations, especially, from the managerial perspective.308 Simulation runs are
realized by mathematical models defined by sets of first order differential equa-
tions.309

Fig. 2.11: Exemplary System Dynamics model notation310

In contrast to the effort estimation approaches presented before, dynamics-based
techniques take into account that certain factors are not static, but change dynamical-
ly during a project. BOEHM et al. note that:

304 BRIAND et al. (1999).
305 MUKHOPADHYAY et al. (1992).
306 FINNIE et al. (1997).
307 FORRESTER (1961); FORRESTER (1968); FORRESTER (1969).
308 MADACHY (1994).
309 BOEHM et al. (2000a); CHULANI (1999); MADACHY (1994).
310 ABDEL-HAMID, MADNICK (1991), p. 76

Smoothed
Variable

Variable
to be

smoothed

(-)

Smoothing
Time

64 Chapter 2: Literature Review

“This is a significant departure from the other techniques […],
which tend to rely on static models and predictions based upon
snapshots of a development situation at a particular moment in
time. However, factors like deadlines, staffing levels, […] etc., all
fluctuate over the course of development and cause corresponding
fluctuations in the productivity of project personnel. This in turn
has consequences for the likelihood of a project coming in on
schedule and within budget – usually negative.”311

Inspired by ROBERTS’ previous work on the dynamics of R&D projects, ABDEL-
HAMID and MADNICK took on the idea of System Dynamics and developed an inte-
grative model of software development projects, which covers 1) human resource
management, 2) software production, 3) controlling, as well as 4) planning.312 This
model is capable of estimating effort, its distribution over time, schedules, as well as
defect rates.

Similarly, MADACHY used System Dynamics to model inspection-based software
life-cycle processes.313 With reference to MADACHY’S work, BOEHM et al. briefly
describes a System Dynamics model that simulates BROOKS’ Law, which states that
“adding manpower to a late software project makes it later.”314

2.4 Summary of Estimation Techniques and their

Adoption in Practice

The previous sections 2.2 and 2.3 have shown that it is important to distinguish be-
tween Size Estimation and Effort Estimation. Tab. 2.10 provides an overview of the
primary size and effort estimation techniques and their central characteristics.

Tab. 2.10: Summary of prominent size and effort estimation techniques

Technique Focus Major input
parameter

Complexity
assessment

Further factors

Function Point
Analysis

Size Functional
requirements

Low, Average,
High

Value Adjustment Factor (14
general system characteris-
tics)

COSMIC FFP Size Functional
requirements

- -

311 BOEHM et al. (2000a), p. 197.
312 ABDEL-HAMID, MADNICK (1991); ROBERTS (1981).
313 MADACHY (1994).
314 BOEHM et al. (2000a); BROOKS (1975).

Chapter 2: Literature Review 65

Technique Focus Major input
parameter

Complexity
assessment

Further factors

Object Points Size Screens, reports,
modules

Simple, medium,
difficult

Productivity rate for simple
effort estimation

Use Case Points Size Use Cases Influences of a set
of differently
weighted factors

Technical & Environmental
Complexity Factor, Produc-
tivity Factor

COCOMO Effort Lines of Code
(KDSI)

- Development mode, Effort
Adjustment Factor (15 cost
drivers)

COCOMO II Effort Lines of Code
(KDSI)

- Scale factors (5); Effort
Adjustment Factor (17 cost
drivers)

Expertise/analogy-
based estimation

Size/Effort Experience,
historical data

Intuition, compari-
son

Unlimited

Neural Networks Effort Size Overall complexity
rating can be used
as input data

Unlimited

To recapitulate, development effort estimation techniques address at least one of the
following three questions concerning a new software system: 1) what will the system
be like, 2) how is the system going to be developed, and 3) by whom will the system
be implemented?

Software Size is measured either in Lines of Code or abstract point-based metrics
like Function Points. The Backfiring technique allows converting Lines of Code into
Function Points and vice versa. The most prominent sizing techniques are IFPUG
Function Point Analysis and COSMIC FFP. Besides, Object Points and Use Case
Points are still in use. Generally, sizing techniques focus directly on the software
product by asking “what” the system will be like. It has to be noted that most sizing
techniques usually have a seamless transition from size estimation to effort estima-
tion, since they provide simple formulas for converting size into working time.

Model-based effort estimation techniques like SLIM, COCOMO, and COCOMO II
use the software size as a major input parameter for effort estimation. These tech-
niques focus on the process of developing software by asking “how” and “by whom”
the system will be developed.

Expertise-based techniques can address all three questions at once. Delphi, WBS,
and Three-Point Estimation can be used to estimate size, effort, or both.

In contrast to the wide spectrum of available estimation techniques, only a few are
used in practice. In a survey of 598 software development organizations, HEEMSTRA
found that 60.8% use estimation by analogy, followed by 25.5% using expert judg-

66 Chapter 2: Literature Review

ment.315 Only 13.7% use parametric models like COCOMO in order to estimate pro-
ject effort. Likewise, LEDERER and PRASAD found that the most frequent estimation
approach is comparison to similar past projects based on personal memory or docu-
mented facts.316 Additionally, they found that intuition and even guessing are favored
over complex, statistical methods. In a review of studies on expert estimation of
software development effort, JORGENSEN summarizes:

“HIHN and HABIB-AGAHI found that 83% of the estimators used ‘in-
formal analogy’ as their primary estimation techniques, 4% ‘for-
mal analogy’ (defined as expert judgment based on documented
projects), 6% ‘rules of thumb’, and 7% ‘models’. […] A survey
conducted in New Zealand, PAYNTER reports that 86% of the re-
sponding software development organizations applied ‘expert esti-
mation’ and only 26% applied ‘automated or manual models’ (an
organization could apply more than one method). A study of the in-
formation systems development department of a large international
financial company, HILL et al. found that no formal software esti-
mation model was used. JORGENSEN reports that 84% of the esti-
mates of software development projects conducted in a large Tele-
com company were based on expert judgment, and KITCHENHAM et
al. report that 72% of the project estimates of a software develop-
ment company were based on ‘expert judgment’.”317

Studies on estimation accuracy also favor expertise- or analogy-based techniques.
The work of SHEPPERD and SCHOFIELD, MUKHOPADYAY et al., and FINNIE et al.
found higher estimation accuracy for estimation by analogy in contrast to algorithmic
approaches.318 For example, SHEPPERD and SCHOFIELD found that estimation by
analogy provides higher estimation accuracy than approaches based on stepwise re-
gression analysis.319 In this study, accuracy was determined by the Mean Magnitude
of Relative Error (MMRE) as well as the Pred(25) indicator, which measures the
percentage of predictions falling within 25 percent of the actual value.320 Only Neu-
ral Networks were able to outperform analogy-based effort estimation in one
study.321

“A striking pattern emerges in that estimation by analogy produces
a superior predictive performance in all cases when measured by

315 HEEMSTRA (1992).
316 LEDERER, PRASAD (1993).
317 JORGENSEN (2004), p. 39. References in quotation: HIHN, HABIB-AGAHI (1991); HILL et al.

(2000); KITCHENHAM et al. (2002b); PAYNTER (1996).
318 FINNIE et al. (1997); MUKHOPADHYAY et al. (1992); SHEPPERD, SCHOFIELD (1997).
319 SHEPPERD, SCHOFIELD (1997).
320 MMRE and Pred(25) are explained in Section 4.3.5.
321 FINNIE et al. (1997).

Chapter 2: Literature Review 67

MMRE and in seven out of nine cases for the Pred(25) indica-
tor.”322

However, accuracy surveys must be critically reviewed. KITCHENHAM et al. argue
that accuracy indicators are often mistakenly applied within the research communi-
ty.323

Another problem of estimation techniques is addressed by KEMERER. 324 Based on an
empirical validation of effort estimation models, he found – besides insufficient ac-
curacy – that none of the validated models adequately reflects those factors that are
supposed to largely influence project performance.325

Although there is a variety of different estimation approaches, practitioners seem to
favor informal techniques. Estimation by analogy or expertise dominates the field.326
Moreover, empirical studies found that these informal approaches are even more
accurate than formal model-based techniques.327 Accordingly, JORGENSEN concludes
that

“There is no substantial evidence supporting the superiority of
model estimates over expert estimates. There are situations where
expert estimates are more likely to be more accurate, e.g., situa-
tions where experts have important domain knowledge not included
in the models or situations when simple estimation strategies pro-
vide accurate estimates.”328

Finally, HEEMSTRA gives a further supportive argument for expertise-based estima-
tion techniques:

“Software cost estimation is often wrongly regarded as a technical
problem that can be solved with calculation models, a set of met-
rics and procedures. However, the opposite is true. The ‘human
aspects’ are much more important. The quality, experience and
composition of the project team, the degree in which the project
leader can motivate, kindle enthusiasm, and commit his developers,

322 SHEPPERD, SCHOFIELD (1997), p. 742.
323 KITCHENHAM et al. (2001).
324 KEMERER validated SLIM, COCOMO, Function Points, and ESTIMACS.
325 KEMERER (1987).
326 JORGENSEN (2004).
327 FINNIE et al. (1997); MUKHOPADHYAY et al. (1992); SHEPPERD, SCHOFIELD (1997).
328 JORGENSEN (2004), p. 55.

68 Chapter 2: Literature Review

have more influence on delivering the software in time and within
budget than the use of rigid calculations.”329

To sum up, research on effort estimation is driven by two primary goals:

 Developing new or improving existing effort estimation techniques 1)
in order to make them capable of reflecting all relevant factors of a
project and a software system. However, studies on the use of ex-
pert estimation in practice suggest that practitioners have a prefer-
ence for simple, informal, and open techniques. Such techniques,
e.g., estimation by analogy or intuition, are not restricted to a set of
factors. Moreover, these techniques allow answering all three ques-
tions (“what, how, and by whom”) at once.

 Improving estimation accuracy. Again, studies have found that the 2)
least formal techniques, e.g., estimation by analogy or expertise,
provide the highest estimation accuracy. This suggests a gap be-
tween the potential accuracy of an estimation technique and how it
is actually implemented in practice.

However, a third goal emerges when considering the aforementioned discussion of
effort estimation and especially when taking HEEMSTRA’S supporting argument for
expertise-based estimation techniques in account. That is, effort estimation tech-
niques must respect the human aspects of a development project, which is in line
with the suggested sociological nature of software development. Managers might
favor expertise-based techniques because they leave room for such aspects. For ex-
ample, project managers can instinctively incorporate the personality of the project
leader, his or her relationship to the assigned developer team, and the individual ca-
pabilities and experiences of each developer. There might be important factors like
enthusiasm and motivation that are not reflected by the presented estimation tech-
niques.

Accordingly, the next chapter analyzes the nature of software development in order
to determine, whether the consideration of human aspects is of utmost importance in
development projects, or whether the state-of-the-art, especially the industrialization
of software development, refuses this third goal, so that the consideration of people is
extraneous and irrelevant.

329 HEEMSTRA (1992), p. 638.

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 69

3 THE CRUX OF SOFTWARE DEVELOPMENT
AND ITS RELATIONSHIP TO EFFORT
ESTIMATION

What is software development? With concern to this question, technologists would
speak about programming languages, compilers, application frameworks, develop-
ment environments, conceptual design approaches, and a never-ending armada of
useful tools. In opposition, sociologists would speak about people first. DEMARCO
and LISTER would agree upon the latter, since they argue that “the major problems of
[software development] are not so much technological as sociological in nature.”330
The research community of software engineering, however, comprises an ideological
camp that wants software development to be a purely technological challenge. Ac-
cordingly, researchers as well as practitioners have constantly asked for an industrial-
ization of software engineering over the past decades. In 1968, on the NATO Confer-
ence of Software Engineering, DOUGLAS MCILROY was one of the first to ask for
industrialism in the field of software engineering:

“We undoubtedly produce software by backward techniques. […]
Software production today appears in the scale of industrialization
somewhere below the more backward construction industries. […]
I would like to investigate the prospects for mass-production tech-
niques in software. […] What I have just asked for is simply indus-
trialism, with programming terms substituted for some of the more
mechanically oriented terms appropriate to mass production.”331

MCILROY especially asked for software components and standard catalogues of rou-
tines that are classified in terms of robustness, precision, performance etc. From to-
day’s perspective, his claim headed towards standardized code libraries, software
reuse, and component-based development. The idea of industrializing software de-
velopment has persisted until today as software development still relies on the

330 DEMARCO, LISTER (1987), p. 4.
331 DOUGLAS MCILROY (1968), p. 79.

70 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

craftsmanship of skilled individuals.332 GREENFIELD and SHORT summarize what
industrialization means for other industries:

“When faced with similar challenges many years ago, other indus-
tries moved from craftsmanship to industrialization by learning to
customize and assemble standard components to produce similar
but distinct products, by standardizing, integrating and automating
their production processes, by developing extensible tools that
could be configured to automate repetitive tasks, by developing
product lines to realize economies of scale and scope, and by form-
ing supply chains to distribute cost and risk across networks of
highly specialized and interdependent suppliers.”333

Until now, the software industry has not been industrialized, and we neither know
when it will happen, nor what it will be like.334 For that reason, this chapter focuses
on the fundamental question whether the software industry can be industrialized at
all. By looking at other industries, this chapter illustrates the crux of software devel-
opment, and gives arguments whether or not the software industry lives up to its
name.

Accordingly, this chapter focuses on the nature of software development from a pre-
dominantly economic and managerial perspective. Its emphasis is on cost-
effectiveness. The goal of this discussion is to explain what software development is,
and what it is not. Without making clear the underlying understanding of software
development, one might retort that particular arguments and thoughts will become
unfounded, when the software industry becomes industrialized, or when organiza-
tions move away from sequential to agile development. Therefore, this chapter de-
fines the economic possibilities and limitations of the software industry, and gives
reasons why software development might generally be a nightmare for managers
who depend on perfect control, stable project planning, and homogeneous developer
teams.

Finally, the crux of software development is connected to the main subject of this
thesis in order to explain its relationship to effort estimation.

332 GIBBS (1994); GREENFIELD, SHORT (2003).
333 GREENFIELD, SHORT (2003), p. 17.
334 GREENFIELD, SHORT (2003).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 71

3.1 The Software Crisis Revisited

Simultaneously to the introduction of “Software Engineering” 335 in the late 1960s,

the term “Software Crisis” emerged which originally addressed

“[…] the problem of building large, reliable software systems in a
controlled and cost-effective way.”336

Software development was limited to small projects at that time, and the early at-
tempts to build large software systems were likely to fail.337 Software was typically
written in COBOL, FORTRAN, or Assembler on machines that we would not call
computers from today’s perspective.338 In order to understand the situation of the late
1960s, one must recall how software or programs, respectively, were created in those
days. Being a programmer was not a profession. Programmers could not use high
level programming languages or integrated development environments. Computers –
if at all – had tiny monochrome displays. Likewise, computer keyboards were not a
standard. Thus, programs were usually entered via punched cards. It was developed
in build-and-fix or in simple waterfall processes.339

“[…] the machines have become several orders of magnitude more
powerful! To put it quite bluntly: as long as there were no ma-
chines, programming was no problem at all; when we had a few
weak computers, programming became a mild problem, and now
we have gigantic computers, programming has become an equally
gigantic problem. […] As the power of available machines grew by
a factor of more than a thousand, society’s ambition to apply these
machines grew in proportion, and it was the poor programmer who
found his job in this exploded field of tension between ends and
means. The increased power of the hardware, together with the
perhaps even more dramatic increase in its reliability, made solu-
tions feasible that the programmer had not dared to dream about a
few years before. And now, a few years later, he had to dream
about them, and, even worse, he had to transform such dreams into

335 NAUR, RANDELL (1969).
336 KRUEGER (1992), p. 132.
337 RANDELL (1979).
338 DIJKSTRA (1972).
339 BERRY (2004); SCHACH (1992). The build-and-fix or code-and-fix model describes a basic devel-

opment cycle: 1. Build the first version of the software. 2. The software is modified until the cli-
ent is satisfied. 3. The software is used until problems occur. When problems occur, go back to
step 2.

72 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

reality! Is it a wonder that we found ourselves in a software cri-
sis?”340

However, since that time the field of software engineering has been evolving. It has
been influenced and improved by lots of noteworthy contributions and advance-
ments.341 Some of these contributions are briefly presented in the following in order
to outline what has changed since the late 1960s.

In 1972, the first 8-bit microprocessor was released. From that moment on, comput-
ers became faster, smaller, and affordable for nearly everyone. Computers became
part of Ethernet networks for the first time around 1975.342 16 years later, IBM en-
tered the personal computer market and coined the term “IBM-compatible.”343
Punched cards have been completely replaced by terminals, keyboards, and magnetic
disks. Simultaneously, operating systems became much more sophisticated. In 1969,
the first version of UNIX was released. Personal computers were usually delivered
with MS-DOS that appeared in 1981.344 Four years later, the first version of Mi-
crosoft Windows was released. In 1991, LINUS TORVALDS published the first version
of the open-source operating system Linux.

Since the late 1960s, many new programming languages and techniques have been
developed. In 1968, the first publications on structured programming as a new pro-
gramming paradigm were published.345 In the same year, DONALD KNUTH published
the first volume of “The Art of Computer Programming.”346 In 1972, the program-
ming language C was published.347 Seven years later, C++ as one of the most influ-
ential object-oriented programming languages followed.348 Although the foundations
of object-oriented programming were invented in the late 1960s, object-oriented pro-
gramming did not become popular until the 1990s. In this decade, Java was released
offering platform independency by using a virtual machine.349

Other innovations have changed and standardized the way data was accessed and
managed. In 1970, the relational database model was proposed by CODD.350 The

340 DIJKSTRA (1972), p. 861.
341 A comparable, more detailed overview of the last four decades of software engineering is given

by BOEHM (2006).
342 METCALFE, BOGGS (1976).
343 IBM (abbr.): International Business Machines (Corporation).
344 MS-DOS (abbr.): Microsoft Disk Operating System.
345 DIJKSTRA (1968).
346 KNUTH (1968).
347 KERNIGHAN, RITCHIE (1978).
348 STROUSTRUP (2000).
349 SUN MICROSYSTEMS INC. (2008).
350 CODD (1970).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 73

fundamental theories on database normalization followed in the mid-1970s.351 The
Structured Query Language (SQL) was published in 1974.352 The first commercial
database products appeared in 1979.

As a final point, the first Web Browser and the Hypertext Markup Language were
released in 1991.353 The public became aware of the Internet and the World Wide
Web. The dominant programming language for web clients, JavaScript, followed in
1995. In the same year, PHP as one of the most popular scripting languages for web-
based applications was published.354 Web-clients offered a completely new way of
application development.

When applying MOORE’s Law, which states that processing power is doubling ap-
proximately every two years, today’s computers are 1,000,000 times faster than they
were in the late 1960s.355 Similarly, today’s memory and disk storage capacities are
1,000,000 times higher than 40 years ago. Today’s developers can use a variety of
programming languages, new programming paradigms, integrated development envi-
ronments, application frameworks, concurrent versioning systems, database systems,
open-source software, standardized formats, and protocols.

In comparison the late 1960s, the circumstances in which software is developed to-
day are totally different. Therefore, the software crisis must be deemed to be over. Its
basic message, however, has persisted over the last four decades. The challenge of
building reliable software in a controlled and cost-effective way still exists today:356

“Despite its critical importance, software remains surprisingly
fragile. Prone to unpredictable performance, dangerously open to
malicious attack, and vulnerable to failure at implementation de-
spite the most rigorous development processes, in many cases soft-
ware has been assigned tasks beyond its maturity and reliabil-
ity.”357

In the following, reliability, control, and cost-effectiveness are examined in more
detail in order to explore how each of these perspectives evolved and how they influ-
ence today’s software development. The emphasis lies on cost-effectiveness as it
reflects the economic perspective.

351 ARMSTRONG (1974); BEERI, BERNSTEIN (1979); CODD (1972); CODD (1974).
352 CHAMBERLIN, BOYCE (1974).
353 W3C (2004).
354 THE PHP GROUP (2008). PHP (abbr.): Hypertext Preprocessor.
355 MOORE (1965).
356 E.g., BOEHM, BASILI (2000).
357 BOEHM, BASILI (2000), p. 27.

74 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

3.1.1 Reliability

Following PHAM, “reliability is defined as the probability of success or the probabil-
ity that a system will be perform its intended function under specified design limits.
Mathematically, reliability R(t) is the probability that a system will be successful in
the interval from time 0 to time t.”358 Reliability can be understood as a quality crite-
rion of software systems, since “an important quality attribute of a computer system
is the degree to which it can be relied upon to perform its intended function.”359
Moreover, reliability interacts with development costs, and, therefore, with the cost-
effectiveness of software development projects:

“The interactions between software costs and the various software
qualities (reliability, ease of use, ease of modification, portability,
efficiency, etc.) are quite complex, as are the interactions between
the various qualities themselves. […] A project can reduce soft-
ware development costs at the expense of quality but only in ways
that increase operational and life-cycle costs.”360

Accordingly, the effort of ensuring a high reliability by perfectly complying with the
system’s specification while eliminating all errors and bugs extensively increases
development costs. In addition, the difficulty to ensure reliability increases with the
system size.

BELADY and LEHMAN observed the phenomenon of growth of errors in software sys-
tems that are continually modified.361 Their mathematical description of the phenom-
enon, published in 1976, states that the number of errors declines in early releases
until the number of errors reaches a minimum. At this point, the internal structure of
the software has become decayed so that changes are more likely to cause new errors
and side effects. The number of errors is increasing with new releases (see Fig. 3.1).
This effect is called the BELADY-LEHMAN upswing, which negatively affects the reli-
ability of software systems. 362

358 PHAM (1999), pp. 13-14.
359 GOEL (1985), p. 1411.
360 SELBY (2007), p. 156.
361 BELADY, LEHMAN (1976); BELADY, LEHMAN (1985).
362 BELADY, LEHMAN (1976); BELADY, LEHMAN (1985).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 75

Fig. 3.1: The BELADY-LEHMAN graph363

A recent, experimental study conducted by SMIDTS et al. demonstrates the challenges
of producing reliable software.364 Two independent teams, using different software
development methodologies, had to develop identical software systems. Although the
system was simple, both teams were unable to reach a reliability level of 98%.

Likewise, in 1987, BROWN and GOULD conducted a study on the development of
electronic spreadsheets using Lotus 1-2-3.365 Although all participants were experi-
enced spreadsheet developers, the study showed that 44% of 27 spreadsheets con-
tained nontrivial errors. However, the developers rated their work as accurate and
error-free.

The past, presence, and most probably the future of software reliability can be ade-
quately pinpointed by the 9th lesson described by KANER et al. on lessons learned in
software testing:

“You will not find all the bugs.”366

363 BELADY, LEHMAN (1976); BELADY, LEHMAN (1985); BERRY (2004).
364 SMIDTS et al. (2002).
365 BROWN, GOULD (1987).
366 KANER et al. (2002), p. 6.

release number (time)

bu
gs

 fo
un

d
pe

r r
el

ea
se

Upswing

76 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

3.1.2 Control

3.1.2.1 The Era of Sequential Software Development

In 1970, ROYCE primarily documented a sequential development process model,
which has become known as the waterfall model.367 Although ROYCE is often cited
in this context, his work was not a proposal but an early criticism on the sequential
development approach. When moving away from one-man build-and-fix develop-
ment towards team-based projects in the 1950s and 1960s, organizational manage-
ment was confronted with software development issues for the first time. The water-
fall model can be understood as a natural approach to divide labor and to give control
over development processes to management. The overall process is separated into
sequential phases. Each phase has to be completed before the project proceeds to the
next phase (see Fig. 3.2).

Fig. 3.2: Waterfall model of the software process368

The waterfall approach allows a straightforward integration with project manage-
ment, since it suggests structure, discipline, and control over progress by providing
documentations and milestones at the end of a phase. Another economic motivation
of the waterfall model is an early identification of conceptual errors. MCCONNELL,
who also criticizes369 the sequential approach, gives a supporting argument:

“A requirements defect that is left undetected until construction or
maintenance will cost 50 to 200 times as much to fix as it would
have cost to fix at requirements time.”370

367 ROYCE (1970).
368 E.g., ROYCE (1970).
369 MCCONNELL (2004).
370 MCCONNELL (1996).

System
Requirements

Software
Requirements

Analysis

Program
Design

Coding

Testing

Operations

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 77

A similar rule-of-thumb has been published by BOEHM in 1987:

“Finding and fixing a software problem after delivery is 100 times
more expensive than finding and fixing it during the requirements
and early design phases.”371

This insight has been the major economic driver for “Big Design Up Front” and wa-
terfall processes. However, in 2001, BOEHM and BASILI expect “the cost-escalation
factor for small, noncritical software systems to be more like 5:1 than 100:1.”372
Nevertheless, while these rules apply for requirements defects, the waterfall approach
completely ignores requirements changes. According to JACKSON, only two things
are known about requirements: they will change and they will be misunderstood.373
Thus, PARNAS and CLEMENTS discuss the irrationality of a strict sequential approach:

“Even if we knew the requirements, there are many other facts that
we need to know to design the software. Many of the details only
become known to us as we progress in the implementation. Some of
the things that we learn invalidate our design and we must back-
track. Because we try to minimize lost work, the resulting design
may be one that would not result from a rational design process.
[…] Even if we could master all of the detail needed, all but the
most trivial projects are subject to change for external reasons.
Some of those changes may invalidate previous design deci-
sions.”374

Analogously, BROOKS comments on adopting the waterfall model:

“Much of present-day software acquisition procedure rests upon
the assumption that one can specify a satisfactory system in ad-
vance, get bids for its construction, have it built, and install it. I
think this assumption is fundamentally wrong […].”375

In 1995, BROOKS recapitulates: “The waterfall model is wrong” since “the hardest
part of design is deciding what to design” and “good design takes upstream jumping
at every cascade – sometime back more than one step.”376 Consequently, the water-
fall model has been replaced in the past by innovative process models that focus on

371 BOEHM (1987). A comparable ratio has already been described by FAGAN (1976): “Rework […]

is 10 to 100 times less expensive than if it is done in the last half of the process.“
372 BOEHM, BASILI (2001), p. 135.
373 JACKSON (1994).
374 PARNAS, CLEMENTS (1986), p. 251.
375 BROOKS (1987), p. 12.
376 BROOKS (1995a), slide 8.

78 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

iterative and incremental development (IDD).377 The earliest references that address
the concept of iteration have been published by ROYCE in 1970 and especially by
MILLS in 1971 who gave a more profound view on iterative development.378

3.1.2.2 The Era of Iterative Software Development

In 1985, BOEHM published his work on “A Spiral Model of Software Develop-
ment.”379 In contrast to former publications, BOEHM initially formalized a risk-
oriented iterative approach. The overall development process is divided into cycles,
each of which starts with the identification of objectives (e.g., features or perfor-
mance), alternatives (e.g., different designs or approaches), and constraints (e.g.,
schedule, costs, and interfaces). The focus of this assessment is to identify uncertain-
ties as potential sources of project risk. Proposed approaches to resolve such risks are
prototyping, simulation, benchmarking, questionnaires, and modeling. If uncertainty
dominates the current project stage, the next steps will be evolutionary in order to
remove uncertainty. Conversely, if most uncertainty has been successfully removed,
the project will follow the basic waterfall model. Each cycle ends with a prototype
and a review in order to assess the project state and to plan the next cycle (see Fig.
3.3).

377 LARMAN, BASILI (2003).
378 MILLS (1971); ROYCE (1970).
379 BOEHM (1985); BOEHM (1988).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 79

Fig. 3.3: Spiral model of the software development process380

BASILI and TURNER summarize the motivation and central concept of IDD as fol-
lows:

“The basic idea behind iterative enhancement is to develop a soft-
ware system incrementally, allowing the developer to take ad-
vantage of what was being learned during the development of ear-
lier, incremental, deliverable versions of the system. Learning
comes from both the development and use of the system, where pos-
sible.”381

Iterative development emphasizes working with prototypes to measure progress. Ear-
ly prototypes provoke feedback from customers and developers in order to identify
changing requirements as early as possible. This approach takes account of LEH-

MAN's Laws of Software Evolution.382 A software system (termed e-type system),
once installed and becoming part of the application domain, alters its own require-

380 BOEHM (1985).
381 BASILI, TURNER (1975). Also LARMAN, BASILI (2003), p. 49.
382 LEHMAN (1980); LEHMAN (1996).

Prototype 1 Prototype 2
Operational
Prototype

Risk analysis

Risk analysis

Risk analysis

Cumulative Costs

Review

Release
Implementation

Acceptance
test

Integration
and test

Code

Detailed
design

Software
product
design

Software
requirements

1. Determine objectives,
alternatives,
constraints

2. Evaluate alternatives,
Identify, resolve risks

3. Develop, verify
next-level product

4. Plan next phases

Require-
ments plan,

Life-cycle plan

Development plan

Integration and
test plan

Concept of
operation

Requirements
validation

Design validation
& verification

Simulations, models, benchmarks

Embedded
waterfall
process

80 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

ments. The software co-evolves with its domain and vice versa.383 By working within
short time frames or timeboxes respectively, iterative development methodologies
incorporate this natural evolution of requirements and minimize risks during the
overall development process. HIGHSMITH and COCKBURN describe the consequence
for today’s software project management as follows:

“Because we cannot eliminate these changes, driving down the cost
of responding to them is the only viable strategy. Rather than elim-
inating rework, the new strategy is to reduce its cost.”384

3.1.2.3 The Era of Agile Software Development

During the last decade, methodologies like Agile Software Development385, Extreme
Programming386, Rapid Application Development387, as well as Rapid Prototyping
complemented IDD. Additionally, new management concepts like Scrum388 and Lean
Software Management389 have been proposed. Agile software development appears
to be a recent development methodology that incorporates most of the lessons
learned during the past:390 1) Agile methods favor incremental work, 2) they focus on
the talents and skills of individuals, 3) they try to reduce the cost of communication
and the time between making a decision and seeing its consequences.391 Accordingly,
we must ask, how agile methods affect the control over software development pro-
cesses. CORAM and BOHNER address this question by examining the impact of agile
methods on software project management:392

• The largest impact of agile methods is on developers. They have to
be team-oriented, motivated, talented, and highly communica-
tive.393 Thus, allocating strong developers, who fit into agile teams,
becomes a major challenge for project management.

• Agile teams have two leader roles: team leaders and project man-
agers. Team leaders must encourage the team to take initiative.

383 LEHMAN, RAMIL (2001).
384 HIGHSMITH, COCKBURN (2001), p. 120.
385 The first agile concepts are described by EDMONDS (1974). The “Agile Manifesto“ is written by

BECK et al. (2001).
386 BECK, ANDRES (2004).
387 MARTIN (1991).
388 The term “Scrum“ has been initially used by TAKEUCHI, NONAKA (1986) as a metaphor.

SCHWABER (1995) referenced this metaphor and described “Scrum” as it is used today.
389 POPPENDIECK, POPPENDIECK (2003).
390 HIGHSMITH, COCKBURN (2001).
391 COCKBURN, HIGHSMITH (2001).
392 CORAM, BOHNER (2005).
393 CORAM, BOHNER (2005); HIGHSMITH, COCKBURN (2001).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 81

Leadership-collaboration management is superior to command-
and-control management.394 Moreover, decision-making becomes a
shared task within the team.395 Again, team leaders must encourage
the team to participate in decision-making processes. In contrast,
project managers take responsibility for business decisions and
tracking progress. However, schedules and plans are less important
for agile development. Instead of focusing on a strict schedule, the
project manager must ensure that the team quickly responds to
change.396 For that reason, it is common practice to arrange fre-
quent and short meetings as it is proposed by scrum.397 Finally, in-
stead of relying on contracts and appointed deliverables, the project
manager is responsible for establishing customer involvement and
close collaboration.

• The development process is started without detailed formal plan-
ning in the beginning. Instead, the emphasis of agile methods is
placed on constant planning. The overall process is divided into
short timeboxes in order to react on upcoming changes.398 Moreo-
ver, agile methods favor informal communication over written
documentations in order to build a collective knowledge within the
team.

Summarizing the above, recent development methodologies trade strict control for
more flexibility and autonomy. The overall development process is not planned and
scheduled upfront. Progress is made in small iterative phases while encouraging
change and constant feedback. Consequently, planning becomes a permanent task.
Team leadership is separated from project lead while leadership is established via
collaboration. Above all, software development projects highly depend on the skills,
talents, and experiences of the developers. The allocation and development of good
developers is a major challenge for software project management.

3.1.3 Cost-Effectiveness

The third aspect, which emerged with the software crisis, is cost-effectiveness. When
addressing the challenge of developing software at the least possible cost, the terms

394 COCKBURN, HIGHSMITH (2001).
395 WILLIAMS, COCKBURN (2003).
396 CORAM, BOHNER (2005).
397 COHN, FORD (2003); SCHWABER (1995).
398 COHN, FORD (2003).

82 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

“cost-effectiveness,” “efficiency,” and “productivity” are often used synonymously
in literature.

3.1.3.1 The Myth of the Chaos Report

One of the most cited sources in the context of cost-effectiveness is the Chaos Re-
port, primarily published in 1994.399 The STANDISH GROUP found that 31.1% of
software projects are cancelled before completion, 52.7% exceed budgets, and only
16.2% are on-time and on-budget. Moreover, the report describes an average overrun
of 189% of the original cost estimate and an average overrun of 222% of the original
time estimate.

JORGENSEN and MOLOKKEN doubted these findings, and carefully examined the re-
port.400 They especially doubt the 189% cost overrun, and give potential reasons why
the results of the Chaos Report might be biased and unrepresentative: 1) STANDISH
might have interpreted their own results incorrectly. A cost overrun of 189% means
that the actual cost was about 2.9 times the estimated cost. It seems that STANDISH
found a cost overrun of 89% instead.401 2) The study ignored cost underruns. 3) The
definition of cost overrun was unusual. 4) The analyzed projects do not represent a
random sample. STANDISH has been asking IT executives to share failure stories.
Accordingly, the findings of the study are biased toward reports of failure.402 GLASS
comments on this bias:

“What does it mean if 70% of projects that are the subject of fail-
ure stories eventually failed? - Not much.”403

JORGENSEN and MOLOKKEN compare the STANDISH results with other research of the
late 1980s and early 1990s. The results of JENKINS et al.404, BERGERON and
ST-ARNAUD405, as well as PHAN et al.406 showed cost overruns around 33%, which is
clearly different from 189% (see Tab. 3.1).

399 STANDISH GROUP INTERNATIONAL (1994).
400 JORGENSEN, MOLOKKEN (2006).
401 JORGENSEN, MOLOKKEN (2006).
402 GLASS (2006).
403 GLASS (2006), p. 16.
404 JENKINS et al. (1984)
405 BERGERON, ST-ARNAUD (1992).
406 PHAN et al. (1988).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 83

Tab. 3.1: Comparison of cost overrun surveys407

Study Year Source Country Average Cost
Overrun

JENKINS et al.408 1984 72 IS development projects /
23 software organizations

USA 34%

PHAN et al.409 1988 191 software projects USA 33%

BERGERON410 1992 89 software projects /
63 organizations

Canada 33%

STANDISH GROUP411 1994 365 IT executive managers of
software projects

USA 189%

GLASS criticizes that lots of recent literature still cites the 1994 chaos report.412 Pub-
lications often refer to failure rates of 70% or even 84% without noting that the re-
ported percentages of challenged and cancelled projects have simply been summed
up. Moreover, authors tend to ignore that STANDISH has repeated their studies and
published new reports. These reports show a shift within the project resolutions (see
Fig. 3.1). In 2000, for example, the percentage of successful projects raised from
16% to 28%.413 The report published in 2004 shows a decline of failed projects from
31% to 18%.414

Fig. 3.4: Project resolutions reported by the STANDISH GROUP between 1994 and 2000415

Analogously, the average cost overruns have declined between 1994 and 2002. Be-
tween 2000 and 2004 the reports showed an average cost overrun of about 45%. The-
se overruns are still higher than the results of the aforementioned academic research

407 JORGENSEN, MOLOKKEN (2006).
408 JENKINS et al. (1984).
409 PHAN et al. (1988).
410 BERGERON, ST-ARNAUD (1992).
411 STANDISH GROUP INTERNATIONAL (1994).
412 GLASS (2005).
413 GLASS (2005).
414 INFOQ.COM (2006).
415 STANDISH GROUP INTERNATIONAL (2001).

31%

40%

28%

23%

53%

33%

46%

49%

16%

27%

26%

28%

0% 20% 40% 60% 80% 100%

1994

1996

1998

2000

Failed

Challenged

Succeeded

84 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

works that found average cost overruns of about 34%. However, the recent results
reported by the STANDISH GROUP appear to be more plausible than the reported
189% of 1994 (see Fig. 3.5). In a review of surveys on software effort estimation,
MOLOKKEN and JORGENSEN found that 60-80% of software projects have cost over-
runs and that the average cost overrun is about 30%.416

Fig. 3.5: Average cost overruns reported between 1984 and 2004417

3.1.3.2 The Lead of Traditional Engineering Disciplines

In the introduction of the 1994 Chaos Report, STANDISH compares software devel-
opment with bridge building, since bridges are usually built on-time and on-
budget.418 The purpose of this introduction is to illustrate the lead of traditional engi-
neering disciplines over software engineering. SPECTOR and GIFFORD give some in-
sights into bridge building and explain the differences between civil engineering and
software development.419 As the most noticeable difference, SPECTOR and GIFFORD
conclude that bridge design is much more structured than software design. Bridge
building especially uses standardized specifications, requirements, and material con-
straints, which make bridges comparable.420 The Chaos Report restricts itself to the
findings of SPECTOR and GIFFORD.

In 2002, FLYVBJERG et al. conducted a study on cost escalation in transportation in-
frastructure projects.421 They have collected data of 258 projects, which allowed a
statistically significant study in this field for the first time. Their study covered 58

416 MOLOKKEN, JORGENSEN (2003).
417 Adopted from INFOQ.COM (2006).
418 STANDISH GROUP INTERNATIONAL (1994).
419 SPECTOR, GIFFORD (1986).
420 SPECTOR, GIFFORD (1986).
421 FLYVBJERG et al. (2002).

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

1984 1988 1992 1994 1996 1998 2000 2002 2004

Jenkins,
Phan,
Bergeron

Standish
Group
Reports

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 85

rail projects (high-speed, urban, and conventional, inter-city rail), 33 fixed-link pro-
jects (bridges and tunnels), and 167 road projects (highways and freeways). Interest-
ingly, FLYVBJERG et al. found that costs are underestimated in almost 90% of the
projects. Actual costs are on average 28% higher than estimated costs. Especially,
rail projects have a cost overrun of 44.7% (see Tab. 3.2).

Tab. 3.2: Inaccuracy of transportation project cost estimates by type of project422

Project
type

Number
of cases

Average cost
escalation

Standard
deviation

Level of
significance

Rail 58 44.7% 38.4 p < 0.001

Fixed-link 33 33.8% 62.4 p < 0.004

Road 167 20.4% 29.9 p < 0.001

All projects 258 27.6% 38.7 p < 0.001

Fixed-link projects, which refer to bridge and tunnel building, have a cost overrun of
33.8%. This percentage is similar to the reported results of JENKINS, PHAN and
BERGERON (see Tab. 3.1). Moreover, looking at journals like “Construction Man-
agement & Economics”423 and “Construction Engineering & Management”424, one
can easily find articles on cost escalation, cost overruns, and productivity issues in
the field of construction.425 Therefore, civil engineering might not be a good choice
to demonstrate the lead of classic engineering over software engineering.

It is not difficult to find other cases of cost escalation in fields beyond civil and soft-
ware engineering. GIELECKI and HEWLETT, for example, describe cost escalation in
the field of nuclear power plants.426 Between 1966 and 1977, nuclear power plants in
the United States showed overnight cost overruns of 109% to 281%.427 HOLLMANN
and DYSERT describe cost escalations in the field of the EPC industry (Energy, Pro-
curement and Construction). 428

In view of that, software engineering is not exclusively affected by cost escalations.
Other engineering disciplines show comparable problems in terms of cost-

422 FLYVBJERG et al. (2002).
423 TAYLOR & FRANCIS GROUP (2008). All publications in the journal of Construction Management

& Economics have passed an anonymous double-blind review process.
424 AMERICAN SOCIETY OF CIVIL ENGINEERS (2008). Publications in the journal of Construction

Engineering & Management are preliminary reviewed by the journal editor. Afterwards, at least
two reviewers evaluate the article.

425 E.g., AKINTOYE (2000); ARDITI, MOCHTAR (2000); GARNETT, PICKRELL (2000); TOURAN, LOPEZ
(2006).

426 GIELECKI, HEWLETT (1994); U.S. DEPARTMENT OF ENERGY (1995).
427 Overnight cost is the cost of a construction project without capital costs.
428 HOLLMANN, DYSERT (2007).

86 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

effectiveness and cost estimation. As a consequence, the assumed lead of traditional
engineering disciplines over software engineering becomes questionable.

3.1.3.3 Optimism Bias and the Winner’s Curse

A major driver for cost overruns based on inaccurate estimations refers to a psycho-
logical effect. People show a tendency to be unrealistically optimistic about future
events. WEINSTEIN presents two studies that investigated the effect of “optimism
bias.”429 In the first study, 258 college students estimated their own chances of expe-
riencing predefined events. Additionally, the students estimated the corresponding
chances of their classmates. WEINSTEIN found that the students significantly rated
their own chances to be above average for positive events and below average for
negative events (p<0.001).430 The second study showed that people emphasize and
overrate factors that are beneficial for their own perspective while failing to realize
that others individuals may benefit from the same factors. Likewise, KLEIN and
KUNDA present two related studies in which they introduce the similar “I am above
average”-bias.431 Translating these behavioral patterns into software development,
especially inexperienced forecasters tend to make overoptimistic cost estimations,
which determine future cost overruns.

FLYVBJERG et al. doubt that optimism bias can have a permanent effect on cost esti-
mation because they suppose people learn from failure.432 However, even if people
learn from overoptimistic estimates, they will not change their behavior and continue
making biased estimates. In reference to DAVIDSON and HUOT, FLYVBJERG et al.
explain that the incentive to work with optimistic estimates is strong while the penal-
ties for overoptimistic estimates are low.433 They conclude that cost underestimations
are best explained by intentional optimism bias. Forecasters and project promoters
deliberately use biased and misinterpreted estimates as strategic means – in other
words: they are lying.434 Getting projects started is much more important than having
accurate estimates.

The consequences of overoptimistic estimates in a competitive environment are
known as the “winner’s curse” which has been studied in other fields than software
development, for example, auction theory.435 Here, aggressive bidding in combina-

429 WEINSTEIN (1980).
430 WEINSTEIN (1980).
431 KLEIN, KUNDA (1994).
432 FLYVBJERG et al. (2002).
433 DAVIDSON, HUOT (1989).
434 FLYVBJERG et al. (2002).
435 KAGEL, LEVIN (1986).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 87

tion with biased estimates leads to low or even negative profits. JORGENSEN and
GRIMSTAD adopted the winner’s curse to software development.436 They studied its
effect on the basis of empirical data and a Monte Carlo simulation model. Their
analysis showed that the winner’s curse can be a major driver for software cost over-
runs and low software quality. In a group of bidders, the company that is most opti-
mistic will win the bidding process. Assuming that the selection strategy focuses on
price instead of competence, and that the group of bidders shows a large variance of
optimism, it is most probable that the winner will face delays and cost overruns due
to over-optimistic estimates.437

Fig. 3.6 illustrates how predefined cost overruns can emerge from a bidding process.
In this example, seven companies (A-G) have made their bids. G has been most op-
timistic and wins the bidding process. The fact that G’s bid is too low to make any
profit is unknown ex ante because all bids are based on rough estimations. Since rev-
enues are below the least possible costs, G will be confronted with cost overruns at
later stages of the development process.

Fig. 3.6: Over-optimism in a bidding process

Based on a series of experiments on predicting task completion times, NEWBY-
CLARK et al. found that participants focus on optimistic scenarios while evaluating
pessimistic scenarios to be less plausible.438 They found that pessimistic scenarios
are taken into account only if participants predict someone else’s completion time.
According to KOEHLER and HARVEY, the level of optimism increases with the level
of control.439 A software developer, for example, tends to be over-optimistic when

436 JORGENSEN, GRIMSTAD (2005).
437 JORGENSEN, GRIMSTAD (2005).
438 NEWBY-CLARK et al. (2000).
439 KOEHLER, HARVEY (1997).

A B C D E F G

Least possible cost

Cost OverrunB
id

Optimism

88 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

estimating tasks he or she is responsible for.440 Consequently, HARVEY recommends
that someone other than the person who is responsible for task completion should
estimate the working time.441

3.1.3.4 Productivity Measurement

In software development projects, costs are largely determined by working hours.
Accordingly, the total duration of a development project depends essentially on the
productivity of the developer team. In general, productivity describes the ratio of
outputs to inputs. Effort measured in time, e.g., man-month or man-year, represents
the input. Unfortunately, it is impossible to objectively quantify the output of a soft-
ware development project.442 Quantitative measures that are typically used to de-
scribe the output of a software project are Lines of Code, Function Points or variants
of FP.443 All of these metrics show insufficiencies within the context of productivity
measurement.

As discussed in Section 2.2.1, Lines of Code vary with programming languages and
the extent of automatic code generation.444 Hence, it might be impossible to compare
estimations or merge empirical data from different projects. Additionally, an inexpe-
rienced developer, who writes confusing, complicated, and error-prone code, tends to
produce much more Lines of Code than an experienced developer. A LOC-oriented
productivity measure promotes bad programming styles, because as they appear to be
more productive.445

Function Points also reflect the size of a software system based on its functional re-
quirements.446 However, the method is criticized for its oversimplification of compo-
nent and complexity types, its choice of weights, and the inadequate consideration of
internal complexity, for example, based on difficult algorithms.447

In the past, several studies described statistical relationships between effort, Lines of
Code, and Function Points. ALBRECHT and GAFFNEY found that Lines of Code and
Function Points strongly correlate.448 Other studies, for example, by DOLADO and

440 JORGENSEN (2004).
441 HARVEY (2001); JORGENSEN (2004).
442 PREMRAJ et al. (2005).
443 PREMRAJ et al. (2005).
444 MATSON et al. (1994). The terms Lines of Code (LOC) and Source Lines of Code (SLOC) are

equivalent and can both be found in literature. KLOC means one thousand (kilo) lines of code.
445 CHATMAN (1995) gives three simple code examples which are semantically identical but have

different lines of code.
446 ALBRECHT (1979). See Section 2.2.2.
447 SYMONS (1988).
448 ALBRECHT, GAFFNEY JR (1983).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 89

KEMERER, support their findings.449 According to MATSON et al., effort measured in
working time has a log-linear relationship with size measured in Function Points.450
Finally, as discussed in Section 2.2.2.2, the technique of backfiring allows converting
Function Points into Lines of Code.451

3.1.3.5 Productivity Studies

MAXWELL and FORSELIUS present a study on software development productivity that
is based on the Finish Experience Database.452 Although the study was published in
2000, the empirical data used in this study is restricted to projects that commenced
before 1994.453 This subsample comprised 206 software projects from 26 companies
in Finland. In order to measure productivity, MAXWELL and FORSELIUS use the total
effort in working hours as the input variable and Function Points as the output varia-
ble.454 Additionally, lots of other factors (classification variables), e.g., programming
language, hardware platform, business sector, and development model, have been
tested for their impact on productivity. The statistical analysis shows that productivi-
ty (FP/hour) is highest in the manufacturing (0.337) and the retail sector (0.253).
Conversely, the banking and insurance sectors show the lowest productivity
(0.116).455 The analysis of the classification variables shows that “Company” and
“Business sector” have the highest impacts on productivity variance (see Fig. 3.7).
Interestingly, the variables “Programming language” and “CASE tools” did not sig-
nificantly account for productivity variance.456

449 DOLADO (1997); KEMERER (1987).
450 MATSON et al. (1994).
451 BOEHM et al. (2000b).
452 MAXWELL, FORSELIUS (2000).
453 The article does not explicitly specify which projects have been taken into account. However, the

description of the considered variables gives the required hint (Table 1; p. 81). The variable
YSTART represents the start year of a project. Its values range from 1978 to 1994. This is con-
firmed by PREMRAJ et al. (2004).

454 The Finish Experience Database uses the Experience 2.0 method – a variant of the Function
Point Analysis - to calculate Function Points. This method takes algorithms into account. Addi-
tionally, requirements are classified by five instead of three levels of difficulty.

455 MAXWELL, FORSELIUS (2000).
456 MAXWELL, FORSELIUS (2000). CASE (abbr.): Computer-aided Software Engineering.

90 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

Fig. 3.7: Impact of classification variables on productivity variance prior to 1997457

The study’s most interesting finding is that productivity significantly differs across
companies. Unfortunately, this factor is black-boxed from the study’s perspective.
However, since factors like programming language, database type, and development
model can only explain little productivity variance, there must be other company-
specific factors that account for different productivity levels. The most obvious fac-
tor that was not used as a classification variable in the study refers to those who pro-
duce the software: the developers.

In 2004, PREMRAJ et al. published a second study based on the Finish Experience
Database.458 In contrast to the study discussed before, development projects prior to
1997 have been excluded from the analysis. After a further removal of outliers, the
study comprises 305 projects that have been completed between 1997 and 2004.
Therefore, PREMRAJ et al. were able to compare their results with the results of the
previous study.459

The latest study identified the Banking and Insurance sectors as most productive
(0.538 and 0.230 FP/hour). PREMRAJ et al. assume that investments into new archi-
tectures, integrated systems, and process improvements during the early 1990s have
paid off for these sectors. Conversely, Manufacturing and Retail have not moved
from separated applications to integrated ERP systems until the late 1990s.460 At that
time, the productivity of these sectors has dropped by 50% and even 78% (see Fig.
3.8).

457 MAXWELL, FORSELIUS (2000).
458 PREMRAJ et al. (2004).
459 MAXWELL, FORSELIUS (2000).
460 ERP (abbr.): Enterprise Resource Planning.

3%

4%

4%

6%

12%

13%

13%

19%

36%

45%

0% 10% 20% 30% 40% 50%

Development model

Application type

DBMS architecture

User interface

Centralization of database

DBMS tools

Hardware platform

Operating system

Business sector

Company

Productivity Variance

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 91

Fig. 3.8: Comparison of average productivity across business sectors and studies461

The impact of individual factors on productivity has changed between the two stud-
ies. In the latest study, the Business Sector showed the highest impact, followed by
Company, Programming Language and CASE Tools (see Fig. 3.9).462 Additionally,
in comparison to MAXWELL and FORSELIUS, factors of the latest study could explain
productivity variance more accurately. Business Sector and Company determined
more than 75% of variance. In the former study, these factors could explain less than
50% of productivity variance (see Fig. 3.7).

Fig. 3.9: Impact of classification variables on productivity variance after 1997463

461 PREMRAJ et al. (2004).
462 PREMRAJ et al. (2004).
463 The figure is based on the data of Table 1 in PREMRAJ et al. (2004).

0,116 0,116

0,337

0,232

0,538

0,230

0,150

0,056

0,000

0,100

0,200

0,300

0,400

0,500

0,600

Banking Insurance Manufacturing Retail & Wholesale

Fu
nc

tio
n

Po
in

ts
 p

er
 H

ou
r

Before 1997

After 1997

7,0%

10,3%

24,5%

29,6%

36,9%

41,1%

77,4%

85,1%

0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0%

Product type

Hardware platform

Project mgmt. tools

Techniques & Methods

CASE tools

Language

Company

Business sector

Productivity Variance

92 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

3.1.3.6 Productivity over Time

In a systematic review of software development cost estimation studies, JORGENSEN
and SHEPPERD found that only a small number of researches show a long-term inter-
est in software cost estimation. Lots of authors have a short-term interest in this top-
ic, for example, as part of a PhD.464 Accordingly, long-term productivity studies in
the field of software development are rare.

In a study of “CMM Level 5” projects, AGRAWAL and CHARI give an overview of
past research on development effort, software quality, and cycle time.465 Some of the-
se studies use effort as the dependent variable and size (measured in LOC or FP) as
the independent variable (see Tab. 3.3). However, these studies either cover short
time periods, disregard longitudinal productivity analyses, or they are based on a low
number of observations. AGRAWAL and CHARI conclude that there is a need to reex-
amine the relationship between development outcomes and the major factors of in-
fluence.466 They argue that past studies have become out-of-date due to various tech-
nological innovations and new best practices. However, the empirical data provided
by AGRAWAL and CHARI refers to 34 projects that have been run between 1998 and
2004. Thus, this study once more does not focus on long-term productivity.

Tab. 3.3: Previous studies of cost estimation467

Study Years Number of
observations

Dependent
variable

Independent
variable

KEMERER468 1981 - 1987 15 Effort Size

BANKER and KEMERER469 1970 - 1980 16-63 Effort SLOC

MUKHOPADHYAY et al.470 1981 - 1987 15 Effort Function
Counts

MATSON et al.471 - 1994 104 Effort Size (FP)

MAXWELL et al.472 1988 - 1999 108 Effort Size

BOEHM et al.473 - 1998 161 Effort Size

HARTER et al.474 1993 - 1998 30 Effort Size

464 JORGENSEN, SHEPPERD (2007).
465 AGRAWAL, CHARI (2007). CMM (abbr.): Capability Maturity Model.
466 AGRAWAL, CHARI (2007).
467 AGRAWAL, CHARI (2007).
468 KEMERER (1987).
469 BANKER, KEMERER (1989).
470 MUKHOPADHYAY et al. (1992).
471 MATSON et al. (1994).
472 MAXWELL et al. (1996).
473 BOEHM et al. (2000b).
474 HARTER et al. (2000).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 93

As a rare example, PREMRAJ et al. published an empirical, longitudinal analysis of
software productivity in 2005.475 Their analysis is based on 622 projects that were
run between 1978 and 2003. Approximately 7% of the projects are maintenance pro-
jects. The empirical data is once again taken from the Finish Experience Database.
After the removal of suspect values and extreme outliers, 602 projects remained in
the edited dataset. A basic summary of the edited dataset is given in Tab. 3.4.

Tab. 3.4: Basic summary of the edited dataset used by PREMRAJ et al.476

Variable Mean Median Min Max

Project Size (FPs) 543 329 6 5,060

Effort (person hrs) 3,967 1,789 55 63,694

Productivity477 0.21 0.16 0.034 0.92

In order to give a rough overview of how productivity changed over time, PREMRAJ
et al. divided the sample into two subsamples, one containing projects from 1978 to
1994 (17 years) and one containing projects from 1997 to 2003 (7 years). Some basic
information of these two samples is given in Tab. 3.5. As presented before, the first
subsample has already been analyzed by MAXWELL and FORSELIUS.478 The compari-
son of these two subsamples shows a productivity increase of approx. 33%.

Tab. 3.5: Productivity comparison of 1978-1994 and 1997-2003 by PREMRAJ et al.479

 Dataset 1 Dataset 2

Project start dates 1978 – 1994 1997 – 2003

Number of companies 26 17

Number of projects 206 401

Project sizes (FPs) 33 – 3,375 27 – 5,060

Productivity FPhr-1 0.177 0.233

PREMRAJ et al. advice against taking the identified productivity increase of 33% for
granted, since there are notable differences between the two samples. First, the dis-
tribution of projects between business sectors is not constant. Especially, the insur-
ance sector has grown notably. Second, project size is continuously declining over
time. The figures presented by PREMRAJ et al. suggest that the average project size

475 PREMRAJ et al. (2005).
476 PREMRAJ et al. (2005).
477 The figures are given as-is in PREMRAJ et al. (2005): “Effort is recorded in person hours and raw

productivity is defined as the ratio of size to effort, i.e. FPs per hour.” However, it is not clear
how PREMRAJ et al. (2005) calculated the presented productivity figures. For example, 5,060 di-
vided by 63,694 is 0.079 which is not 0.92 (FPhr-1).

478 MAXWELL, FORSELIUS (2000).
479 PREMRAJ et al. (2005).

94 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

dropped from 1,000 Function Points in 1978 below 500 Function Points in 2003.
Third, maintenance projects (approx. 42) can only be found in the second dataset.480

On the basis of a visual inspection of the regression plot, PREMRAJ et al. conclude
that productivity has improved over time. They also identified a short deterioration of
productivity during the mid-1990s. Further analyses showed that there is no signifi-
cation difference between New Development and Maintenance projects in terms of
productivity. However, Maintenance projects showed significant economies of scale.

Finally, PREMRAJ et al. identified Company, Business sector, Year, and Hardware as
the most significant factors in explaining productivity (see Tab. 3.6). It has to be not-
ed that Process Model has been removed from the list of explaining factors, mainly
because this variable had lots of different values with many of them having a small
number of observations. Moreover, a Chi-square test of Process Model and Company
suggested a dependency between these two factors.

Tab. 3.6: Productivity factors identified by PREMRAJ et al.481

Variable Percent of variance
explained

Company 26.2%

Business sector 11.7%

Year 8.4%

Hardware 5.6%

Another promising research project on software productivity analysis is described by
LIEBCHEN and SHEPPERD.482 Their analysis is based on a dataset containing 25,000
projects of one company that is developing software solutions for numerous business
sectors. After data cleaning, the dataset still comprises 1,413 finished projects that
were commenced since 1990. However, there is only one paper on this research pro-
ject published in 2005. At that time, the research was in progress and this particular
publication merely outlines the research project.483 Unfortunately, there is still no
publication that provides final results. One reason might be that the investigated
company has revoked the right to use the data for scientific publications. LIEBCHEN
and SHEPPERD already discussed this risk in their paper.484

480 PREMRAJ et al. (2005).
481 PREMRAJ et al. (2005).
482 LIEBCHEN, SHEPPERD (2005).
483 LIEBCHEN, SHEPPERD (2005).
484 LIEBCHEN, SHEPPERD (2005).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 95

3.1.3.7 Individual Differences

Although previous research has revealed significant differences in terms of produc-
tivity and programming performance between individuals, emphasizing developer
skills is fairly new in the field of software development.485 In a study published in
1968, SACKMAN et al. found productivity differences of up to 28:1.486 Likewise,
SCHWARTZ wrote: “Within a group of programmers, there may be an order of mag-
nitude difference in capability.”487 In the 1970s, BOEHM characterized productivity
variations of 5:1 between individuals as common.488 In a publication on controlled
experiments in program testing and code walkthroughs, MYERS described one of his
observations:

“There is a tremendous amount of variability in the individual re-
sults. [...] The variability among student programmers is generally
well known, but the high variability among these highly experi-
enced subjects was somewhat surprising.”489

As presented is Section 2.3.1.2, the Constructive Cost Model also takes different lev-
els of skill and experience into account.490 Due to the mathematical formulation of
the model, these levels can have a high impact on productivity and effort. BOEHM
demonstrates that – all other factors being equal – a 90th-percentile team can be four
times more productive than a 15th-percentile team.491

A detailed literature review on people and organizations in software production is
given by NASH and REDWINE.492 They focus on the issue of how best to select, train,
organize, and manage people in view of the increasing demand for productive people
in the context of software development. LAUGHERY JR. and LAUGHERY SR. present a
literature review focusing on human factors in software engineering.493 BEECHAM et
al. present a systematic literature review on motivation.494

Similarly, CURTIS reviews the psychological research on software engineering that
has been performed since the late 1960s.495 In this review, he criticizes, for example,

485 GLASS (2002).
486 SACKMAN et al. (1968). Criticism on SACKMAN’s analysis, especially on the 28:1 ratio, is given

by DICKEY (1981).
487 SCHWARTZ (1968), p. 110.
488 BOEHM (1975).
489 MYERS (1978), p. 763.
490 BOEHM (1981).
491 BOEHM (1981).
492 NASH, REDWINE (1988).
493 LAUGHERY JR., LAUGHERY SR. (1985).
494 BEECHAM et al. (2008).
495 CURTIS (1984).

96 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

that “the individual differences model has never been applied to programming as
effectively as it should have been.”496 CURTIS provides a set of individual character-
istics, which are supposed to have a major impact on programming performance (see
Fig. 3.10).

Fig. 3.10: Factors affecting individual programming performance497

The individual differences paradigm is frequently used in psychological studies. It is
motivated by the idea that:

“Every man is in certain respects a) like all other men, b) like some
other men, and c) like no other men.”498

More often than not, statistical analyses implicitly assume individual differences be-
tween study participants to be errors. For that reason, the computation and usage of
averages for a group of different individuals might be mistaken.499 Concerning IS
research, the individual difference model has been previously adopted to IS studies,
for example, by ZMUD as well as AGARWAL and PRASAD.500 ZMUD used the individ-
ual differences model to analyze MIS success.501 He concludes that:

“Individual differences do exert a major force in determining MIS
success. It is just as apparent, however, that much remains un-
known regarding the specific relationships involved and the rela-
tive importance of individual differences when contrasted with con-
textual factors.”502

496 CURTIS (1984) p. 98.
497 CURTIS (1984).
498 KLUCKHOHN, MURRAY (1953), p. 53.
499 E.g., STERNBERG, BERG (1992), p. 45.
500 AGARWAL, PRASAD (1999); ZMUD (1979).
501 ZMUD (1979), p. 975.
502 ZMUD (1979), p. 975.

Intellectual Capability

Knowledge Base

Cognitive Style

Motivational Level

Personality Characteristics

Behavioral Characteristics

Programming Performane

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 97

Another related literature review is given by BARTOL and MARTIN who discuss the
management of information systems personnel.503 They highlight the importance of
human resources and the quality of personnel in particular.

Although we can find specific research that has paid attention to topics like individu-
al differences and team skill in the past, these topics take a backseat in the broad field
of software engineering.504 Correspondingly, BEAVER and SCHIAVONE wrote:

“Despite the intuitive relationship between development team skill
and software product quality, the body of software engineering re-
search is surprisingly sparse in its coverage of the topic. […] very
few software engineering models have attempted to capture devel-
opment team skill as a driving cause of the success of software pro-
jects […].”505

Analogously, BACH argues that far too much is written about processes and methods
in the context of software development.506 In his opinion, far too little attention is
paid to those who write the software. BACH comments this imbalance as follows:

“It’s relatively easy to talk about methods, especially if we can la-
bel them. More difficult to objectify is the notion of skill. Yet skill is
the core issue. Any nontrivial method, performed without skill, may
cause more harm than good. […] In software projects, skill makes
the world go around.”507

HE et al. studied the related phenomenon of Team Cognition.508 The setting of their
study implicitly addressed individual differences as well:

“The mere presence of individuals with diverse knowledge is an in-
sufficient condition for a software project team to achieve quality
performance. The potential value of a team can only be realized if
team members utilize their unique expertise in conjunction with the
knowledge of other members.”509

Besides individual differences manifesting in different skills and capabilities, indi-
vidual personalities can also have an impact on development performance. Corre-
spondingly, HOWARD explains:

503 BARTOL, MARTIN (1982).
504 BEAVER, SCHIAVONE (2006).
505 BEAVER, SCHIAVONE (2006), p. 1.
506 BACH (1995).
507 BACH (1999), p. 149.
508 HE et al. (2007).
509 HE et al. (2007), p. 262.

98 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

“People work in different ways dictated by their personalities.
They develop individual problem solving habits and ways of think-
ing about and understanding the requirements of a task. Different
types of problems appeal to different mentalities.”510

Accordingly, different work personalities can be categorized as Deliverers, Prototyp-
ers, Perfectors, Producers, Fixers, Convergers, and Divergers.511 Each personality is
characterized by particular, partially exclusive properties, which can be beneficial or
disadvantageous depending on the situation. HOWARD argues that

“Understanding developer personality characteristics can help
managers put together the right team. […] If you get the right peo-
ple on the project, you are more likely to achieve the right out-
come.”512

Lastly, only a few works try to quantify skill, for example, by establishing an ordinal
scale measurement.513 The NASA uses an enterprise-wide Competence Measurement
System (CMS) as a framework to quantify knowledge, skill, and experience.514 The
CMS uses an ordinal 4-tier scale to assess the capabilities of employees. Likewise,
the Constructive Cost Model uses an ordinal 6-tier scale to define personnel-specific
effort multipliers.515 In the context of agile development, BOEHM and TURNER pre-
sent a level-based classification of developer skills (see Tab. 3.7).516

Tab. 3.7: Levels of software method understanding and use517

Level Characteristics

3 Able to revise a method, breaking its rules to fit an unprecedented new situation.

2 Able to tailor a method to fit a precedented new situation.

1A With training, able to perform discretionary method steps such as sizing stories to fit in-
crements, composing patterns, compound refactoring, or complex COTS518 integration.
With experience, can become Level 2.

1B With training, able to perform procedural method steps such as coding a simple method,
simple refactoring, following coding standards and CM519 procedures, or running tests.
With experience, can master some Level 1A skills.

-1 May have technical skills, but unable or unwilling to collaborate or follow shared methods.

510 HOWARD (2001), p. 23.
511 HOWARD (2001).
512 HOWARD (2001), p. 24.
513 BEAVER, SCHIAVONE (2006).
514 NASA OFFICE OF HUMAN CAPITAL (2006).
 NASA (abbr.): National Aeronautics and Space Administration.
515 BOEHM (1981).
516 BOEHM, TURNER (2003).
517 BOEHM, TURNER (2003).
518 COTS (abbr.): Commercial off-the-Shelf (Software).
519 CM (abbr.): Change Management.

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 99

3.1.4 Discussion

In view of the presented problems and advancements, the discipline of software en-
gineering has matured, but it is still facing difficulties. Nevertheless, it does not seem
appropriate to speak of a software crisis any longer. However, software development
is still a challenging task and there are many ways to escalate a project.

Whether or not the reliability of today’s software is sufficient, depends on the appli-
cation domain. Unreliable software in a critical environment might cause a catastro-
phe. In other domains, it is sufficient to correct remaining errors in the maintenance
phase. Customer involvement should help preventing conceptual errors.

Management control has changed, but is still feasible, effective, and might have be-
come much more sophisticated. However, project performance is not the result of
detailed upfront planning and pedantic schedules. Instead, performance depends on
the skills and talents of individual staff members. Accordingly, a company should
take care of its developer staff. The organizational culture should promote
knowledge exchange as well as permanent learning.

Only little research is available that addresses the evolution of software development
productivity over time. There is evidence, however, that productivity has slightly
increased in the past. Nevertheless, two out of three projects exceed budgets or
schedules. Although the average cost overrun is only 30%, these figures show that
the risk of cost escalation still exists.

Recent research recommends emphasizing the people factor in development projects.
Previous studies have found considerable productivity differences between individu-
al developers. Typical productivity ratios discussed in the literature are 10:1 or 5:1.
The individual differences paradigm addresses the issue of different skills and capa-
bilities of individuals. So far, only little research has adopted the individual differ-
ences paradigm to IS research. However, according to the recent literature and prac-
tice, it seems that the viewpoint on people has changed since the late 1960s. While
industry and research called for a more industrialized discipline due to their dissatis-
faction with software development as being the craftsmanship of skilled individuals,
today’s development methodologies explicitly put the focus back on this craftsman-
ship. What seemed wrong 40 years ago is perceived as a major success factor today.

100 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

3.2 Economies of Software Development

After the discussion of the software crisis from today's point of view, this subsection
focuses on the economies of software development in order to investigate the oppor-
tunities and limitations of industrializing software development.

In discussions on the potential of industrializing software development, the process
of developing software might be associated and compared with production process-
es.520 In such discussions, industrial production is used to describe where software
development is supposed to move towards. Industrial production offers standardiza-
tion, integration, off-the-shelf components, and process automation.521 One of the
major economic drivers for industrialization is taking advantage of economies of
scale, typically in the form of fixed costs degression.522 However, it is questionable if
the analogy of software development and industrial production is appropriate at
all.523

In production theory, the term production refers to the conversion of inputs into out-
puts.524 The definition of production includes all activities that are associated with
this conversion, for example, product design, packaging, and shipping. Conversely,
manufacturing refers to the specific act of physically creating goods.525 By defini-
tion, the output of production is not restricted to tangible goods, that is, services as
intangible goods are also comprised by production theory.526 Among other factors,
production systems differ in the type of repetition. The major repetition types are job
and mass production.527 Taking these characteristics into account, software develop-
ment can be interpreted as a form of production, and, thus, it can be subsumed under
production theory. Software development is a service that creates an intangible good
with effort as input and the software product as output. However, it is still to clarify,
whether software development can be associated with job or mass production.

3.2.1 Economies of Scale in Traditional Industries

It seems that, when calling for the industrialism of software development, we implic-
itly refer to the mass production of tangible goods, since this special case of produc-
tion theory is an illustrative example for large economies of scale. Companies that

520 COX (1990); GREENFIELD, SHORT (2003); KILIAN-KEHR et al. (2007).
521 GREENFIELD, SHORT (2003), p. 17.
522 CORSTEN (2007).
523 GREENFIELD, SHORT (2003).
524 SCHNEEWEIß (1999).
525 SCHNEEWEIß (1999).
526 FANDEL, BLAGA (2004); HILL (1977); HOWELLS (2004); SCHNEEWEIß (1999).
527 SCHNEEWEIß (1999).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 101

produce mass commodities can easily benefit from scale effects in all stages of pro-
duction. Material procurement takes advantage of large purchasing volumes by ne-
gotiating volume-based discounts, which reduces the purchase price per unit. Manu-
facturing benefits from machine production, continuous flow production, and auto-
mated production. Investments in new and efficient machinery as well as experience
curve effects reduce production costs per unit. Similarly, packaging and palletizing
can also be automated. Finally, goods are shipped by a third party logistics provider
or, alternatively, by the company’s own truck fleet. In both cases, high order volumes
reduce freight costs per unit.

The illustrated example, however, depends on a physical material flow and repetitive
tasks. Before a product is mass produced, both the product and the corresponding
production process must be developed and designed.528 Depending on the product,
the step of product development can be differentiated, whether the product refers to
subjective or objective newness.529 The type of newness depends on whether the
product is completely new to the market or new to the company. If the product is
new to the market, the product must be completely designed from scratch. Neverthe-
less, product development must provide a product prototype and its production pro-
cess design. From an abstract viewpoint, the step of manufacturing is then responsi-
ble for duplicating this prototype.

Product development is generally subordinated to an organization’s R&D. ZENGER
presents a study that empirically examines diseconomies of scale in R&D.530 The
study is based on responses of 912 current and former engineers who were asked via
questionnaires. ZENGER found that the performance in R&D depends on the company
size. Large companies generally tend to be affected by organizational diseconomies
of scale. The findings of ZENGER are consistent with former research. Different re-
search projects of different decades found that small and medium-size companies
conduct R&D more efficiently than large companies.531 This gives evidence that
product development as part of R&D represents a special phase of production in
which the economies of scale of large companies turn into diseconomies.

528 CORSTEN (2007).
529 CORSTEN (2007).
530 ZENGER (1994).
531 E.g., COOPER (1964); MANSFIELD et al. (1971); SCHERER (1965); SCHMOOKLER (1972); YEAPLE

(1992).

102 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

3.2.2 Economies of Scale in Software Development

As mentioned before, software development can be interpreted as a form of produc-
tion. Although there are some mutual characteristics with industrial mass production,
software development is different in one important aspect. In opposition to tangible
goods, software does not require the physical act of duplication. Software is simply
copied bit by bit. This process is fast and free of cost.532 Software development has
no typical manufacturing phase which aims at duplicating a prototype. Consequently,
software development neither refers to mass production nor to job production. In-
stead, the product prototype that results from the product development phase repre-
sents the final good in the context of software development. Accordingly, software
development is not comparable to mass production. It is rather analogous to product
development, since both disciplines face subjective or objective newness and both
aim at creating new products.

This suggests that the illustrative and inspiring examples for economies of scale in
industrial production do not apply for software development. Moreover, the results of
previous research on R&D give evidence that it is more likely to face organizational
diseconomies of scale in development processes (see Fig. 3.11).

Fig. 3.11: Comparison of industrial mass production and software development

532 Potential costs for storage media (e.g., CD and DVD) are part of the distribution, not the duplica-

tion process.

Product
Development

Product
Development

In
du

st
ria

l
M

as
s

Pr
od

uc
tio

n
So

ftw
ar

e
D

ev
el

op
m

en
t

Manufacturing DistributionMaterial
Procurement

Distribution

Diseconomies of Scale Economies of Scale

Final
Software
Product

Product
Prototype

Production
Process
Design

Input

O
ut

pu
t

O
ut

pu
t

Input

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 103

Explicit research on economies of scale in software development has found contro-
versial results. The analysis of the Finish Experience Database (602 projects) con-
ducted by PREMRAJ et al. found a constant return to scale.533 BANKER and KEMERER
found that the return to scale depends on the project size allowing local scale econo-
mies as well as diseconomies.534 They present a technique to identify the most pro-
ductive scale size for companies. A later study by BANKER et al. based on eleven
datasets confirmed the existence of both economies and diseconomies of scale in
software development.535 Commonly, such studies use the following log-linear mod-
el for the identification of economies or diseconomies of scale:536

()by a x= Eq. 3.1

In this equation, y represents the input, usually effort measured in working hours, and
x refers to the project size, usually measured in LOC or Function Points. In order to
allow regression techniques, both sides of the equation are logarithmized:

ln() ln()y a b x= + Eq. 3.2

This equation can be directly used in linear regression models in order to estimate the
factors a and b. If the estimated exponent value b is less than 1, the regression model
has identified economies of scale. Conversely, if b is greater than 1, the regression
model has identified diseconomies of scale. For example, the study of PREMRAJ et al.
found b=0.9614 for New Development Projects.537 However, statistical tests could
not confirm that the exponent is significantly different from 1, and, accordingly, the
study found a constant return to scale.

It has to be pointed out that the conclusions of the aforementioned studies result from
pure quantitative analyses. None of these studies qualitatively examines in which
way a particular development technique affects the return to scale. Thus, it is im-
portant to qualitatively discover techniques that contribute to the return to scale. For
industrial production, it is simple to imagine how economies of scale are achieved:
Investing in more efficient machinery increases fixed costs while decreasing variable
costs per unit. In opposition, the question which techniques account for economies of
scale in software development is still unanswered.

533 PREMRAJ et al. (2005).
534 BANKER, KEMERER (1989).
535 BANKER et al. (1994).
536 BANKER et al. (1994); BANKER, KEMERER (1989); PREMRAJ et al. (2005).
537 PREMRAJ et al. (2005).

104 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

3.2.3 Economies of Scope in Software Development

GREENFIELD and SHORT give an introduction to software factories, which comprise
particular techniques in order to raise cost-effectiveness.538 They argue that instead
of calling for economies of scale, software development should look for economies of
scope. Their view on the difference of economies of scale and scope when applied to
software development reads as follows:

“Economies of scale arise in the production of software, as in the
production of physical goods, when multiple copies of an initial
implementation are produced mechanically from prototypes devel-
oped by engineers. Economies of scope arise when the same styles,
patterns and processes are used to develop multiple related de-
signs, and again when the same languages, libraries and tools are
used to develop the initial implementations of those designs.”539

Before discussing which recent innovations are enablers for software factories,
GREENFIELD and SHORT describe their vision of software factories in the future.540
They suggest that 70% of a software product will be based on components including
component assembly, customization, adaption, and extension. The remaining 30%
are writing new code. Components will be delivered in software supply chains,
which emerge with standard product types. Besides components, developers will use
domain-specific languages (DSL) instead of general purpose languages in order to
accelerate development. Moreover, mass customization will move into software de-
velopment, allowing the on-demand customization of product variants. Finally, or-
ganizational change will encourage developers to think more about assembly instead
of writing new code.

GREENFIELD and SHORT introduce three dimensions, i.e., abstraction, granularity,
and specificity, in order to categorize critical innovations and to compare them with
established techniques (see Fig. 3.12).541

538 GREENFIELD, SHORT (2003).
539 GREENFIELD, SHORT (2003), p. 17.
540 GREENFIELD, SHORT (2003).
541 GREENFIELD, SHORT (2003).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 105

Fig. 3.12: Dimensions to classify critical innovations542

For each dimension, GREENFIELD and SHORT describe the technological status quo,
point out its major drawbacks, and present promising innovative techniques as its
successors. Their point of view is briefly outlined in the following:

• First, one of the most used contemporary techniques of abstraction
is Object-Oriented Design and Analysis (OOD&A). OOD&A,
however, incorrectly assumes that the solution structure should
match the problem structure.543 Other drawbacks of OOD&A are
the promotion of top-down development and the emphasis on visu-
alization techniques. Instead of just visualizing information cap-
tured by models, Model-driven Development (MDD) aims at pro-
cessing this information.544 MDD emphasizes the transformation of
models as well as the automatic code generation based on formal
specifications and domain-specific languages.545 These are utilized
to narrow the gap between high abstraction and implementation.
This gap can also be bridged by frameworks that raise the abstrac-
tion on the implementation level546 or by pattern languages that re-
duce the solution complexity.547

542 GREENFIELD, SHORT (2003).
543 COPLIEN (1999).
544 SCHMIDT (2006).
545 VAN DEURSEN et al. (2000).
546 E.g., BIGGELEBEN (2007).
547 GREENFIELD, SHORT (2003).

Specificity

Granularity

Abstraction

single use reusable

coarse grain

concrete

abstract

From executables to
requirements

From lines of code to
web services

From general purpose
to domain specific

106 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

• Second, software factories are supposed to increase the granularity
of software constructs. Instead of creating 100% of a software sys-
tem by manually writing new code, component-based development
promotes the utilization of pre-built, commercial, off-the-shelf
components.548 In the past, however, the component market suf-
fered from insufficient platform technology, which could not pro-
vide an environment for efficient, secure, and scalable interaction
of large grained components.549 This drawback might be overcome
by web service technology and the corresponding idea to provide
Software as a Service (SAAS).550 Since the infrastructure, e.g.,
hardware, operating systems, application frameworks, is configured
and maintained by the service provider, the service consumer does
not have to take care of these aspects. In comparison to the 1990’s
idea of pre-built components, the integration of SAAS is supposed
to cause significantly less effort. However, GREENFIELD and SHORT

point out that developers must still acquire fundamental knowledge
of the integrated service:

“It is not enough to understand how to invoke a web service com-
ponent. For realistic applications, you also need to know how to
perform a sequence of interactions.”551

• Third, specificity is supposed to have the strongest economic im-
pact on software development. In the past, the software industry
has stayed at low levels of specificity. Due to the economics of
software development, software products favor generality in order
to match as many application domains as possible.552 With regard
to economies of scope, however, the successful reuse of code, sys-
tems, and components requires a higher degree of specialization,
e.g., by specializing in business sectors.

Summarizing the above, the presented vision of software factories is based on so-
phisticated process models like MDD, the utilization of application frameworks, do-
main-specific languages, pattern languages, the integration of pre-built components
and SAAS, as well as a high degree of specialization. What these techniques have in

548 CHEESMAN, DANIELS (2000); D'SOUZA, WILLS (1998); GREENFIELD, SHORT (2003).
549 GREENFIELD, SHORT (2003).
550 BIGGELEBEN et al. (2009b); SÄÄKSJÄRVI et al. (2005); TURNER et al. (2003).
551 GREENFIELD, SHORT (2003), p. 24.
552 GREENFIELD, SHORT (2003).

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 107

common is the pursuit of economies of scope. However, before realizing scope ef-
fects, software companies must invest in the education of staff in order to raise capa-
bility and competence. Especially, specialization requires investments in domain
knowledge. This again puts the spotlight on people.

3.2.4 Discussion

In comparison to traditional industry, software development is subject to a different
form of industrialization. Economies of scale can only be realized during the replica-
tion of software, i.e., the distribution of software products. Scale effects do not apply
for the development of software products. This point of view is also hidden in
BROOKS’ comments on software complexity:

“Software entities are more complex for their size than perhaps
any other human construct, because no two parts are alike […]. If
they are, we make the two parts into one.”553

More explicitly, BROOKS argues:

“A scaling-up of a software entity is not merely a repetition of the
same elements in larger size; it is necessarily an increase in the
number of different elements. In most cases, the elements interact
with each other in some nonlinear fashion, and the complexity of
the whole increases much more than linearly.”554

Any piece of code is – or at least should be – unique. This idea is also the fundament
of the DRY (“Don’t Repeat Yourself”) programming principle.555

In contrast to scale effects, economies of scope are attainable. This field, however, is
not well understood.556 The vision of software factories gives an impression of tech-
niques that might prepare the ground for future software development. In general,
economies of scope, e.g., realized by specialization, aim at the reduction of develop-
ment costs. This cost reduction implicates an increase of the productivity level. Addi-
tionally, the realization of economies of scope might suppress organizational dise-
conomies of scale to a certain extent. Accordingly, as the absence of scale effects
prohibits exponential relations, the optimal theoretical relation of input to output is
linear.

553 BROOKS (1995b), p. 182.
554 BROOKS (1995b), p. 183.
555 HUNT, THOMAS (2000). See Section 5.1.4.1.
556 GREENFIELD, SHORT (2003).

108 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

Fig. 3.13 visualizes four representative input/output relations in the context of soft-
ware development. These relations can be explained by the evolution of an exempla-
ry software company. Case 1 (diagram A) describes the company at a low produc-
tivity level while facing organizational diseconomies of scale. After introducing
scope-oriented techniques, this company is able to suppress organizational disecon-
omies. This leads to a linear relation of input and output (case 2; diagram B). How-
ever, this company still starts projects from scratch. After raising staff capability and
introducing an application framework, the company is able to raise general produc-
tivity. Additionally, the company is able to start projects with application prototypes
spending almost no effort (positive y-axis intercept; case 3; diagram A). For com-
pleteness, case 4 (diagram B) describes an input/output relation based on economies
of scale, which are regarded as unachievable in software development.

Fig. 3.13: Typical input/output relations in software development

The utilization of scope-oriented techniques, however, is not effortless. It demands a
sophisticated understanding from developers. The vision of software factories gives
strong evidence that in order to introduce, integrate, and establish scope-oriented
techniques in development processes, companies must invest in specific capability.
Therefore, software companies can realize economies of scope neither instantly nor
by coincidence. Scope effects are rather a long-term, strategic objective, which re-
quires organizational learning, explicit systematic staff training, as well as the right
allocation of developers.

3.3 Summary

Technological progress contributes to and changes software development. Progress
offers new artifacts, e.g., programming languages, frameworks, tools, or develop-

Input

O
ut

pu
t

Input

O
ut

pu
t

Diagram A Diagram B

β1

β2

Case 3

Case 1

Case 2

Case 4

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 109

ment paradigms.557 These artifacts might speed up programming, or they offer com-
pletely new ways of efficient problem solution. Yet, software developers still have to
combine, connect, customize, adjust, and orchestrate these artifacts. This is the crux
of software development:

New technology might reduce total effort and change software de-
velopment in one way or another. However, the software develop-
er’s profession is to focus on what is left. Software developers al-
ways have to address the remaining complexity and to solve the
remaining problems.

Accordingly, developers have to be aware of new technologies. They have to know
how to use them efficiently. The preceding technological progress suggests that
software development has become easier over time. This might be true for develop-
ers who are exceptionally talented and capable of applying each and every new tech-
nology. For less skilled developers, software development is still difficult. What
good are new development techniques, if developers do not know how to use them?

With respect to the individual differences paradigm, new technologies might even
widen the gap between bad and good developers, and might make matters worse.
This is why software development is more sociological than technological in nature.
Project managers must know who is capable of solving a particular problem effi-
ciently. Likewise, managers must decide about the right moment to introduce and
release new technologies. Although new technologies promise a reduction of effort
and risk, the opposite might be true in the short term, because developers need time
to learn and practice. A new technology is worthless without people who know how
to apply it successfully.

Since economies of scale do not apply for software development, software develop-
ment companies can only go for economies of scope in order to achieve a competi-
tive advantage. However, economies of scope make high demands on staff capabil-
ity. In view of that, software development has been, still is, and will be relying on the
craftsmanship of skilled individuals. Industrializing software development similar to
other engineering disciplines remains a wishful thinking.

According to the presented crux of software development, new technology might
accelerate software development, reduce risk, and/or help identifying conceptual

557 The term “artifact” is used with regard to the definition of HEVNER et al. (2004), p. 77: “IT

artifacts are broadly defined as constructs (vocabulary and symbols), models (abstractions and
representations), methods (algorithms and practices), and instantiations (implemented and pro-
totype systems)”. In this section, an artifact can be anything of which developers can benefit.

110 Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation

design flaws. This has two consequences for effort estimation: First, new technology
can reduce overall development effort. Technological progress, however, can only
have its full beneficial effect if developers are capable of successfully applying new
technologies. Second, the technological progress and the corresponding reduction of
overall development effort do not improve estimation accuracy, since effort estima-
tion must address the remaining complexity or development effort, respectively:

• The choice of development methodology, i.e., developing in se-
quential, iterative, or agile environments, determines development
costs. This is regarded as a company-specific influence. That is, the
choice has an impact on the general effort level, independent of a
particular project and its specific requirements. While it does not
improve estimation accuracy, it might help reducing project efforts
in general.

• Managers can also influence the general effort level. They can
promote quality, get the right people for projects, evaluate, choose,
and promote appropriate development tools, programming lan-
guages, and application frameworks. They can establish quality as-
surance and promote rigorous testing. Besides, they are responsible
for good project planning. Yet, these means are also regarded as in-
fluences on the general effort level, and, for that reason, they also
help reducing general project efforts.

• In opposition to the previous two arguments, the individual differ-
ences between developers are regarded to have a project-specific
impact on effort estimation. They help answering the essential
question of “Who does what?” The challenge and major focus of
effort estimation remains adequately estimating how long one de-
veloper or a one small team needs to complete a particular work
package.

Accordingly, effort estimation techniques must take into account the human aspects
of a development project. People are of utmost importance, and, consequently, their
individual capabilities must be considered by effort estimation:

“The final outcome of any [software development] effort is more a
function of who does the work than of how the work is done.”558

558 DEMARCO, LISTER (1987), p. 93.

Chapter 3: The Crux of Software Development and its Relationship to Effort Estimation 111

Motivated by the importance of the human aspects in software development projects,
an exploratory study was conducted which focuses on people and their individual
differences. This study addresses the question, whether it is possible to accurately
estimate working effort of individuals, when there are notable differences between
them. The design and results of the exploratory study as well as the gained insights
are presented in the next chapter.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 113

4 EXPLORATION AND QUANTITATIVE
ANALYSIS OF STUDENTS’ PROGRAMMING
PERFORMANCE

This chapter focuses on the programming capability and performance of students.
The purpose of this study is to explore, to what extent it is possible to estimate pro-
gramming effort of individuals. After introducing the exploratory study as a research
method and discussing the use of students as subjects in research studies, the empiri-
cal datasets as well as the corresponding data collection processes are described. In
contrast to real-world project data, the gained dataset contains development efforts
that are unaffected by estimates. Accordingly, the dataset allows analyzing estima-
tion accuracy in a setting that is characterized by independence of actual and estimat-
ed efforts. The strategy pursued during this exploratory study is outlined at the be-
ginning of Section 4.3.

4.1 Research Method

Generally, this exploratory study aims at gaining understanding of the situation, iden-
tifying interesting or controversial causal relationships, as well as getting insights
and inspirations for a potential theory construction. Following SEKARAN,

“An exploratory study is undertaken when not much is known
about the situation at hand, or no information is available on how
similar problem or research issues have been solved in the past. In
such cases, extensive preliminary work needs to be done to gain
familiarity with the phenomena in the situation, and understand
what is occurring, before we develop a model and set up a rigorous
design for comprehensive investigation. In essence, exploratory
studies are undertaken to better comprehend the nature of the
problem since very few studies might have been conducted in that
area. [...] When the data reveal some pattern regarding the phe-
nomena of interest, theories are developed and hypotheses formu-
lated for subsequent testing. [...] Exploratory studies are also nec-
essary when some facts are known, but more information is needed

114 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

for developing a viable theoretical framework. [...] In sum, explor-
atory studies are important for obtaining a good grasp of the phe-
nomena of interest and advancing knowledge through subsequent
theory building and hypothesis testing.”559

Likewise, BLESS et al. explain that

“The purpose of exploratory research is to gain a broad under-
standing of a situation, phenomenon, community or person. The
need of such a study arises from a lack of basic information in a
new area of interest. Most frequently, though, one must become
familiar with a situation in order to formulate a problem or devel-
op a hypothesis.”560

Exploratory studies can be classified as one of the following four types: 1) theory-
based exploration, 2) method-based exploration, 3) empirical-quantitative explora-
tion, or 4) empirical-qualitative exploration.561 According to its objective, the ex-
ploratory study conducted in this research is empirical-quantitative.562 Similar to
explanatory and confirmatory studies, this type of exploration uses empirical quanti-
tative datasets. The goal of an exploratory study, however, is neither explaining par-
ticular phenomena, nor testing hypotheses, but to derive new ideas or hypotheses
from the data.563 Besides common descriptive statistics, an approach utilizable for
empirical-quantitative exploration is Exploratory Data Analysis (EDA).564 In contrast
to Confirmatory Data Analysis, EDA can be used to discover structures, trends, and
patterns in quantitative data.565 Typical techniques of EDA are histograms, box plots,
stem-and-leaf plots, and scatter plots. Yet, a quantitative exploratory study is not

559 SEKARAN (2003), pp. 119-120.
560 BLESS et al. (2007), p. 47. Similar definitions of and motivations for exploratory studies are giv-

en, for example, by: KOTLER et al. (2006), p. 122: “The objective of exploratory research is to
gather preliminary information that will help define problems and suggest hypotheses.”
STEINBERG, STEINBERG (2005), p. 53: “When a study is exploratory, there may be little known
about the topic. The goal of exploratory research is to begin to develop an understanding of the
topic so that additional questions and hypotheses can be developed. Exploratory research is re-
search at the tip of an iceberg. In other words, the researcher is trying out something for the first
time.” BLANCHE et al. (2008), p. 44: “Exploratory studies are used to make preliminary investi-
gations into relatively unknown areas of research. They employ an open, flexible, and inductive
approach to research as they attempt to look for new insights into phenomena.”

561 BORTZ, DÖRING (2006).
562 The objective of this exploratory study is to analyze the development efforts invested by stu-

dents, and to explore, whether it is possible to accurately estimate working effort of these indi-
viduals, especially when there are notable differences between them. Accordingly, this study
conducts a quantitative analysis based on an empirical dataset, and, therefore, this exploratory
study belongs to the type of empirical-quantitative studies.

563 BORTZ, DÖRING (2006).
564 TUKEY (1977); TUKEY (1980).
565 BORTZ, DÖRING (2006).

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 115

limited to EDA. BORTZ and DÖRING argue that even tests of significance are not con-
flicting with exploratory studies.566

In this study, second semester students were used as subjects. All students attended a
second semester bachelor lecture for which they had to learn and practice SQL as
well as Python. Using students as subjects for experimental studies is common.567 A
recent study conducted by HE et al., for example, addressed the emergence and evo-
lution of team cognition in software project teams.568 156 undergraduate students,
who had to develop a relational database system, took part in this study. Concerning
using students as subjects, HE et al. conclude that

“The use of student subjects raises the possibility that findings may
not accurately reflect the behavior of software project teams work-
ing in a business organization. However, most prior studies share
this characteristic and there is evidence that students are good
proxies for ‘real-world’ people in many contexts.”569

Nevertheless, there is an ongoing debate in IS research, whether or not students can
be used as subjects for experiments.570 SJØBERG et al. conducted a survey of con-
trolled experiments in software engineering.571 They summarize:

“In total, 5,488 subjects took part in the 113 experiments investi-
gated in this survey. 87% were students and 9% were profession-
als. […] The number of participants per experiment ranges from
four to 266, with a mean value of 48.6. Students participated in 91
(81%) of the experiments, either alone or together with profession-
als and/or scientists, and professionals took part in 27 experiments
(24%). The use of professionals as subjects has been relatively sta-
ble over time. Undergraduates are used much more often than
graduate students. […] Interestingly, while seven articles describe
experiments using both students and professionals, only three of
them measure the difference in performance between the two
groups. In the first experiment, categorized as Software psycholo-
gy, three programming tasks were performed. For two of the tasks,
there was no difference between the groups, whereas, for the third
task, the professionals were significantly better. In the second ex-
periment, also in Software psychology, there was no difference. In

566 BORTZ, DÖRING (2006).
567 SJØBERG et al. (2005).
568 HE et al. (2007).
569 HE et al. (2007), p. 287.
570 E.g., RUNESON (2003); SJØBERG et al. (2005).
571 SJØBERG et al. (2005).

116 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

the third experiment, categorized as Maintenance process, the pro-
fessionals were significantly better.”572

Correspondingly, SJØBERG et al. conclude:

“There are good reasons for conducting experiments with students
as subjects, for example, for testing experimental design and initial
hypotheses, or for educational purposes. Depending on the actual
experiment, students may also be representative of jun-
ior/inexperienced professionals. However, the low proportion of
professionals used in software engineering experiments reduces
experimental realism, which in turn may inhibit the understanding
of industrial software processes and, consequently, technology
transfer from the research community to industry.”573

In opposition to the potential lack of realism, TICHY argues that

“Experiments with psychology students have often been criticized
for generalizing from students to the general population. University
students are not representative of the general population with re-
spect to a host of issues. Does the same criticism apply to experi-
ments with [computer science] students? I think computer science
students are much closer to the world of software professionals
than psychology students are to the general population. In particu-
lar, [computer science] graduate students are so close to profes-
sional status that the differences are marginal.”574

To summarize, using students as subjects for experiments is common practice within
the research community of software engineering.575 Yet, research studies that use
students as subjects in an experimental setting must be critically reviewed in order to
detect a potential lack of realism.576 As a result, an exploratory study bears the risk
that a theory based on its findings cannot be validated or easily gets falsified if it is
confronted with empirical content gained from software professionals or real-world
development projects.

572 SJØBERG et al. (2005), p. 738.
573 SJØBERG et al. (2005), p. 739.
574 TICHY (2000), p. 311.
575 SJØBERG et al. (2005).
576 RUNESON (2003); SJØBERG et al. (2005).

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 117

4.2 Data Collection and Pretesting

Since the winter semester of 2005/06, the Chair of Information Systems Engineering
(University of Frankfurt) has been providing a web-based e-learning platform nick-
named “Playgrounds” for students.577 The first version solely offered an SQL play-
ground based on the Microsoft SQL Server 2000. This playground allows students to
write and test “real” SQL queries. In the following semesters, the system was ex-
tended by a Python Playground, a Relational Algebra Playground, as well as a LIN-
GO Playground.578 Each playground allows students to start learning and practicing
without installing and configuring software on their private computers. Until the
summer semester of 2008, the playground has accompanied eleven lectures, each
attended by a range of 80 to 450 students.

4.2.1 Summer Semester 2008

4.2.1.1 Data Collection and Data Processing

Before the summer semester of 2008, the playgrounds were extended by a logging
mechanism that collects data for quantitative analyses. The extended log file struc-
ture contains the log type (“SQL” or “Python”), the client IP address, a session ID, a
timestamp, the response code (“Ok” or “Error”), as well as the executed code. More-
over, the playgrounds communicate with Google Analytics.579 Besides common web
site analysis, Google Analytics allows geolocating IP addresses which is helpful to
classify sessions geographically. An exemplary log file entry is given in Fig. 4.1.

[SQL] 2008-06-04 09:15:14 -- 141.2.67.115 --
200FA100DB695F01EB7D8A39EA70933B -- OK --
SELECT *
FROM fallstudie1
WHERE ItemNo = '2005' AND StoreNo < 6

Fig. 4.1: Exemplary log file entry of the SQL playground

Before turning to quantitative analyses, all log files have to be preprocessed. The
goal of this preprocessing is merging the log files of the different playgrounds, clean-
ing incomplete or irrelevant data (e.g., empty codes), deriving and calculating further

577 BIGGELEBEN, HOLTEN (2009b).
578 Lingo is the name of both a programming language as well as the corresponding commercial

software product developed for solving linear, nonlinear, as well as integer optimization prob-
lems. The Lingo Playground is used in a lecture on supply chain management, for example, to
solve location and route planning problems. For further details, see LINDO SYSTEMS (2009).

579 GOOGLE (2009). Google Analytics’ feature to localize IP addresses geographically is also called
“GeoTargeting.”

118 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

metrics, and finally writing all relevant information to a database. The preprocessing
was implemented in PHP.580 The corresponding script has three stages:

 All log files were read and processed by a parser that extracts the 1)
basic variables from the plain text log files (cp. Fig. 4.1). Moreo-
ver, during this stage, sessions of the students were “glued” togeth-
er if they meet certain conditions.581

 A set of metric data was derived: length of code, Lines of Code, the 2)
code level based on the HALSTEAD metric582, the distance between
subsequent codes given by the LEVENSHTEIN distance583, a code se-
quence number which is based on the distance metric, and finally
the time spent between executions. Additionally, the second stage
identified executed codes as examples or repetitions.584

 Finally, all data was written to one database table. This database 3)
table represents the Dataset A, which contains all cases unaggre-
gated and almost unfiltered. The variables of this dataset are listed
in the following Tab. 4.1.

580 THE PHP GROUP (2008).
581 A session, technically identified by a so-called session ID, refers to exactly one student using the

playgrounds. A session usually ends if the student closes the browser window (and cookies are
deleted). The data inspection, however, showed that a noteworthy number of page accesses came
from identical IP addresses while having different session IDs. The analysis of the executed SQL
and Python codes showed that this problem was not based upon shared proxies or routers. In-
stead, such page accesses came from the same students. In order to fix this problem, sessions
were concatenated if they came from identical IP addresses within a short time interval. Since
students share computers in the tutorial rooms, a timeout of 15 minutes was used. Accordingly,
sessions were “glued” together if 1) page accesses come from the same IP address, 2) the last
page access from that IP address is less than 15 minutes ago.

582 HALSTEAD (1977). The HALSTEAD metric measures code complexity. The metric reflects the
difficulty to write or to understand a program. HALSTEAD found that the code complexity de-
pends on the quantity and the ratio of used operators, e.g., arithmetic operators and reserved
keywords like if, goto, and while, as well as operands, e.g., numeric values, strings, and variable
names. Accordingly, in order to determine the difficulty of a program, three variables must be
calculated: 1) the number of distinct operators (n1), 2) the number of distinct operands (n2), as
well as 3) the total number of operands (N2). The difficulty of a program is D = (n1/2)*(N2/n2).

583 LEVENSHTEIN (1966). The LEVENSHTEIN distance measures the difference between two strings,
i.e., the minimum number of operations (insert, delete, replace) required to transform the first
string into the second. For example, the strings “Hi” and “High” have a LEVENSHTEIN distance
of 2 (append g and h). The strings “Hello World” and “Hallo Welt” have a LEVENSHTEIN dis-
tance of 4 (replace e by a in Hello, delete o in World, replace r by e in Wrld, replace d by t in
Weld).

584 The playgrounds provide a set of simple examples. These exemplary SQL queries or Python
programs are executed by just clicking on the corresponding links. Therefore, executed queries
and programs can be identified as examples.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 119

Tab. 4.1: Overview of the variables of dataset A

Variable Description Scale

logType Refers to the playground. Either “SQL” or “Python.” Nominal

logTime Refers to the date and time of code execution. Nominal

ip The client IP address. Nominal

sessionID An MD5-Hash used to identify a session. Nominal

responseCode Either “Ok” or “Error.” Nominal

example Either 1 (the code is an example) or 0 (otherwise). Nominal

repetition Either 1 (the exact code has been executed before during the session)
or 0 (otherwise).

Nominal

code Exact copy of the user input. Nominal

loc Lines of code. Metric

length Length of code (number of characters). Metric

codeLevel Code complexity (HALSTEAD metric). Metric

distance LEVENSHTEIN distance between two subsequently executed codes Metric

distancePct LEVENSHTEIN distance in percent (see above). Metric

timeSpent Time between two executions in seconds. Metric

codeNo Subsequently executed codes are supposed to belong together if the
LEVENSHTEIN distance in percent is below 50%. Different code se-
quences are identified by the code (sequence) number.

Metric

The playground sessions were logged from June 4th, 2008 until July 13th, 2008 (40
days). During this period, both the SQL and Python playground were exclusively
used by the one lecture of interest. The lecture was accompanied by tutorials given
by senior students (90 minutes; once per week). In order to attend a tutorial, students
had to register via a web-based registration system.585 In the summer semester of
2008, 405 students registered for the tutorials. The playgrounds were introduced on
June 4th; the final exam was on July 14th, 2008.

The log files had a total size of 17 Mbytes with 750,025 lines representing 64,842
logged cases. Cases with empty or nonsensical codes, e.g., SQL queries executed on
the Python playground and vice versa, were removed (approx. 1%). Additionally,
cases, which exceeded 1,000 characters, were also removed (Python only; approx.
1%). These cases were manually identified as outliers, because these codes had been
copied from an exercise document containing lots of exercise texts as comments.
95% of all cases had an execution time of less than five minutes (measured as the
time between two executions). The remaining 5% of all cases ranged from five
minutes to more than 24 hours. These cases are supposed to represent idle time. Con-

585 The registration system requires a “confirmed opt-in.” Accordingly, each student has to enter a

valid e-mail address in order to receive a confirmation e-mail. The registration process is com-
pleted after clicking on a link in the confirmation e-mail. Therefore, the registration system can
distinguish between pending and completed registrations. Since each student can only register
once, the number of registrations is precise and accurately reflects the actual number of students
in the tutorials.

120 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

sequently, these cases were removed. Finally, 59,484 cases of executed codes (Py-
thon: 31,137; SQL: 28,347) were written to the database as Dataset A.

As expected, the distribution of sessions per day had three peaks in the first three
weeks because students attended the corresponding tutorials in which they solved
exercises with the help of the playgrounds (Week 1: SQL, Week 2: Python, Week 3:
Database access in Python). On the last three days before the final exam, there was
another forth peak (see Fig. 4.2). On weekends and between the tutorial phase and
the final exam, there were hardly any sessions per day. During the tutorial phase,
80% of all sessions came from the IP addresses of the tutorial rooms. In the last three
weeks, only 15% of all sessions came from those rooms. On the last 10 days, 98.2%
of all sessions came from IP addresses outside the university, i.e., the students
learned at home. The geolocation report of Google Analytics confirmed that 99% of
all visits came from locations within a 50 kilometer radius of the university.

Fig. 4.2: Sessions per day from June 4th to July 14th, 2008 (grouped by language)

As a pretest, the summer semester dataset was subject to a preliminary statistical
analysis. The findings are briefly outlined in the following.

4.2.1.2 Statistical Analysis

A correlation analysis based on the unaggregated Dataset A did not yield any note-
worthy relationships between invested time, code length, Lines of Code, etc. In this
analysis, coefficients below 0.3 are not considered noteworthy. Correlation coeffi-
cients are usually classified as “small/weak” (r=±0.10), “medium/moderate”
(r=±0.30), or “large/strong” (r=±0.50).586 However, there is no standardized classifi-
cation or interpretation of correlation coefficients, since their interpretation depends
on the given situation: "The terms strong and weak are used to compare descriptively

586 COHEN (1988).

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Day

O
bs

er
ve

d
Fr

eq
ue

nc
y

Python
SQL

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 121

the obtained correlation value to the value we would expect under the given circum-
stances."587

In view of the weak correlations, cases were aggregated on the session level (Dataset
B). Sessions with only one code execution and sessions, which solely contained ex-
amples and repetitions, were removed. Dataset B contains all variables of Dataset A
in an aggregated form (totals, averages, ratios; grouped by logType and ses-
sionID).588 Overall, the Dataset B contained 2,024 cases based on 53,929 code exe-
cutions.

The correlation analysis of the total time spent per session (totalTime), the average
code level (avgCL), the average code length (avgL), the average number of Lines of
Code (avgLOC), as well as the error rate per session (rError) showed that neither the
error rate nor one of the code metrics had a noteworthy correlation (r>0.30) with the
total time (see Tab. 4.2).

However, the correlation analysis of the number of iterations (code executions per
session) and the total time spent per session showed a correlation coefficient of
r=0.92 (p<0.01). Additionally, the scatter plot of these two variables suggests a linear
relationship for both SQL and Python (see Fig. 4.3).

587 WEINBERG, ABRAMOWITZ (2008), p. 130.
588 The Dataset B contained the following variables that could be derived from Dataset A using

aggregation functions: iterations (executions per session), codes (number of codes per session;
see codeNo in Tab. 4.1), avgLOC (average Lines of Code), sumLOC (total Lines of Code),
maxLOC (maximum Lines of Code), avgL (average code length), sumL (total code length), maxL
(maximum code length), avgCL (average code level), sumCL (total code level), maxCL (maxi-
mum code level), avgDIST (average distance), sumDIST (total distance), maxDIST (maximum
distance), sumError (total number of erroneous executions), rError (error rate), sumOK (total
number of correct executions), avgTime (average time per execution), totalTime (session dura-
tion).

122 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Tab. 4.2: Non-parametric correlations (SPEARMAN)

Fig. 4.3: Scatter plot of iterations and total time spent per session

The special shape of the scatter plot of iterations and totalTime suggests that students
belong to different groups in terms of working speed (total time per iteration). The
linear interpolation graph in Fig. 4.3 visually divides the population into two groups:
one performing above average (“slow”), the other performing below average
(“fast”).589 Mathematically, different classes of working speed can be identified by
logarithmized time-per-iteration ratios. Before applying such a classification, the

589 In this case, being above the average refers to a slow working speed, since the corresponding

ratio is time per iteration, i.e., those students spend more time per iteration than the average.

Correlations

1,000 ,015 ,165** ,142** ,074**
. ,503 ,000 ,000 ,001

2024 2024 2024 2024 2024
,015 1,000 ,313** ,186** ,191**
,503 . ,000 ,000 ,000

2024 2024 2024 2024 2024
,165** ,313** 1,000 ,891** -,034
,000 ,000 . ,000 ,130

2024 2024 2024 2024 2024
,142** ,186** ,891** 1,000 -,058**
,000 ,000 ,000 . ,009

2024 2024 2024 2024 2024
,074** ,191** -,034 -,058** 1,000
,001 ,000 ,130 ,009 .

2024 2024 2024 2024 2024

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

totalTime

avgCL

avgL

avgLOC

rError

Spearman's rho
totalTime avgCL avgL avgLOC rError

Correlation is significant at the 0.01 level (2-tailed).**.

iterations

200150100500

to
ta
lT
im
e

8000

6000

4000

2000

0

LogType

sql

python

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 123

time-per-iteration ratio must be standardized in order to get a reference value. A fea-
sible method to standardize the ratios and to categorize the population into classes is
given by the following two equations (with n as the number of cases):

1

1

1

1

n

i
i

language n

i
i

totalTime
nz

iterations
n

=

=

=
∑

∑
 Eq. 4.1

2
1log :
2

i
i language

i

totalTimeclass z
iterations

⎢ ⎥⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 Eq. 4.2

The average time-iteration ratios (z) are 51.5 for Python and 39.3 for SQL (seconds
per iteration). Thus, students need 51.5 seconds to work on one Python execution and
39.3 seconds to work on one SQL execution on average.

The difference between SQL and Python in terms of working speed is highly signifi-
cant. Since the KOLMOGOROV-SMIRNOV test found that neither totalTime nor
iterations is normally distributed, the non-parametric MANN–WHITNEY U-test was
performed in place of the common t-test. The U-test confirmed different group means
with a significance of p<0.001. Accordingly, students spent significantly more time
for one Python code execution than for one SQL query execution.

In order to classify students, the individual time-per-iteration ratio of a student must
be divided by the language-specific standard ratio z. The logarithm dualis (rounded
to integer) assigns students to working speed classes. The logarithm dualis is chosen
here, so that the class index can be interpreted. Accordingly, all cases within class0
represent the average, while class1 works at double speed, and class-1 is half as fast
as the average.

For example, a student executes 20 SQL queries in 5 minutes or 300 seconds, respec-
tively. The individual time-per-iteration ratio of this student is 15.0 seconds per que-
ry. The result of dividing this ratio (15.0) by the language-specific ratio of SQL
(39.3) and applying the logarithm dualis is approximately -0.88 which is then round-
ed down to -1.0. Finally, the sign is changed to +1.0. Therefore, this student belongs
to class1 and works at double speed compared to the average. The corresponding
classification based on this approach is visualized in Fig. 4.4.

124 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Fig. 4.4: Classes identified by the time-per-iteration ratio (Python only)

The scatter plot based on different classes visually confirms that students have dif-
ferent working speeds. Most students belong to class0, which represents the average,
i.e., 39.3 seconds to execute an SQL query. However, there are also students who
need twice as much time (class-1) while other students are working four times faster
than the average (class2).

Above all, the dataset and the corresponding statistical analysis clearly reflected
some deficits of the summer semester data set. Based on a review of the technical
environment, three major limitations could be identified:

 All sessions were anonymous. It was impossible to observe a single 1)
student over time. Similarly, it was impossible to observe how a
single student mastered SQL compared to Python and vice versa.

 The particular learning objective of a single student was unknown. 2)
For an external observer, it was impossible to distinguish between
aimless or purposive activities on the playgrounds.

 Since students were not observed in a controlled environment, it 3)
was impossible to identify idle time.

In consequence, the exploratory analysis of the summer semester dataset only indi-
cated different working speeds among the students. In view of the limitations, it was

iterations

150100500

to
ta

lT
im

e

7000

6000

5000

4000

3000

2000

1000

0

CLASS

 2,00

 1,00

 ,00

 -1,00

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 125

decided to prepare the playgrounds for the next semester in order to get a new dataset
with more detailed information.

4.2.2 Winter Semester 2008/2009

Before the winter semester of 2008/09, the playgrounds were modified. Students now
have to pass an authentication before using the playgrounds. This resolved the first
limitation (anonymous sessions). The authentication is based on the chair’s internal
registration system for tutorials and courses.590 Due to the authentication data, all
activities on the playgrounds can be unambiguously assigned to individual students,
who can also be assigned to particular lectures.591 This was important in that particu-
lar winter semester, since two different lectures discussed SQL and promoted using
the SQL playground for practicing.592

Besides these technical modifications, the SQL playground was extended by an in-
teractive SQL trainer. A trainer-specific log file could fix the second limitation (un-
known objective). The SQL Trainer provided 15 exercises with different levels of
difficulty ranging from simple “SELECT-FROM-WHERE” queries to more difficult
aggregation queries (see appendix A.1). Despite the different levels of difficulty, all
students were expected to have the ability required for solving all exercises.

It has to be pointed out that due to didactical reasons the exercise order was not
strictly in line with the supposed difficulty level of the exercises. The introductory
page of the SQL trainer informed the students about this issue. In order to encourage
the students to try all exercises, they should not assume that a higher exercise number
necessarily reflects a higher level of difficulty. The SQL trainer allowed students to
skip exercises, so they were not forced to solve the exercises in their order of appear-
ance. In the following, the corresponding dataset is called “Exercise Dataset”. 593

While working with the SQL Trainer, students can write and test SQL queries in the
same way they do on the standard SQL playground (see Fig. 4.5). If students are un-

590 BIGGELEBEN, HOLTEN (2009a).
591 The identification of individuals is not based on personal data. Technically, the authentication

mechanism returns a unique ID based on a consecutive number used by the registration system.
This ID is used in the log files to distinguish between individuals. Accordingly, the datasets
gained from the log files are anonymous. In addition, the playgrounds’ login pages inform stu-
dents that the activities on the playgrounds are logged, and that this data is subject to statistical
analyses.

592 These two lectures were “Introduction to Information Systems” (second semester bachelor stu-
dents) and “Management Information Systems” (second semester master students).

593 Another study using this dataset while focusing on the relationship of e-learning and learning
success is given by BIGGELEBEN et al. (2009a).

126 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

able to solve an exercise, they can click on special link to see the sample solution for
that particular exercise.

Fig. 4.5: Web-based SQL Trainer

In order to solve an exercise, the database output and the SQL query must be in line
with the sample solution. A sample solution consists of both the correct database
output and the correct SQL query.594 Correct queries, however, might differ in terms
of spaces, line breaks, as well as the use of lower and upper case letters. Therefore,
the correctness of the SQL query is not based on a strict string comparison but is
determined by the LEVENSHTEIN distance between the sample solution and the query
executed by the student.595 For example, the following four SQL queries are correct
solutions of exercise 13 (see Appendix A.1):

594 A sample solution might contain multiple correct database outputs as well as multiple correct

SQL queries.
595 LEVENSHTEIN (1966). Before calculating the LEVENSHTEIN distance, all line-breaks and unneces-

sary spaces are removed from both the executed SQL query and the sample solution query.
Moreover, both queries are transformed to lower case letters. Given that the database output per-
fectly matches (one of) the sample solution outputs, an SQL query is evaluated as correct if the
LEVENSHTEIN distance between the sample solution query and the executed query measured in
percent is less than 60%. This threshold was determined during the test phase of the SQL trainer.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 127

/* 1) correct sample solution */
SELECT ItemGroup
FROM items
GROUP BY ItemGroup

/* 2) also correct (different notation) */
select ItemGROUP
from items group by itemgroup

/* 3) alternative correct sample solution */
SELECT DISTINCT ItemGroup
FROM items

/* 4) also correct (different syntax) */
select distinct itemgroup from items

Fig. 4.6: Correct solutions of exercise 13

Finally, the third limitation (idle time) could be mitigated by implementing precise
client-side timers that allow differentiating between activity and inactivity on the
playgrounds. Additionally, students were encouraged to use the SQL trainer as a
means of self-control with regard to the final exam in which queries must be solved
correctly and within given time limits.

During the winter semester of 2008/09, all queries executed by students were record-
ed in a specific log file. Besides typical client information and the executed SQL
query, this log file contains the authentication and precise timing data. The available
variables are summarized in the following table Tab. 4.3.

Tab. 4.3: Data logged by the SQL Trainer

Variable Example Description

timestamp 2009-02-01 14:26:18 Calendar time of query execution

client_ip 84.176.14.20 Client’s IP address

session_id F3C25C7…A1966F 32 byte session identifier

user 00001234 Unique personal ID (not to be confused with the students’
matriculation number)

status_code OK “OK” for syntactically correct queries, “ERROR” for syn-
tactical errors, “SOLVED” for correct solutions, and
“CHEATED” for checking the sample solution

database SQL_trainer_1 Database. “SQL_trainer_1” refers to the SQL Trainer

total_time 3.750 Total time between page load and query execution

focus_time 3.750 Less than total time if the browser window loses the focus596

busy_time 3 Only timed during keyboard or mouse activity

keystrokes 10 Number of pressed keys597

596 The variable “focus_time” represents the total time interval in which the browser window (or tab)

was active. If a student minimizes the browser window or switches to another application, for ex-
ample, to check his or her e-mails, the playground loses the focus. Accordingly, this timer can be
used to identify idle time.

597 The variable “keystrokes” is another candidate to identify idle time.

128 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Variable Example Description

exercise 1 Exercise number

query SELECT * FROM… Executed SQL query

Each student has only one attempt per session to solve an exercise. An attempt, how-
ever, can consist of an unlimited number of query executions. If a student visits the
trainer twice or more, only the first session will be considered. Likewise, if a student
looks for the sample solution, the exercise cannot be solved any longer (internally
marked as “cheated”; cp. status_code in Tab. 4.3). For example, a student uses the
SQL Trainer for the first time, and solves the first five exercises. Assuming that the
following exercises are too difficult for this student, he or she looks at the sample
solutions of the remaining exercises. Later, the same student uses the SQL Trainer
again, now being able to solve all 15 exercises. However, only the five exercises of
the first session are rated as valid attempts.

Generally, working time is based on the variable focus_time (see Tab. 4.3). The da-
taset was inspected to find patterns and to develop an approach that allows identify-
ing idle time, which should be excluded from statistical analyses. Therefore, if
focus_time is less than 90 (1.5 minutes), no idle time is assumed, and focus_time is
taken as the working time. Otherwise, the ratio of focus_time and busy_time is
checked whether or not it appears plausible. According to the dataset inspection, a
ratio greater than 3 appeared questionable. For those ratios, the working time is lim-
ited to three times the busy_time (which refers to actual keyboard and mouse activi-
ty). Alternative approaches using the variables total_time, busy_time, focus_time,
keystrokes, or combinations of these were also tested. However, these tests showed
that the presented approach can identify idle time more accurate than alternative ap-
proaches. Finally, if not otherwise noted, time measures are always given in seconds.

4.3 Data Exploration

The SQL Trainer was released on February 1st, 2009.598 The final exam of the lecture
of interest was on February 23rd, 2009. In total, 20,475 SQL queries were executed
between these two dates.599 The SQL trainer was used by 233 distinct individuals.
After removing the log file entries of staff members, tutors, and students who did not
attend the second semester lecture, the dataset contains sessions of 170 bachelor stu-
dents. These students made over 2,000 solution attempts based on 8,756 considered

598 The late release of the SQL Trainer at the end of the lecture was intended, since students were

expected to start studying as late as possible. An early release was expected to produce a biased
dataset with mainly invalid attempts.

599 Exact time interval: 2009-02-01 00:00:00 – 2009-02-22 23:59:59.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 129

query executions.600 For comparison, over 500 students registered for the tutorials
and 382 students took the final exam at the end of winter semester 2008/2009.

The subsequent data exploration pursues the following strategy:

• The first analyses focus on the solution capability, solution effort,
and the individual working speed of students in order to gain de-
scriptive statistics and to develop a basic understanding of the da-
taset.

• Since the population is heterogeneous with regard to solution capa-
bility, students are classified and assigned to identical groups of so-
lution capability.

• An approach based on Simple Random Subsamples and Bootstrap-
ping is introduced. This approach allows deriving virtual develop-
ment teams from the empirical data.

• Based on these virtual development teams, statistical analyses fo-
cus on the central question of this exploratory study, that is, to what
extent it is possible to estimate effort when actual effort is unaf-
fected by estimates. Different estimation approaches are evaluated
to develop an understanding of estimation accuracy as well as the
relationship between estimates and actual development effort.

• During this evaluation the impact of effects like PARKINSON and
Procrastination as well as simple forms of project control are dis-
cussed and analyzed. Finally, the consideration of individual differ-
ences is explored.

4.3.1 Analysis of Solution Capability

As a first step, the cases of the Exercise Dataset were aggregated in order to get solu-
tion frequencies, general solution capability, as well as average solution effort. Tab.
4.4 summarizes these descriptive statistics. In this table, the column “AttemptedPct”
shows how many students have tried to solve a particular exercise. The column
“SolvedPct” gives the corresponding rate of success. Both figures are given as per-
centages of the total sample size, i.e., 170 bachelor students. The supposed level of
difficulty of the exercises is given by an ordinal scale, ranging from A to E with A

600 As mentioned before, only the first session on the SQL trainer was considered.

130 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

representing easy exercises and E very difficult exercises. The effort-oriented figures
consider successful solutions only. It is intended that attempts, which did not lead to
a solution or in which students cheated do not influence the time measures.

Tab. 4.4: Solution attempts grouped and ordered by the original exercise numbers601

Original
exercise
number

Supposed
level of

difficulty

Altered
exercise
number

Min.
solution

time
[sec]

Mean
solution

time
[sec]

Max.
solution

time
[sec]

Standard
deviation

Attempt-
edPct

Solved-
Pct

1 A 2 12 64 1,168 56.4 96% 84%
2 A 1 17 71 347 111.4 97% 84%
3 B 4 13 154 975 41.0 94% 66%
4 C 9 24 275 1,295 205.3 94% 24%
5 B 5 25 120 450 82.4 92% 52%
6 B 3 24 77 292 36.4 92% 78%
7 B 7 34 194 905 176.5 88% 41%
8 D 13 138 529 1,651 96.3 86% 13%
9 C 10 51 226 757 320.6 81% 23%
10 C 12 29 196 661 176.9 63% 14%
11 C 8 44 131 623 182.4 74% 31%
12 C 11 95 245 1,177 151.3 69% 23%
13 B 6 20 65 227 386.1 69% 51%
14 E 15 297 397 473 169.0 57% 2%
15 E 14 82 218 654 74.2 47% 6%

This aggregated view of the data reveals that the first five exercises were addressed
by more than 90% of the students.602 The number of attempts, however, is continu-
ously decreasing over the 15 exercises. The last exercise was addressed by only 47%
of all students. This shows that lots of students refrained from solving all exercises.
Besides disinterest or other external influences, students might have given up, be-
cause some exercises were too difficult, or some students might have set a time limit
for the session. Nevertheless, the aggregated view exposes that the general solution
capability is significantly different across the students. Especially, the exercises 8,
10, 14, and 15 appear to be exceptionally difficult. The following Fig. 2.1 visualizes
the percentages of solution attempts and correct solutions.

601 The exercise number will be altered to match the order of solution capability in a later step.
602 The fact that the first exercise is not attempted by 100% of the students is based on the technical

possibility to skip exercises.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 131

Fig. 4.7: Solution attempts and correct solutions in original order

The actual solution capability of students (see Fig. 4.7; SolvedPct) matches the sup-
posed difficulty levels of the exercises. Exercise 8 is not difficult in terms of SQL,
but its correct solution requires a proper discount of value-added tax. Exercise 14
and 15 address joining two tables, which was only shortly introduced in the lecture
notes. Exercise 10, however, had an unexpected low solution percentage. The solu-
tion of this exercise requires the correct use of the aggregation function COUNT
without a GROUP BY clause. After the SQL Trainer was released, it turned out that
the lecture notes did not discuss this type of SQL queries. This lack of information is
supposed to be responsible for the low solution percentage.

Before turning to further analyses, the exercise numbers are altered so that they re-
flect the actual solution capability. This alteration is beneficial for the readability of
the remainder of this chapter, as it leads to a strong correlation of exercise number
and solution capability. Accordingly, a higher exercise number refers to a higher
empirical level of difficulty as well as a lower solution percentage.

After reordering the exercises, the mean solution time now strongly correlates with
the supposed level of difficulty (ρ=0.850; p<0.01; see Tab. 4.5).603 The minimal solu-
tion time also shows a strong correlation with difficulty (ρ=0.876; p<0.01).

603 In this case, the exercise number, typically a nominal scaled variable, can be understood as an

ordinal scaled variable as it reflects the actual level of difficulty. In consequence, SPEARMAN’S
rank correlation coefficient is used to determine the correlation between exercise and the solution
time.

132 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Tab. 4.5: Correlation of difficulty and solution time

The alteration of the original exercise numbers, based on the order of appearance in
the SQL trainer, to exercise numbers that match the solution capability is given in
Tab. 4.4 as well as appendix A.1. The new order of exercises and the corresponding
percentages of attempts and correct solutions are visualized in the following Fig. 4.8.

Fig. 4.8: Solution attempts and correct solutions in altered order

To prevent ambiguity, the data given in Tab. 4.4 is also presented in the altered order
of solution ability (see Tab. 4.6). In the following, exercise numbers refer to this al-
tered order.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 133

Tab. 4.6: Solution attempts grouped and ordered by the altered exercise numbers

Altered
exercise
number

Supposed
level of

difficulty

Original
exercise
number

Min.
solution

time
[sec]

Mean
solution

time
[sec]

Max.
solution

time
[sec]

Standard
deviation

Attempt-
edPct

Solved-
Pct

1 A 2 17 71 347 111.4 97% 84%
2 A 1 12 64 1,168 56.4 96% 84%
3 B 6 24 77 292 36.4 92% 78%
4 B 3 13 154 975 41.0 94% 66%
5 B 5 25 120 450 82.4 92% 52%
6 B 13 20 65 227 386.1 69% 51%
7 B 7 34 194 905 176.5 88% 41%
8 C 11 44 131 623 182.4 74% 31%
9 C 4 24 275 1,295 205.3 94% 24%
10 C 9 51 226 757 320.6 81% 23%
11 C 12 95 245 1,177 151.3 69% 23%
12 C 10 29 196 661 176.9 63% 14%
13 D 8 138 529 1,651 96.3 86% 13%
14 E 15 82 218 654 74.2 47% 6%
15 E 14 297 397 473 169.0 57% 2%

4.3.2 Analysis of Solution Effort

The effort-oriented figures in the preceding Tab. 4.6 (Min/Mean/Max) show extreme
differences in the required effort for exercise solution. The highest effort ratio be-
tween the fastest and slowest solution can be found for exercise 2, which is 1:97
(Min/Max). The fastest students spent 12 seconds for the solution, while the slowest
student spent nearly 20 minutes. The min-max-ratios of the other exercises usually
range from 1:12 to 1:26. For all extreme values, the cases were manually inspected in
order to verify that the figures do not result from measurement errors.604

To demonstrate the extreme but plausible figures of exercise 2 (1,167.5 seconds/19.5
minutes), the complete attempt of that particular student is listed in Appendix A.2.605
Interestingly, the student did not get discouraged by that time-consuming attempt and
continued to try all 15 exercises. In total, this particular student successfully solved 7
exercises, which suggests a noteworthy ambition.

Such extreme cases might have a considerable impact on the exploration and further
statistical analyses. Accordingly, those cases must be checked whether they represent

604 Extremely fast solution were inspected to make sure that the number of keystrokes was in line

with the length of the executed query and to exclude that those students copied and pasted pre-
pared solutions. Extremely slow solutions were inspected to exclude that they were based on idle
time or nonsensical query executions.

605 The average time-per-iteration ratio of the SQL trainer is 37.4 seconds per SQL query. The
aforementioned student has an individual time-per-iteration ratio of 50.53. However, this student
would still be classified as average (class0) in terms of working speed (cp. Section 4.2.1).

134 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

outliers. Extreme values, however, are not outliers in general. Following BARNETT
and LEWIS:

“From the earliest times, there has been a concern for ‘unrepre-
sentative’, ‘rogue’, or ‘outlying’ observations in sets of data. There
are often seen as contaminating the data: reducing and distorting
the information about the data source or generating mechanism. It
is natural to seek means of interpreting or categorizing outliers
and methods for handling them – sometimes perhaps rejecting them
to restore the propriety of the data, or at least adopting methods of
reducing their impact in any statistical analysis. [... However,] out-
lying observations do not inevitably ‘perplex’ or ‘mislead’; they
are not necessarily ‘bad’ or ‘erroneous’ [...]”606

Additionally, BARNETT and LEWIS define:

“An outlier in a set of data [is] an observation (or subset of obser-
vations) which appears to be inconsistent with the remainder of
that set of data. The phrase ‘appears to be inconsistent’ is crucial.
It is a matter of subjective judgment on the part of the observer
whether or not some observation (or set of observations) is picked
out for scrutiny.”607

For that reason, two simple methods that help identifying outliers were applied. As a
preparing step, the Exercise Dataset was statistically analyzed in order to get the
mean µi , the standard deviation σi, as well as the lower and upper quartiles Q1i and
Q3i for each exercise i. The first method marks cases as outliers if they a k standard
deviations away from the mean.608 Accordingly, extreme values that are outside the
following range represent potential outliers:

[], 0i i i ik k with kµ σ µ σ− + > Eq. 4.3

For k=2, 52 cases (5.2%) and, for k=3, 24 cases (2.4%) were identified as potential
outliers. Generally, only slow solutions were affected. The manual inspection of the
dataset, however, showed that there is not necessarily a notable gap between the
mass of the data and the potential outliers. As an example, Fig. 4.9 shows the distri-
bution of solution time concerning exercise 10. For k=2, only the highest solution
time (757 sec) was identified as an outlier. In contrast, the slightly isolated cases be-
tween 400 and 650 seconds were not marked as outliers. Generally, it is questionable

606 BARNETT (1994), p. 3.
607 BARNETT (1994), p. 7.
608 E.g., LEONG, AUSTIN (2005).

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 135

whether such extreme values are inconsistent with the rest of the dataset, or whether
they are special but consistent cases of solution effort.

Fig. 4.9: Exemplary distribution of solution time of exercise 10

The second method uses the interquartile range (Q3i-Q1i) to identify outliers.609
Values that are not inside this range are marked as potential outliers:

[]1 (3 1), 3 (3 1) 0i i i i i iQ k Q Q Q k Q Q with k− − + − > Eq. 4.4

For k=2, 63 cases (6.3%) and, for k=3, 40 cases (4.0%) were identified as potential
outliers. Like the first approach, only slow solutions were affected, and this method
also put the cutoff point for high values inside the mass of the data.

To conclude, the dataset does not contain evident outliers that can clearly be classi-
fied as inconsistent with the remainder of the dataset. It is supposed that extremely
slow solution belong to the dataset just like extremely fast solutions. In reference to
real-world software development, it is also supposed that developers might get stuck

609 BARNETT (1994); LEONG, AUSTIN (2005).

Time

750,0
650,0

550,0
450,0

350,0
250,0

150,0
50,0

F
re
qu
en
cy

12

10

8

6

4

2

0

136 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

during a solution and need a large amount of effort to complete a work package.610 In
consequence, no cases were removed from the Exercise Dataset.

4.3.3 Analysis of Working Speed

The preceding analysis based on the summer semester dataset indicated that students
have different working speeds (see Section 4.2.1). Moreover, the dataset suggested
that students also have an individual working speed that is independent of the level
of difficulty and the programming language.611

If this is true, the comparison of the individual working speeds measured on the nor-
mal SQL playground and the Python Playground must show a positive correlation.
Since students do not explicitly solve exercises on these playgrounds, we can only
observe the ratio of code execution per time. However, if students have an individual
working speed, this will have a measureable effect on this ratio. Accordingly, the
null hypothesis of this test is that the corresponding correlation coefficient is zero.

The following analysis is based on 50,475 SQL queries and Python program execu-
tions. This dataset does not contain code repetitions or code examples that are pro-
vided by the playgrounds. The cases are aggregated per student in order to get the
total working time and code executions for both SQL and Python. Aggregated cases
that do not contain values of both playgrounds cannot be compared, and, thus, these
cases are not considered. In total, 273 students have worked on both playgrounds.
These 273 cases represent the relevant dataset for the correlation analysis. On aver-
age, the students have executed 59 SQL queries and 116 Python programs during the
winter semester of 2008/09. The result of the correlation analysis is given in Tab.
4.7.

610 The highest deviation of expected and actual development effort experienced by the author was

16 hours instead of 10 minutes, although the task was simple. The particular solution should gen-
erate and send appointments via e-mail so that typical PIM systems like Outlook Exchange pre-
sent a typical dialog asking whether to accept or decline the appointment. Such e-mails must
have an additional part that contains the appointment data in the iCalendar format. Timestamps
must be given in the Coordinated Universal Time (UTC) format, for example,
“20090101T120000Z”. Due to a tiny flaw in the code, the hours of the timestamp did not have a
leading zero for one-digit values. Therefore, this flaw is not detected for two-digit hours. While
the author tested the solution with two-digit hours, another test user worked with one-digit hours
internally (8:00:00), which was not evident, because the visible test time (10:00:00) had two dig-
its as it was given in Central European Time (CET). In consequence, the error only appeared on
the second test system while the first test system worked perfectly. Since the second test system
used a different Outlook version, a different operating system, and a different e-mail provider,
the error was search anywhere else but in the routine responsible for the timestamp generation.
Finally, the error was detected after two days of troubleshooting.

611 The weak correlations (r<0.2) of time (totalTime) and code level (avgCL), code length (avgL),
and Lines of Code (avgLOC) suggest an individual working speed of students (see Section 4.2.1).

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 137

Tab. 4.7: Correlation of SQL- and Python-related working speeds

If all cases are considered, the correlation coefficient is ρ=0.546 (p<0.01). Therefore,
the null hypothesis must be rejected. This supports the presumption that students
have an individual working speed, no matter whether they focus on SQL or Python.
Additionally, if the sample is reduced to cases in which students executed a high
amount of codes, e.g., more than 75 SQL queries or Python codes, the analysis will
show a strong positive correlation of ρ=0.736 (p<0.01). Accordingly, students have
an independent working speed that is independent of both the level of difficulty and
the programming language (SQL and Python).

Tab. 4.8: Correlation of SQL- and Python-related working speeds (subsample)

Finally, in order to get an overview of the distribution of working speeds given in the
Exercise Dataset, the classification approach as introduced in Section 4.2.1 is ap-
plied. The average time-per-iteration ratio of successful exercise solutions is 37.7
seconds per SQL query. The following Tab. 4.9 presents the corresponding results.612
Additionally, a box-plot of this classification is given in Fig. 4.10.

612 This classification uses half classes. The working speed in percent is based on the average class

0. Therefore, class 1.0 (double speed), for example, represents a working speed of 200%. The
percentages of half classes are based on multiples of two as well. Accordingly, class 1.5 refers to
a working speed of 2 to the power of 1.5 which is approx. 2.83.

138 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Tab. 4.9: Classification of working speed

Class
Number of

students
Average working
speed in percent

Average time per
query [sec]

-1.5 6 35% 106.6
-1.0 18 50% 75.4
-0.5 45 71% 53.3
±0.0 57 100% 37.7
+0.5 24 141% 26.7
+1.0 10 200% 18.8
+1.5 1 283% 13.3
+2.0 1 400% 9.4

The given classification was statistically tested by the non-parametric KRUSKAL-
WALLIS H-test, an extension of the MANN–WHITNEY U-test that works for more than
two groups: “The MANN-WHITNEY U-test [is] the non-parametric analog to the t-test
on means for independent groups [while] the KRUSKAL-WALLIS 'Analysis of Variance'
[is] the non-parametric analog of the one-way ANOVA.” 613 The H-test confirmed
that the classes are significantly different in terms of working speed (p<0.001; 1004
cases). The same result could be obtained when testing all cases including unsolved
and cheated attempts (p<0.001; 1984 cases).

Fig. 4.10: Box-plot of identified working speed classes

613 LEONG, AUSTIN (2005), p. 505.

Class

+2.0+1.5+1.0+0.50.0-0.5-1.0-1.5

W
or

ki
ng

 S
pe

ed
 [s

ec
/q

ue
ry

]

250

225

200

175

150

125

100

75

50

25

0

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 139

4.3.4 Simple Random Sampling

So far, the exploratory analysis of the Exercise dataset showed that solution capabil-
ity, solution effort, and working speed differ significantly among students. Therefore,
this subsection starts to put the focus on the central question of this exploratory
study, which is examining, whether it is possible to accurately estimate programming
effort of individuals.

As presented in Section 2.3, a common technique to estimate effort is producing es-
timates by analogy. This approach requires either personal experiences or document-
ed historical data of completed projects. Basically, the work packages of a new pro-
ject are compared to this knowledge base, in order to find similar work packages of
past projects.

In this exploratory study, the empirical dataset of the SQL Trainer is used as such a
historical knowledge base. Since all students had to solve the same exercises, the
exercise number leads to perfect analogy. While in real-world development projects
work packages can usually be identified as only similar or comparable to previous
work, the exercises solved by the students are not similar but identical. Additionally,
all solution attempts are precisely documented in the Experience Dataset, and, ac-
cordingly, it is uncomplicated to determine the average effort per exercise as the
foundation for analogy-based effort estimation (see Tab. 4.6).

The central question of this exploratory study is addressed by using Simple Random
Samples, in order to simulate small developer teams as well as to estimate and ana-
lyze their development efforts.614 “A simple random sample is a sample in which
every member of the population has the equal change of being chosen.”615 In this
study, a simple random sample is drawn by selecting three unique students who form
a virtual developer team (sampling without replacement).616 Each team member has
to solve five arbitrary exercises as work packages. Since we only have 15 different
exercises in total, a single exercise may be selected multiple times (sampling with
replacement).617 The estimated effort of a single team can be determined by sum-
ming up the mean efforts of each selected exercise. Moreover, the actual effort per
student and exercise can also be looked up in the database. As a result, it is possible
to determine both the actual effort and the expected effort for each random sample.

614 BREAKWELL et al. (2006); DONNELLY (2004).
615 DONNELLY (2004), p. 158.
616 BREAKWELL et al. (2006).
617 BREAKWELL et al. (2006).

140 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

4.3.4.1 Groups of Solution Capability

Before the random samples can be drawn, the problem of cheated, unsolved, and
unaddressed exercises must be fixed. Besides correct solutions (1,004 cases), the
dataset contains lots of cheated (981 cases) and a few unsolved solutions (46 cases).
These cases are supposed to have biased or distorted time measures, as they do not
refer to successful exercise solutions. Furthermore, the dataset does not cover all
student-exercise combinations, since it contains only 2,031 cases, while 2,550 cases
(170 students multiplied by 15 exercises) are possible. There is a lack of information
of 519 combinations of student and exercise number. Accordingly, in order to make
all simple random samples comparable, only successful exercise solution should be
considered.

Determining Solution Capability

For that reason, the students are grouped in terms of solution capability. In this case,
solution capability is determined by the following simple approach:

 The dataset is ordered by student and exercise number. 1)

 For each student, it is determined how many exercises were suc-2)
cessfully solved in a row starting from the first exercise. The max-
imum exercise number is taken as the solution capability, and used
to assign students to groups.

For example, a student who correctly solved exercise one to eight without cheating
has a solution capability of eight. If the same student skipped exercise 5, his or her
solution capability would be four. Based on this approach, students are assigned to
groups of identical solution capability. It has to be pointed out that students of group
i are assigned to all lower groups j with j<i as well. Accordingly, the 1st group con-
tains all students who were assigned to a group. In total, 151 out of 170 students
were assigned to groups of solution capability. The remaining 19 students did not
solve any exercise or skipped the first exercise.

For each group, simple random subsamples are drawn. At first, three students with
the same solution capability i are randomly selected. Afterwards, 15 exercises are
randomly selected and assigned to the team members, each getting five exercises.
During this assignment, all selected exercise numbers must be equal to or less than
the group number i. For higher exercises numbers it cannot be guaranteed that the
dataset contains useful information for that particular combination of student and
exercise number. This approach ensures that all exercises can be solved by the ran-

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 141

domly arranged teams. The simple random samples could be drawn for 13 groups,
because less than 3 students reached a solution capability of 14 or 15, respectively.

A brief example helps understanding the process of how a random subsample is
drawn. Group 10 contains 11 students. From this group, three students (A, B, and C)
are randomly selected as developers who form a virtual development team. Next,
five of the first 10 exercises are selected and assigned to one student. This is done
three times so that each student has assigned five work packages (see Fig. 4.11).618

Fig. 4.11: Drawing simple random subsamples

The individual actual efforts per exercise as well as the average effort per exercise
(see Tab. 4.6) are known. The following Tab. 4.10 describes an exemplary subsam-
ple, which shows that exercises can appear more than once. In this example, the ex-
pected effort, estimated by analogy, is 1861.1 (seconds) for all 15 work packages.
The actual effort, however, is 2408.5 (seconds). This implies an effort overrun of
29.41%, which is in line with the commonly reported effort overruns of software
development projects (see Section 3.1.3.1).

618 The list of work packages is shuffled after the selection process. Thus, developer C, for example,

might start with two work packages, followed by developer B with one work package etc. The
order of work has an effect on actual work time when considering forms of project control. This
aspect is discussed later in this chapter.

Group 8

Group 7

Group 9

...

Group 10

...

Virtual
Developer
Team
(Group 10)

1
2

4

5
6

2

415

87

Selectable exercises
for group 10

3

7
8

109

10A

B

C

8 2 2

2 3

105 4

142 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Tab. 4.10: Exemplary random subsample

Developer A Developer B Developer C

Exercise
Number

Actual
Effort
[sec]

Mean
effort
[sec]

Exercise
Number

Actual
Effort
[sec]

Mean
effort
[sec]

Exercise
Number

Actual
Effort
[sec]

Mean
effort
[sec]

2 42.500 64.1 5 69.000 119.9 5 118.750 119.9
10 319.750 225.7 2 33.750 64.1 10 225.000 225.7

8 295.000 131.2 1 26.000 71.4 4 678.750 154.3
2 42.500 64.1 4 29.500 154.3 7 206.000 193.9
2 42.500 64.1 3 59.250 77.2 8 220.250 131.2

Work

Packages
Actual

Effort [sec]
Expected

Effort [sec]
Effort

Overrun [sec]
Effort

Overrun %
15 2408.5 1861.1 547.4 29.41%

For each of the 13 groups of solution capability, 10,000 simple random samples are
generated. This follows the basic idea of Bootstrapping, which allows statistical in-
ference based on a small subsample of a population.619 In total, 130,000 cases are
available for the analysis of actual and estimated effort as well as the evaluation of
overall estimation accuracy. The corresponding dataset is called Bootstrap Dataset.
In order to ensure comparability, this dataset is generated only once, and all cases are
stored in a database (1.95 million rows).620

Different Estimation Kernels

In the remainder of this chapter, different estimation kernels will be discussed. An
estimation kernel determines how estimated and actual efforts are processed. The
estimated effort of a work package is generally based on the empirical average effort
of the corresponding exercise.621 Estimation kernels can modify the actual or esti-
mated efforts in order to emulate certain effects that are supposed to be inherent in
software development projects.

To recapitulate, the approach of simple random subsamples utilized in the remainder
of this chapter is generally based on the following steps:

 Students are grouped by solution capability. 1)

 For each group, 10,000 simple random subsamples are drawn. 2)

619 EFRON (1979a); EFRON (1979b); EFRON, TIBSHIRANI (1993).
620 130,000 (cases/development teams) multiplied by 15 (work packages/exercises).
621 The average effort per exercise is calculated by considering the actual efforts of successful exer-

cise solutions only. The average is not calculated per group but for the entire population (all stu-
dents in the dataset). Cheated or unsolved exercises do not influence the averages.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 143

 A subsample represents a virtual development team. Each team 3)
consists of three developers or students, respectively, who are ran-
domly picked out of the corresponding group of solution capability
(sampling without replacement).

 Each team must solve 15 exercises, which are randomly picked out 4)
of the pool of available exercises (sampling with replacement). The
steps 1) to 4) generate the Bootstrap Dataset.

 The actual and estimated efforts per team are processed and ana-5)
lyzed afterwards. In the following, analyses differ in the applied es-
timation kernel.

Basic Estimation Kernel

For the basic estimation kernel, the actual efforts are based on the unadjusted empiri-
cal solution effort of the corresponding exercise and student. Tab. 4.11 presents the
results of this kernel. This table shows the effort deviation for each group of solution
capability based on 10,000 iterations per group. The first group, for example, con-
tains all 151 students that solved exercise one. On average, the actual effort of the
virtual development teams based on the first group deviates from the estimates by
only +0.2% (this value must converge towards zero). The fastest development team
had an effort underrun of 73.5% in contrast to the slowest team that overran estimat-
ed effort by 360.8%.

Tab. 4.11: Overview of the Bootstrap Dataset (basic kernel)

Group Cases
Group

members
Min. effort

deviation [%]
Mean effort

deviation [%]
Max effort

deviation [%]
1 10,000 151 -73.5% 0.2% 360.8%
2 10,000 132 -77.8% 1.0% 1616.3%
3 10,000 112 -67.0% 1.4% 788.8%
4 10,000 95 -78.5% 3.5% 500.4%
5 10,000 72 -73.4% 5.8% 604.9%
6 10,000 47 -69.7% 5.5% 349.7%
7 10,000 33 -70.4% 12.3% 253.1%
8 10,000 22 -68.6% 13.8% 202.2%
9 10,000 13 -73.2% 7.2% 195.0%

10 10,000 11 -70.3% 17.5% 180.1%
11 10,000 9 -70.4% 11.1% 188.0%
12 10,000 8 -71.9% 13.5% 197.2%
13 10,000 6 -66.3% 17.6% 186.8%

144 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

4.3.4.2 Paradoxical Averages

Since the basic estimation kernel is based on average solution efforts, we expect that
the actual and expected mean efforts must be consistent for all groups. Since higher
group ranks refer to higher solution capability, we might even expect that higher
ranked groups require less effort than expected. In fact, the opposite is true.

Paradoxically, the actual effort of each group is higher than the expected effort (see
Tab. 4.11 and Fig. 4.12; with the exception of exercise one). For example, the mean
effort deviation of the 10th group is 17.5% (see Tab. 4.11 and Fig. 4.12), i.e., the ac-
tual efforts based on 10,000 iterations exceed the estimates by 17.5% (not approx.
0%) on average. These mean deviations reflect a systematic estimation error in this
approach.

Fig. 4.12: Mean deviation of actual effort per group

In consequence, the given averages appear paradoxical and raise two questions:

 Why are the estimates biased? 1)

 Does the presented estimation approach work in general? 2)

Concerning the first question, the average efforts per exercise have evidently become
invalid when drawing subsamples. The figures in Tab. 4.11 show that the population
effort averages are not in line with the group averages (see column “mean effort de-

0.20%
1.00% 1.40%

3.50%

5.80% 5.50%

12.30%

13.80%

7.20%

17.50%

11.10%

13.50%

17.60%

-2.50%

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

15.00%

17.50%

20.00%

1 2 3 4 5 6 7 8 9 10 11 12 13

Group

M
ea

n
Ef

fo
rt

De
vi

at
io

n

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 145

viation”).622 The groups 5-13 notably perform below average with mean effort over-
runs between 5.5% and 17.2% (see Tab. 4.11 and Fig. 4.12). This observation sug-
gests that solution capability does not necessarily correlate with individual working
speed. A correlation analysis of working speed and solution capability confirmed this
suggestion (see Tab. 4.12; r=-0.156; p<0.05).

Tab. 4.12: Correlation of individual working speed and solution capability

Students who ambitiously tried to solve as many exercises as possible without cheat-
ing or skipping exercises have a lower individual working speed than the entire
population. The negative correlation and the given interpretation explain why the
estimates are biased. Besides, with respect to real-world projects, this finding shows
that it is important to assert that averages based on historical data are still valid when
staffing new development teams as subsets of the entire developer pool.623

In order to answer the second question, that is, whether or not the presented estima-
tion approach works in general, the approach must be statistically analyzed.
KITCHENHAM and LINKMAN argue:

“When you are developing an estimation model (or process) you
should always check your model’s performance against past data.
To assess whether your estimation model needs a correction factor,
calculate the residual for each of your past projects. Residuals are
the deviation between the value predicted by the estimation model
and the actual value, that is, ri = yi - yi(est) where yi is the actual
effort or duration, yi(est) is the estimated effort or duration, and ri

622 A related statistical effect is known as SIMPSON’S Paradox or YULE-SIMPSON Effect, respectively

(see SIMPSON (1951); WAGNER (1982)). This paradox refers to situations in which statistical
analyses might yield inconsistent results. When comparing two populations, each split into
groups, the observed incidences per group might become reverse after combining the groups. For
example, a population is split into two groups, each showing a positive growth rate. Paradoxical-
ly, the combination of both groups might show a negative growth. In this exploratory study,
however, the YULE-SIMPSON effect does not apply, since the dataset is based on one population.

623 With reference to the individual differences paradigm, this issue was already addressed in Sec-
tion 3.1.3.7. If individual differences are ignored, the computation and usage of averages for a
group of different individuals might lead to inappropriate figures. E.g., STERNBERG, BERG
(1992), p. 45.

Correlations

1,000 -,156*
. ,048

162 162
-,156* 1,000
,048 .
162 162

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

Working Speed

Solution Capability

Spearman's rho

Working
Speed

Solution
Capability

Correlation is significant at the 0.05 level (2-tailed).*.

146 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

is the residual for the ith project in the dataset. If your estimation
model is well-behaved, the sum of the residuals will be approxi-
mately zero. If the sum is not close to zero, your estimation model
is biased and you must apply a correction factor.”624

The vague condition “approximately zero” can be specified. The sum of all residuals
is significantly not different from zero if the mean of the residuals is less than the
standard error (SE) of the mean residual.625 Given the standard deviation s of all n
residuals, the standard error of the mean is determined as follows:

sSE
n

= Eq. 4.5

The mean effort deviations per group already revealed that the estimates are biased
(see Tab. 4.11 and Fig. 4.12). The corresponding analysis of residuals confirms this
bias. Except for group 1, the mean of the residuals is greater than the standard error,
and, therefore, the sum of residuals is different from zero (see Tab. 4.13).

Tab. 4.13: Standard error per group

Group
Standard

error
Mean of
residuals

1 4.97 2.60
2 6.97 10.46
3 5.42 14.20
4 8.29 50.86
5 7.84 85.71
6 6.60 73.14
7 7.33 200.22

Group
Standard

error
Mean of
residuals

8 6.69 231.29
9 8.16 139.26

10 8.67 366.93
11 9.71 251.11
12 10.04 311.39
13 11.07 455.11

In order to remove the bias, a group-specific correction factor is applied, which takes
into account that higher groups have a slower working speed. Since we already know
the group-specific mean deviation of effort (see Tab. 4.11), this information is used
to adjust the estimates. For each group, the estimated effort is simply increased by
the corresponding mean effort deviation percentage. In consequence, the mean of the
residuals decrease. Except for group 13, the mean of the residuals is less than the
standard error, and, for that reason, the sum of residuals is not different from zero.

624 KITCHENHAM, LINKMAN (1997), p. 73.
625 KITCHENHAM, LINKMAN (1997).

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 147

Tab. 4.14: Standard error per group (corrected estimates)

Group
Standard

error
Mean of
residuals

1 4.96 0.47
2 6.90 0.33
3 5.34 0.62
4 8.00 2.69
5 7.41 1.07
6 6.26 2.60
7 5.86 3.02

Group
Standard

error
Mean of
residuals

8 5.86 3.86
9 7.61 4.41

10 7.35 4.41
11 8.73 4.55
12 8.83 4.04
13 9.48 19.88

Finally, the corrected and uncorrected estimates can be compared. KITCHENHAM et
al. summarize how they conducted such a comparison:

“To test whether the estimates obtained from one estimation model
were significantly better than the estimates obtained from another,
we used a paired t-test of the difference between the absolute re-
sidual for each model.”626

Since the residuals of some groups are not normally distributed, a non-parametric
WILCOXON Signed Rank Test is conducted.627 This test does not make the assumption
of normality, and represents the non-parametric equivalent of the recommended
paired t-test.628 Similar to the paired t-test, the WILCOXON test compares the means of
two groups. The null hypothesis is that the two means are equal. The test results
show that the means are significantly different (p<0.001 for all 13 groups).629 Thus,
the null hypothesis must be rejected. Consequently, the presented approach does
generally work, and can produce unbiased estimates.

In the following, however, the exploratory study does not use the group-specific cor-
rection factors, since they require omniscience about all potential development teams
and their deviation of estimated and actual effort. This knowledge is considered una-
vailable for real-world development projects.

4.3.5 Analysis of Estimation Accuracy

The Bootstrap Dataset can be utilized to explore the possibilities and limitations of
estimation accuracy. This subsection follows KITCHENHAM et al. and their helpful
recommendations on estimation accuracy assessment.630 In their paper “What accu-

626 KITCHENHAM et al. (2002a), p. 63. See also KITCHENHAM, MENDES (2009); STENSRUD,

MYRTVEIT (1998).
627 WILCOXON (1945).
628 E.g., PETT (1997).
629 The same result was obtained by the paired t-test (p<0.001).
630 KITCHENHAM et al. (2001).

148 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

racy statistics really measure,” KITCHENHAM et al. discuss two typical statistics, i.e.,
the Mean Magnitude of Relative Error and Pred(25). Both statistics are common
instruments for assessing the accuracy of predictive models.631 Given the actual ef-
fort ai and the estimated effort ei for each project i, the MMRE is calculated as fol-
lows:

1

1 n
i i

i i

a e
MMRE

n a=

−
= ∑ Eq. 4.6

Pred(m) refers to the percentage of estimates that are within m% of the actual values.
Usually, accuracy is assessed by setting m to 25.632 Pred(25), for example, is calcu-
lated by counting the number of estimates that match the actual efforts with a toler-
ance of 25%.

Following KITCHENHAM et al., a new variable z0 is introduced which results from
dividing the estimated effort e by the actual effort a.633

0
ez
a

= Eq. 4.7

If z0 is equal to 1.0, the exercises were solved on time. Values less than 1.0 indicate
that the exercises were solved slower than expected, values greater than 1.0 refer to
fast solutions. In order to get a first overview of how the estimations deviate, the fol-
lowing Fig. 4.13 visualizes the relationship of expected and actual effort of the 1st
group based on z0.

Fig. 4.13: Distribution of z0 for the 1st group

631 CONTE et al. (1986).
632 KITCHENHAM et al. (2001).
633 KITCHENHAM et al. (2001). The index 0 refers to the applied PARKINSON intensity. The corre-

sponding PARKINSON effect is introduced later in this chapter.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 149

Fig. 4.13 illustrates that the distribution of z0 (group 1) is slightly right-skewed. Fur-
thermore, the distribution shows that it is improbable for a single project to be exact-
ly on time.

As another example, Fig. 4.14 shows the distribution of z0 for the 10th group. This
distribution has a similar spread, a higher peakedness while still being right-skewed.
Besides, Fig. 4.14 visualizes that it is much more probable to have cost overruns of
50% (left of 1.0) than equivalent underruns (right of 1.0).

Fig. 4.14: Distribution of z0 for the 10th group

In order to assess the estimation accuracy, it is beneficial to analyze both the spread
and kurtosis of the estimator.634 KITCHENHAM et al. demonstrate that MMRE is a
measure of the spread and Pred(m) is a measure of the kurtosis of z0. The values of
MMRE, Pred(25), as well as the standard deviation of all 13 groups can be found in
the following table Tab. 4.15.

634 KITCHENHAM et al. (2001). Kurtosis is a measure of the "peakedness" of a distribution.

150 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Tab. 4.15: MMRE and Pred(25) of all groups (basic estimation kernel)

Group MMRE Pred(25) Pred(25)
Underestimated

Pred(25)
Overestimated

Standard
Deviation

1 0.38 39.28% 19.01% 41.71% 0.47
2 0.44 35.99% 17.08% 46.93% 0.69
3 0.32 48.54% 14.67% 36.79% 0.52
4 0.47 31.48% 22.53% 45.99% 0.59
5 0.41 36.70% 23.83% 39.47% 0.53
6 0.34 44.36% 21.52% 34.12% 0.47
7 0.33 42.83% 28.91% 28.26% 0.45
8 0.29 50.63% 28.07% 21.30% 0.40
9 0.33 47.10% 23.85% 29.05% 0.41

10 0.30 48.44% 32.61% 18.95% 0.41
11 0.32 47.05% 26.44% 26.51% 0.43
12 0.32 46.12% 28.99% 24.89% 0.43
13 0.29 46.75% 33.35% 19.90% 0.41

Mean 0.35 43.48% 24.68% 31.84% 0.48

Interestingly, the given values of MMRE and Pred(25) that are based on the Boot-
strap Dataset are in a range that is also plausible for real-world development pro-
jects. The values calculated by KITCHENHAM et al. using an empirical project dataset
range from 37% to 42% for Pred(25) and from 0.599 to 0.697 for MMRE.635 The
accuracy statistics of all 13 groups refer to similar spreads (0.29 to 0.47) and
peakednesses (31.5% to 50.6%), which gives evidence that the Bootstrap Dataset
works as an appropriate basis for exploration.

The figures in Tab. 4.15 (MMRE/Pred(25)) highlight the importance of having
knowledge of the distribution of actual and estimated effort, instead of working with
just one single value representing the arithmetic mean. The knowledge of both the
spread and the kurtosis provides a more detailed view and allows assessing the pro-
ject risk.

For example, the distribution of z0 of the 10th group given in Fig. 4.14 shows that it is
possible to finish a project in half the time (2.0 on the x-axis). However, since the
distribution is right-skewed, the probability of facing cost overruns of 100% (0.5 on
the x-axis) is higher. The average cost overrun of 18% for the 10th group (see Tab.
4.11) can be interpreted as a warning for this.

Finally, concluding that a safety buffer of 20% eliminates project risk is dangerous.
Tab. 4.15 shows that Pred(25) is only 48.44% for the 10th group, whereas 32.61% of
the cases are underestimated. In view of that, the probability to overrun estimated
effort by more than 20% is around 32%. Moreover, safety buffers bear the risk that

635 KITCHENHAM et al. (2001).

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 151

developers misapply the given buffers to reduce working speed. This behavior be-
came known as the PARKINSON effect.636

4.3.6 Applying PARKINSON’S Law

Theoretical Background

In 1955, the British historian C. NORTHCOTE PARKINSON published a humorous arti-
cle in The Economist, which was a satire of government bureaucracies largely based
on his personal experience at the British Civil Service. In this article, PARKINSON
describes how people organize their working time, which quickly became well-
known as PARKINSON’S Law:

“Work expands so as to fill the time available for its comple-
tion.”637

PARKINSON illustrates the basic idea of this law by comparing an elderly lady, who
invests an entire day writing a postcard to her niece, with a busy man, who needs
three minutes for the same task. PARKINSON argues:

“Granted that work (and especially paperwork) is thus elastic in its
demands on time, it is manifest that there need be little or no rela-
tionship between the work to be done and the size of the staff to
which it may be assigned. […] Politicians and taxpayers have as-
sumed […] that a rising total in the number of civil servants must
reflect a growing volume of work to be done. Cynics, in questioning
this belief, have imagined that the multiplication of officials must
have left some of them idle or all of them able to work for shorter
hours. […] The fact is that the numbers of the officials and the
quantity of the work to be done are not related to each other at all.
The rise in the total of those employed is governed by Parkinson's
Law, and would be much the same whether the volume of the work
were to increase, diminish, or even disappear.“638

When agreeing on PARKINSON’S Law, the information about the allowed time has an
effect on the expended time (see Fig. 4.15). If the law applies, a developer, for ex-
ample, is unlikely to underrun the estimated time when completing a work package.
In this context, the metaphor of Gold-Plating is often used:

636 PARKINSON (1955).
637 PARKINSON (1957), p. 13.
638 PARKINSON (1955), p. 2.

152 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

“Developers are fascinated by new technology and are sometimes
anxious to try out new features of their language or environment or
to create their own implementation of a slick feature they saw in
another product – whether or not it's required in their product. The
effort required to design, implement, test, document, and support
features that are not required lengthens the schedule.”639

Fig. 4.15: The impact of PARKINSON’S Law on working speed

GOLDRATT’S Student Syndrome is another related phenomenon that focuses on how
individuals manage available time.640 The student syndrome describes that if individ-
uals are given too much time, for example, due to safety buffers, they will procrasti-
nate until they get close to the given deadline. In other words: The lack of motivation
is suddenly replaced by a lack of time. At this point, they start working while often
getting into time problems so that they cannot finish on time. GOLDRATT illustrates
the phenomenon of procrastination by a fictitious dialog between project managers:

"First, fight for safety time. When you get it, you have enough time,
so why hurry. When do you sit down to do it? At the last minute.
That's human nature."641

New Estimation Kernel

In order to explore the impact of the PARKINSON effect, a new estimation kernel was
implemented. This kernel implies that the developers are informed about the average
efforts of the work packages. Moreover, it implies that developers conform to the
given estimates in different intensities. Therefore, the actual effort of each exercise
was calculated in five variants. If the actual effort is below the expected effort, the
unused time was filled by 0%, 25%, 50%, 75%, and 100%, each percentage repre-
senting different intensities of the PARKINSON effect.

639 MCCONNELL (1996), p. 47.
640 GOLDRATT (1997); MCCONNELL (2006).
641 GOLDRATT (1997), p. 54.

Expended Time

Allowed Time

Task A

Expended Time

Allowed Time

(Same) Task A

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 153

For example, exercise 4 has a mean effort of 154 seconds (see Tab. 4.6). Assuming
that one developer solves the exercise in 90 seconds, the unused time is 64 seconds.
In this case, we get the following five time measures:

25

50

75

100

 90 64*0.00 90
 90 64*0.25 106
 90 64*0.50 122
 90 64*0.75 138
 90 64*1.00 154

oParkinson
Parkinson
Parkinson
Parkinson
Parkinson

= + =

= + =

= + =

= + =

= + =

 Eq. 4.8

For Parkinson0 the effect does not apply. This measure is always equal to the actual
effort. Conversely, for Parkinson100 the effect consumes the entire deviation of ex-
pected and actual time. Therefore, this measure is always equal to the expected time.

Impact on Effort

The overall influence of the different intensities of the PARKINSON effect on effort is
summarized in Tab. 4.16.

Tab. 4.16: Mean effort deviation for different PARKINSON effect intensities

Group
PARKINSON

0%
PARKINSON

25%
PARKINSON

50%
PARKINSON

75%
PARKINSON

100%
1 100% 107% 113% 119% 126%
2 101% 109% 117% 125% 133%
3 101% 108% 115% 121% 128%
4 104% 112% 121% 129% 138%
5 106% 114% 122% 130% 138%
6 105% 113% 120% 128% 135%
7 113% 120% 127% 134% 141%
8 114% 121% 127% 134% 141%
9 107% 115% 123% 131% 139%

10 118% 125% 132% 139% 146%
11 111% 119% 126% 134% 142%
12 114% 121% 129% 136% 144%
13 117% 124% 132% 139% 147%

Mean 109% 116% 123% 131% 138%

If the PARKINSON effect applies for real development projects, it must be taken into
account when explaining effort variance. While the intensity of the effect might dif-
fer across developers and companies, the effect seems applicable to software devel-
opment, since software is invisible (see Section 5.1.4.4), which generally makes
tracking progress difficult, and work packages are often based on abstract and even
incomplete information.

154 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

In this case, the expected time might be a helpful indicator for developers how to
understand task descriptions in terms of scope. If this is true, the PARKINSON effect
can be interpreted in two ways: 1) in its unconstructive form, developers adjust their
working speed to fill unused time, and 2) in its constructive form, developers use
effort estimates to conform their interpretation of work packages. In both cases,
however, the PARKINSON effect can turn effort estimates into a self-fulfilling prophe-
cy.

Interestingly, the mean effort overruns of Parkinson75 are around 30%, which is in
line with reported mean effort overruns of software development projects (see Sec-
tion 3.1.3.1). According to a WILCOXON Signed Rank Test, the deviations based on
the impact of the simulated PARKINSON effect are not random but statistically signifi-
cant for all groups (p<0.001). As mentioned above, the accuracy statistics MMRE
and Pred(25) of the Bootstrap Dataset are in a range that is also plausible for real-
world development projects.642 This finding, however, cannot be used to hypothesize
that the PARKINSON effect alone explains the effort overruns of real-word projects,
since there are other influences like optimism bias that can cause effort overruns.
Nevertheless, the figures in Tab. 4.16 give evidence that the PARKINSON effect leads
to plausible effort increases. Therefore, the effect is a candidate for explaining effort
overruns in software development projects.

Impact on Estimation Accuracy

In order to analyze the PARKINSON effect’s impact on estimation accuracy, four new
variables are introduced that reflect the different intensities of the PARKINSON effect:

25 50 75 100
25 50 75 100

e e e ez z z z
a a a a

= = = = Eq. 4.9

The variables a25, a50, a75, and a100 represent the actual effort assuming different in-
tensities of the PARKINSON effect. They correspond with the variables Parkinson25,
Parkinson50, Parkinson75, and Parkinson100 (cp. Eq. 4.8). The resulting accuracy sta-
tistics are summarized in Tab. 4.17. It must be pointed out that an analysis of estima-
tion accuracy is not superfluous due the previously observed increase of mean effort
(see Tab. 4.16). While an effect increases mean effort, it might still have a positive
impact on estimation accuracy.

In comparison to the zero intensity figures given in Tab. 4.15 (corresponds with Par-
kinson0), the spreads of higher PARKINSON intensities (>0) described by MMRE gen-

642 KITCHENHAM et al. (2001).

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 155

erally declined (see Tab. 4.17). The average of Pred(25) increased from 45% to 60%,
which is mainly based on previously overestimated projects that now move into the
25% tolerance range. The percentages of underestimated projects slightly increased.
Generally, for a PARKINSON intensity of 100%, the possibility of overestimating a
project is not given (0%), because all developer fill the available time so that effort
underruns are impossible.

Tab. 4.17: Estimation accuracy statistics of different intensities of the PARKINSON effect

Group
PARKINSON 50% PARKINSON 100%

MMRE Pred(25) Pred(25)
“under”

Pred(25)
“over“ MMRE Pred(25) Pred(25)

“under”
Pred(25)
“over”

1 0.215 64.91% 21.50% 13.59% 0.150 74.53% 25.47% 0.00%
2 0.234 58.99% 22.01% 19.00% 0.170 71.56% 28.44% 0.00%
3 0.188 72.76% 19.24% 8.00% 0.168 73.62% 26.38% 0.00%
4 0.255 52.98% 28.31% 18.71% 0.204 64.70% 35.30% 0.00%
5 0.241 56.25% 29.99% 13.76% 0.219 61.41% 38.59% 0.00%
6 0.209 65.24% 27.38% 7.38% 0.213 64.46% 35.54% 0.00%
7 0.235 56.60% 37.43% 5.97% 0.247 51.87% 48.13% 0.00%
8 0.223 59.15% 37.37% 3.48% 0.255 49.87% 50.13% 0.00%
9 0.218 61.32% 32.77% 5.91% 0.247 53.06% 46.94% 0.00%

10 0.244 53.18% 43.37% 3.45% 0.285 40.66% 59.34% 0.00%
11 0.227 59.82% 35.07% 5.11% 0.256 51.37% 48.63% 0.00%
12 0.234 57.55% 37.57% 4.88% 0.269 48.24% 51.76% 0.00%
13 0.242 53.88% 43.62% 2.50% 0.292 41.00% 59.00% 0.00%

Mean 0.230 59.43% 31.97% 8.60% 0.230 57.41% 42.59% 0.00%

To summarize, the mean efforts per group increase with higher PARKINSON intensi-
ties (see Tab. 4.16). This is, because a smaller number of “fast” work packages,
which were completed ahead of schedule, are available to compensate “slow” work
packages that exceeded the estimated effort. At the same time, the effect improves
estimation accuracy to some extent. Due to the higher proportion of underestimated
projects, it is questionable, however, whether or not to give this situation preference.
Therefore, the PARKINSON effect (alone) just increases effort, but it does not clearly
improve estimation accuracy.

At this point, it must be explained that the PARKINSON effect allows trading effort for
estimation accuracy. If the project manager lets developers fill available time, the
effort increases on average, since “fast” work packages converge to the estimates.
This setting increases overall effort. In opposition, “slow” work packages that cannot
be completed within the given timebox are unaffected by the PARKINSON effect. In
consequence, the deviation of overall effort diminishes, so that accuracy statistics
like MMRE and Pred(25) certify higher estimation accuracy. Yet, this higher accura-
cy is achieved at the expense of higher effort.

156 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Generally, project managers can use safety buffers to lower the chance of effort over-
runs. Safety buffers can be based on a fixed percentage, e.g., 30%, or on surcharging
multiples of the standard deviation of actual effort. Project managers are advised not
to inform developers about these buffers, in order to prevent that they are consumed
by the PARKINSON effect. If one project ends with effort overruns, such “secret”
buffers can be used to compensate the deviation from the estimate to a certain extent.

4.3.7 Impact of Project Control

Another aspect that is worth exploring is project control. We therefore assume that a
project leader tracks progress and informs developers whether or not the project gets
behind schedule. If the project is behind schedule, the project leader will encourage
developers to work focused and concentrated in order to work as fast as possible.
Conversely, if the project is ahead of schedule, developers will work without pres-
sure and the PARKINSON effect might apply.

Estimation Kernel

This trivial form of project control can easily be implemented as another estimation
kernel. For each project (iteration), the actual work time ai and the estimated work
time ei of the yet completed work packages (denoted by the index i) are accumulated.
The cumulated values are used to determine the pressure of time pr on which the
project manager makes decisions:

15

1
15

1

i
i

i
i

a
pr

e

=

=

=
∑

∑
 Eq. 4.10

If the cumulated actual work time is less than the cumulated estimated time
(pr<1.00), the project is ahead of schedule. In this case, the developers work as usual
and the PARKINSON effect might apply. Conversely, if the cumulated work time ex-
ceeds the cumulated estimated time by 20% (pr>1.20), developers are put under
pressure by project lead, so that they temporarily increase their working speed, de-
creasing actual effort by 20%. The pressure pr is evaluated after each work package
or exercise, respectively.

Impact on Estimation Accuracy

The impact on estimation accuracy is visualized in Fig. 4.16 for different PARKINSON
intensities denoted by z0, z50, and z100.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 157

Fig. 4.16: Distribution of z0, z50, and z100 of the 10th group under project control

For z0, the effect of project control is marginal (see Fig. 4.16; left diagram; cp. Fig.
4.14), since project control can only speed up development by 20% if the team gets
behind schedule. Conversely, the effect is stronger under the PARKINSON effect, be-
cause project control can allow or forbid filling available time. The histograms of z50
and z100 visualize that the distributions become more peaked while moving leftwards
compared to z0 (see Fig. 4.16; middle and right diagram). The corresponding statis-
tics of spread and kurtosis are given in the following Tab. 4.18.

Tab. 4.18: Estimation accuracy statistics under simulated project control

Group
PARKINSON 50% PARKINSON 100%

MMRE Pred(25) Pred(25)
“under”

Pred(25)
“over“ MMRE Pred(25) Pred(25)

“under”
1 0.181 72.51% 13.74% 13.75% 0.087 86.03% 13.97%
2 0.200 67.83% 12.68% 19.49% 0.095 86.81% 13.19%
3 0.155 81.69% 10.06% 8.25% 0.088 89.57% 10.43%
4 0.222 60.95% 19.19% 19.86% 0.124 79.74% 20.26%
5 0.201 66.01% 19.47% 14.52% 0.126 79.49% 20.51%
6 0.171 75.78% 15.97% 8.25% 0.116 83.18% 16.82%
7 0.183 71.54% 21.67% 6.79% 0.139 77.07% 22.93%
8 0.165 76.78% 19.20% 4.02% 0.136 79.62% 20.38%
9 0.171 74.70% 18.04% 7.26% 0.129 80.55% 19.45%

10 0.178 72.48% 23.11% 4.41% 0.155 75.42% 24.58%
11 0.175 73.95% 20.17% 5.88% 0.139 78.27% 21.73%
12 0.178 71.87% 22.32% 5.81% 0.146 76.20% 23.80%
13 0.176 72.27% 24.26% 3.47% 0.155 74.42% 25.58%

Mean 0.181 72.18% 18.45% 9.37% 0.126 80.49% 19.51%

A comparison of Tab. 4.17 and Tab. 4.18 clearly shows that the spread (MMRE) de-
creased while the peakedness (Pred(25)) of the estimations increased. Especially
under a full PARKINSON effect, 74% to 90% of the estimations matched the actual
working time using a tolerance of 25% (see “Pred(25)” of “Parkinson 100%” in Tab.
4.18). For that reason, we can note that the PARKINSON effect has a positive impact
on estimation accuracy when exercising forms of project control. At the same time,
however, the effect still increases overall effort (see Tab. 4.19).

158 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

Tab. 4.19: Impact of the PARKINSON effect on overall effort under project control

Group
PARKINSON intensity

0% 25% 50% 75% 100%
1 94.00% 99.00% 104.00% 108.00% 112.00%
2 95.00% 101.00% 107.00% 112.00% 116.00%
3 96.00% 101.00% 106.00% 110.00% 113.00%
4 97.00% 103.00% 109.00% 115.00% 119.00%
5 99.00% 105.00% 110.00% 115.00% 118.00%
6 99.00% 104.00% 109.00% 113.00% 116.00%
7 105.00% 109.00% 113.00% 116.00% 119.00%
8 106.00% 110.00% 113.00% 116.00% 118.00%
9 101.00% 106.00% 110.00% 114.00% 116.00%

10 109.00% 113.00% 116.00% 119.00% 121.00%
11 104.00% 109.00% 113.00% 116.00% 118.00%
12 106.00% 110.00% 114.00% 117.00% 120.00%
13 108.00% 112.00% 115.00% 118.00% 120.00%

Mean 101.46% 106.31% 110.69% 114.54% 117.38%

In view of the presented ratios, empirical observations of good estimation accuracy
must be critically challenged. On the one hand, good estimation results might be tru-
ly based on good estimation techniques. On the other hand, high estimation accuracy
might also be based on overestimation while developers fill the available time ac-
cording to PARKINSON’S Law.

Furthermore, it must be asked at this point, whether or not it is reasonable to assume
that project leaders, who are responsible for completing projects on schedule, set up
and launch a development project like an automated mechanical process in which
they cannot intervene until completion. Are project leaders not tempted to do any-
thing in their power so that the projects meet the schedule? Tab. 4.20 outlines how
project leaders might mistakenly perceive their role in and impact on the software
development process. If this perception applies for real-world development projects,
we must expect this type of project leaders to intervene whenever possible. General-
ly, the independency of estimates and actual effort becomes questionable when tak-
ing the interests of project lead into account.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 159

Tab. 4.20: Project leaders’ potential perception of development projects

Final project status What happened? Project leader’s perspective
The project exceeded the
schedule.

The project was underestimated,
that is, the estimates were too
low.

“The developers did a bad job.
They ignored my advices, ignored
the process guidelines, and got
lost in unnecessary details.”

The project ended on
time.

1) The project was underesti-
mated but the developers did
a brilliant job.

2) The project was overesti-

mated and the developers
filled the available time.

3) The estimates were accurate

and the developers did a
good, reliable job.

“Well done! I did a perfect job.”

The project ended ahead
of schedule.

The project was overestimated,
that is, the estimates were too
high. Yet, the developers did a
good job and refrained from
filling all the available time.

“Finally, developers start to fol-
low my advices and they con-
formed to the process guidelines.
And guess what: we can complete
projects ahead of schedule. I hope,
they have learned from this les-
son.”

4.3.8 Consideration of Individual Differences

In order to minimize the PARKINSON effect, an overall reduction of the estimate, for
example, by 30%, most probably leads to cost overruns, since all work packages will
be affected by this reduction. That is, the overall reduction also cuts estimates that
cannot be hold even without any PARKINSON effect. However, some work packages
in a project allow reducing the estimated time (those which would be affected by
PARKINSON), while other work packages demand more work time (those which
would exceed the estimates). The challenge is selecting the right packages for either
effort reduction or increase. In case of the simple random subsamples, the considera-
tion of individual differences among the developers might help making this deci-
sion.643

In order to analyze the consideration of individual differences and its impact on
overall effort and estimation accuracy, the previous estimation kernel was extended.
The new estimation kernel uses the individual working speed of students to adjust the
estimates. For “slow” developers (below average), the estimates are systematically
increased, while “fast” developers (above average) are confronted with reduced esti-

643 See Section 3.1.3.7.

160 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

mates. The corresponding figures for different PARKINSON intensities are given in
Tab. 4.21.

Tab. 4.21: Impact of individual differences on effort and estimation accuracy

Group

PARKINSON 0% PARKINSON 50% PARKINSON 100%
Mean effort

deviation Pred(25)
Mean effort

deviation Pred(25)
Mean effort

deviation Pred(25)
1 98% 74% 105% 92% 111% 98%
2 98% 73% 106% 92% 112% 96%
3 98% 83% 105% 96% 109% 97%
4 99% 70% 107% 89% 112% 91%
5 101% 76% 109% 90% 114% 92%
6 102% 77% 111% 93% 117% 96%
7 108% 80% 114% 92% 118% 92%
8 110% 81% 117% 95% 121% 95%
9 104% 72% 113% 94% 118% 97%

10 112% 77% 119% 90% 123% 91%
11 106% 82% 111% 91% 114% 91%
12 107% 83% 112% 90% 115% 90%
13 112% 75% 121% 93% 126% 94%

Mean 104% 77% 112% 92% 116% 94%

In view of the figures in Tab. 4.20 compared to Tab. 4.18, the consideration of indi-
vidual differences among developers allows improving estimation accuracy (cp.
Pred(25)) while keeping overall effort constant (cp. “Mean effort deviation”). For the
highest PARKINSON intensity, Pred(25) could be increased from 80% to 94% on av-
erage.

4.4 Summary

Although the Exercise Dataset is solely based on the learning activities of bachelor
students, it allows drawing conclusions that might also be true for developers in real
world software projects. To recapitulate, the data exploration led to the following
findings:

• Students show different levels of solution capability (see Section
4.3.1). While simple exercises were solved by more than 80% of
the students, the percentages quickly decline for more difficult ex-
ercises. Less than 25% were able to solve the last five exercises and
less than 10% solved the last two exercises. Such differences are in
line with the individual differences paradigm.

Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance 161

• Similar to solution capability, the solution effort also strongly var-
ies across students (see Section 4.3.2). The effort ratios range from
1:12 to 1:97.

• Generally, the mean solution effort strongly correlates with the
supposed level of difficulty (ρ=0.850; p<0.01; see Section 4.3.2).

• Students have an individual working speed, which is independent
of the individual solution capability and independent of the pro-
gramming language (see Section 4.3.3).

• Averages calculated on historical data can bias effort estimation
when staffing new developer teams. Historical data is not neces-
sarily valid for a particular team, and, thus, might lead to systemat-
ic errors in future estimation processes (see Section 4.3.4.2). Yet, in
this study the bias could be removed. Accordingly, the presented
approach does generally work, and allows producing unbiased es-
timates.

• Although the dataset allows perfect analogy for comparing work
packages, effort estimates considerably deviate from the actual ef-
forts when using averages.

• The accuracy statistics MMRE and Pred(25) of the Bootstrap Da-
taset are not contradictory to real-world development projects, sine
they are in line with the statistics of empirical project datasets.

• If developers are influenced by given estimates and fill the availa-
ble time, the effort increases by 30% on average (Section 4.3.6).
The PARKINSON effect describes this behavior.

• Project control can reduce overall effort by limiting the PARKINSON
effect. Consequently, project control can have a positive effect on
estimation accuracy (Section 4.3.7).

• Considering individual differences of students (e.g., the average
working speed) improves estimation accuracy without raising over-
all effort (Section 4.3.8).

Above and beyond, the data exploration led to a fundamental consideration. Given a
particular distribution of effort in the dataset, it appeared impossible to excess a par-

162 Chapter 4: Exploration and Quantitative Analysis of Students’ Programming Performance

ticular level of estimation accuracy. However, the achieved estimation accuracies
were still unsatisfying, although it allowed perfect analogy of work packages. The
distribution of z, for example, originates from the fact that the effort averages ignore
or obscure the actual variability that is given in the data. The actual efforts still have
a strong variability, which cannot be reflected by the estimates.

This poses the question, how one can overcome such difficulties in real world soft-
ware projects, since effort estimation is additionally affected by uncertainty, envi-
ronmental influences, incomplete historical data, vague forms of analogy etc. A po-
tential answer is that effort estimates – once produced – influence the project staff,
because it might be the only known and easily traceable parameter in the develop-
ment project. This conclusion is supported by the findings of the exploratory study.
Combinations of the PARKINSON effect and simple forms of project control have pro-
vided the best estimation accuracy. In this case, however, there is a feedback loop
between effort estimation and project members, including both the management and
the developer teams.

In consequence, it does not seem reasonable to assume a general independency of
estimated and actual software development effort. Instead, effort estimates must be
considered as self-fulfilling prophecies in real-world development projects. Accord-
ingly, this exploratory study provides three fundamental hypotheses:

 In order to achieve high estimation accuracy, project managers and 1)
developers must conform to given estimates.

 Given high PARKINSON intensities, the distribution of effort hardly 2)
allows effort underruns, since work packages are either completed
on time or behind schedule.

 The consideration of individual differences among developers im-3)
proves estimation accuracy.

A corresponding theory including a causal model, a set of assumptions and proposi-
tions, as well as general limitations is developed in the next chapter.

Chapter 5: Estimation Fulfillment Theory 163

5 ESTIMATION FULFILLMENT THEORY

All size and effort estimation techniques presented in Chapter 2 have in common that
they do not account for the effect of introducing estimates to project staff.644 Those
techniques address effort estimation as an isolated, independent problem assuming
that the estimates do not influence themselves. However, the literature review, the
discussion of the nature of software development, as well as the exploratory study
indicated that the opposite can be true.645

Consequently, this chapter focuses on this controversy in order to construct a theory
based on the observed phenomena. It has to be pointed out that the theory construct-
ed and discussed in the following can apply for particular software development pro-
jects or even particular software organizations. The theory does not claim to be gen-
erally true for all types of development projects or organizations. Accordingly, a set
of assumptions and propositions will be stated that can be tested empirically. Prior to
this predictive component, the causal model of the theory is developed which repre-
sents the explanatory component of the theory.

The distinction of an explanatory and a predictive component is made with respect to
GREGOR’S recommendations on IS theory.646 Towards the question what theory is,
GREGOR explains that:

“In general, philosophers of science writing in the tradition of the
physical or natural sciences are likely to see theory as providing
explanations and predictions and as being testable.”647

Correspondingly, POPPER’S view on theory is as follows:

“Scientific theories are universal statements. Like all linguistic
representations they are systems of signs or symbols. Theories are

644 One exception is the Integrated Dynamic Systems approach. See Section 5.4.
645 The literature review can be found in Chapter 2. The crux of software development is discussed

in Chapter 3. The explorative study can be found in Chapter 4.
646 GREGOR (2006).
647 GREGOR (2006), p. 614.

164 Chapter 5: Estimation Fulfillment Theory

nets cast to catch what we call ‘the world’; to rationalize, to ex-
plain and to master it. We endeavor to make the mesh even finer
and finer.”648

Although this characteristic view on theory is rooted in the natural sciences, it can
also be applied to the social sciences.649 However, some traditions originated from
social sciences that can be opposed to natural sciences. The interpretivist tradition,
for example, does not predominantly focus on testable theory but on understanding
complex social phenomena from the individual’s point of view.650 In order to consol-
idate different views on theory, GREGOR recapitulates that:

“Different perspectives on theory at a general level shows theories
as abstract entities that aim to describe, explain, and enhance un-
derstanding of the world and, in some cases, to provide predictions
of what will happen in the future and to give a basis for interven-
tion and action.”651

HATCH and CUNLIFFE define theory by differentiating academic theory from com-
mon sense, ideas, and expectations that can also be transferred into personal con-
cepts.652 They argue that:

“The basic difference between common sense theorizing and the
theorizing academics do is the added care academics take to speci-
fy their practice, correct its errors and share their theories with
others, thereby contributing to systematic knowledge-building ef-
forts. Theories are built from abstractions known as concepts. One
concept – called the phenomenon of interest – is selected from all
the others as a focus for theorizing and then related concepts are
defined and used to explain that one. Consider ALBERT EINSTEIN’s
theory that E = mc2. Energy (E) was EINSTEIN’s phenomenon of in-
terest and he explained it using the concepts of mass (m) and a
constant representing the speed of light (c). The squaring of c, and
its multiplication by m, specify how these explanatory concepts are
related to the phenomenon of interest and form EINSTEIN’s theory
about the relationship between energy and matter. In a nutshell, E
= mc2 shows what theory is – a set of concepts and the relation-

648 POPPER (1980), p. 59.
649 GREGOR (2006).
650 GREGOR (2006).
651 GREGOR (2006), p. 616.
652 HATCH, CUNLIFFE (2006).

Chapter 5: Estimation Fulfillment Theory 165

ships between them proposed to explain the phenomenon of inter-
est.” 653

With respect to IS research and the aspiration of IS researches, GREGOR argues that
“we need a language of our own to talk about theory and should not adopt uncriti-
cally ideas about what constitutes theory from any one other disciplinary area.”654
Additionally, she advices that “the nature of theory in itself is at least as important
as domain, epistemological and sociopolitical questions, which to date have attract-
ed a disproportionate share of the discussion of IS research.”655

The theory developed in this work follows GREGOR’S classification of and her rec-
ommendations on different theory types in IS research. The estimation fulfillment
theory comprises an explanatory as well as a predictive component, and, therefore, is
an EP-type theory.656 Consequently, the theory describes constructs (“Building
Blocks”), explain their causal relationships, and provides testable propositions under
defined assumptions. The theory will respond to all relevant “what is, how, why,
when, and what will be” questions. The aspects of theory corroboration, falsifica-
tion, and counter-findings are introduced and discussed in the next chapter, which
focuses on testing the theory by confronting it with empirical content.657

5.1 Explanatory Component

5.1.1 Building Block 1: Role of Project Lead

The primary objective of effort estimation is budgeting, followed by project planning
and project control.658 An estimate, however, is usually produced in a pre-planning
phase long before the software is developed and further details are known. Despite
the high degree of uncertainty at this point, the estimate becomes a means that is
used for early negotiations with customers and management. The customer wants to
know the price for building the software. Similarly, the management decides how
much budget is approved for the project. In consequence, the most important stake-
holders expect the project to be in line with the approved budget and start to put
pressure on project lead (see Fig. 5.1).

653 HATCH, CUNLIFFE (2006), p. 5.
654 GREGOR (2006), p. 635.
655 GREGOR (2006), p. 635.
656 GREGOR (2006).
657 E.g., KUHN (1970); LEE (1991); POPPER (1959); POPPER (1980).
658 The objectives of effort estimation are briefly summarized in Section 2.3.

166 Chapter 5: Estimation Fulfillment Theory

From this moment on, renegotiations by project lead with upper management or the
customer must be regarded as impossible or at least difficult, because the project is
subordinated to the financial interests of the stakeholders. Therefore, increasing the
estimated effort or stretching the project schedule is not welcome. However, renego-
tiations with developers are less complicated since developers are subordinated to
project lead. Accordingly, the effort of work packages can be adjusted or unclear
requirements can be interpreted and planned in a way that suits the project schedule.
In consequence, project lead both has an interest and means to make sure that the
actual effort matches the approved effort estimate.

Fig. 5.1: Most likely direction of renegotiations

According to the literature review, the most common estimation techniques are esti-
mation by analogy and expert judgment.659 Moreover, studies on estimation accuracy
found that estimation by analogy provides the most precise results. On the one hand,
it can be assumed that estimation by analogy results in high estimation accuracy be-
cause it automatically accounts for company-specific factors, like average staff skill,
influences of the development environment etc. On the other hand, it can be assumed
that estimates produced by analogy and expert judgment become personally connect-
ed to the persons who made them. Besides, such estimation techniques do not require
complete and detailed requirements. The estimates produced in the pre-planning
phase might therefore leave room for interpretations on how to implement particular
work packages. If more detailed information is available, for example, when writing
the specifications of work packages, the produced estimates might have already be-
come target values. If this is the case, project lead might not adjust the estimates but
the specifications in order to suit the schedule.

659 See Section 2.4.

Difficult Renegotiation

Difficult Renegotiation

Simple Renegotiation

Customer

Management (Responsible for Budgeting)

Project Lead (Responsible for Effort Estimation)

Developers

P
re

ss
ur

e

Chapter 5: Estimation Fulfillment Theory 167

When applying these considerations on the project management triangle, the esti-
mated effort and especially the approved budget become almost immobile figures
while project scope and software quality turn into moving targets (see Fig. 5.2). This
is in contrast to the common supposed setting in which schedule and scope are fixed,
and, for this reason, the only way to ensure a defined quality level is increasing effort
and budget.

Fig. 5.2: Project management triangle

5.1.2 Building Block 2: Behavior and Competence of

Developers

The PARKINSON effect and the Student Syndrome both explain what happens when
individuals are confronted with deadlines.660 Work time can generally be expanded
to fill all available time. Similarly, individuals procrastinate by concentrating on
other, unnecessary tasks until time pressure replaces the lack of motivation necessary
for focusing on the critical task. Besides the PARKINSON effect and the Student Syn-
drome, two further effects are regarded as important in this context.

5.1.2.1 Learning Curve Effect

The preliminary development of the learning curve is accredited to the German psy-
chologist EBBINGHAUS.661 The learning curve concept – as it is known today – was

660 The PARKINSON effect and the Student Syndrome are described in Section 4.3.6.
661 EBBINGHAUS (1885); LINDA et al. (1995).

Quality

Scope
(Features)

Schedule
(Time)

Resources
(Effort, Budget)

80
%

 s
ol

ut
io

n

Estimated

Actual

168 Chapter 5: Estimation Fulfillment Theory

initially published by WRIGHT in 1936.662 During empirical studies on airplane pro-
duction, WRIGHT observed a relationship between the cumulative quantity of manu-
factured units and the number of required labor. As the cumulative quantity doubles,
the required labor decreases at a uniform rate, which became known as the Learning
Curve Effect. The general learning curve can be expressed by the following equation:

2logY KX φ= Eq. 5.1

In this equation, Y is the number of working hours required for producing the next
unit, whereas X is the cumulative number of previously produced units. K represents
the number of working hours required for the production of the first unit. Finally, Ф
describes the learning rate, for example, 90%. A learning rate of 90% means that the
working time decreases to 90% after the next doubling of the cumulative working
hours. Due to the learning curve effect, productivity monotonically increases over
time (Fig. 5.3; log-linear model).

Fig. 5.3: Growth of productivity according to learning curve effects

According to YELLE, numerous geometric variants of the original, log-linear learning
curve have been proposed in the past, especially the Plateau Model and the S-Model
(see Fig. 5.4).663 An overview of common learning curve variants is given by
CARLSON.664

662 WRIGHT (1936); YELLE (1979). Common synonyms of the learning curve are progress curve,

improvement curve, and experience curve.
663 YELLE (1979).
664 CARLSON (1973); CARLSON (1976).

Pr
od

uc
tiv

ity
 /

C
ap

ab
ili

ty

Time / Output

S model

plateau model

log-linear model

Chapter 5: Estimation Fulfillment Theory 169

The phenomenon of Plateauing was observed subsequent to WRIGHT’S studies in
different contexts of manufacturing. During a startup phase, the observed workers
showed typical learning rates and improved their personal productivity. Later, how-
ever, workers entered a steady-state phase where the individual productivity re-
mained constant.665

Based on empirical observations, COCHRAN developed an S-shaped learning curve.
In this model, the learning curve starts with a concave form, later turning to a convex
form, which reflects different learning rates over time.666 COCHRAN assumes that
workers have to familiarize with new tasks first. This familiarization causes low
learning rates in the beginning. This phase, however, is followed by high learning
rates since workers become more and more trained and develop routine. Later, the
learning rates decrease similar to WRIGHT’S log-linear model.667

Fig. 5.4: Common learning curve models668

5.1.2.2 Conscious Competence Learning Model

The Conscious Competence (Learning) Model describes four stages each individual
passes through when progressing from incompetence to competence with regard to a
particular skill (see Fig. 5.5). The originator of the model is not known. CHAPMAN
gives a detailed discussion of potential origins of the conscious competence mod-

665 BALOFF (1966); BALOFF (1971); CONWAY, SCHULTZ (1959); YELLE (1979).
666 COCHRAN (1960); KUNOW (2006).
667 KUNOW (2006).
668 YELLE (1979), p. 304.

W
or

ki
ng

 T
im

e

Culmulative Output
1 10 100 1000

1

10

100

1000 S model

plateau model

log-linear model

170 Chapter 5: Estimation Fulfillment Theory

el.669 He also provides a comprehensive introduction. The conscious competence
model is considered as a useful framework in order to understand and give a context
for the DUNNING-KRUGER effect, which is described in the next subsection. The four
stages of competence are briefly outlined in the following:670

 Unconscious incompetence. The individual neither understands nor 1)
knows how to perform a task that requires the new skill. Addition-
ally, the individual is not able or does not want to assess his or her
deficit compared to skilled individuals.

 Conscious incompetence. The only difference to the first stage is 2)
that the individual starts to recognize a deficit. He or she under-
stands that the task to be performed requires a new skill.

 Conscious competence. The individual made progress. He or she is 3)
able to perform the task based on the new skill. However, using the
new skill requires consciousness and concentration.

 Unconscious competence. The individual developed routine. He or 4)
she utilizes the skill unconsciously with little effort and concentra-
tion. The ability to teach the skill to others, however, depends on
other personal factors.671

Fig. 5.5: Four stages of competence

669 CHAPMAN (2009).
670 E.g.. CLARKSON (2001); DICKMANN, STANFORD-BLAIR (2000).
671 CHAPMAN (2009).

incompetence competence

un
co
ns
ci
ou
s

co
ns
ci
ou
s

Stage 1
Unconscious
Incompetence

Stage 4
Unconscious
Competence

Stage 2
Conscious

Incompetence

Stage 3
Conscious
Competence

Chapter 5: Estimation Fulfillment Theory 171

In order to demonstrate the basic concept of the Conscious Competence Model,
CLARKSON gives a simple, illustrative example most of us might have experienced.
CLARKSON speaks of steps instead of stages:

“When we start to use a computer keyboard we are in step 1, una-
ware that there are some keyboard skills we don’t yet have. As we
start to use the keyboard and try to type quickly we move into
step 2, realizing that there’s more to this than meets the eye. If we
learn to type properly, we move into step 3 where we have to work
hard at hitting the right keys without always looking at what we are
doing, and getting it right more and more often. When we have
mastered typing skills, then we are in step 4 where we don’t have to
think about where the keys are but just use them automatically.”672

5.1.2.3 DUNNING-KRUGER Effect

In 1999, DUNNING and KRUGER published their results of four psychological studies,
themed “Unskilled and Unaware of It.”673 Their studies focused on how individuals
self-assess their competence or incompetence respectively. DUNNING and KRUGER

give three propositions of which they characterize the first two as noncontroversial
by referring to numerous supportive, former studies: 1) In many domains, success
and satisfaction depend on knowledge, wisdom, and knowing which rules to follow
and which decision to make, 2) individuals, however, differ extensively in the
knowledge and strategies they apply in these domains.674 The third, more controver-
sial proposition of DUNNING and KRUGER reads as follows:

“When people are incompetent in the strategies they adopt to
achieve success and satisfaction, they suffer a dual burden: Not on-
ly do they reach erroneous conclusions and make unfortunate
choices, but their incompetence robs them of the ability to realize
it.”675

DUNNING and KRUGER argue that the skills that account for one’s competence in a
domain are also necessary to evaluate one’s own or anyone else’s competence in that
particular domain. As a simple example, they refer to English grammar. The skills
necessary to write correct sentences are the same skills necessary to evaluate whether
a sentence is correct or not. They argue that:

672 CLARKSON (2001), p. 5.
673 DUNNING et al. (2003); DUNNING, KRUGER (1999).
674 DUNNING, KRUGER (1999).
675 DUNNING, KRUGER (1999), p. 1121.

172 Chapter 5: Estimation Fulfillment Theory

“[…] incompetent individuals lack what cognitive psychologists
variously term metacognition, metamemory, metacomprehension,
or self-monitoring skills. These terms refer to the ability to know
how well one is performing, when one is likely to be accurate in
judgment, and when one is likely to be in error.”676

The four conducted studies tested abilities in humor, logical reasoning, and grammar.
Each test also asked for self-assessment. DUNNING and KRUGER proposed four pre-
dictions that were confirmed by the study results and the corresponding statistical
analysis:677

 Incompetent individuals will dramatically overestimate their ability 1)
and performance.

 Incompetent individuals have a deficit in recognizing someone 2)
else’s competence.

 Incompetent individuals will be unable to use information about the 3)
choices and performances of others. Therefore, they do not im-
prove their self-assessment.

 When developing competence, the incompetent individuals start to 4)
gain insight about their deficits.

In a nutshell, the DUNNING-KRUGER effect describes why incompetent individuals are
likely to draw erroneous conclusions and pursue wrong strategies, while being una-
ble to realize it.

This effect is regarded as a relevant influence on project performance and project risk
as well.678 If the effect applies for particular developers, they will be unable to realize
their incompetence when they become overwhelmed by particular work packages. In
consequence, they can neither evaluate their own performance nor the quality of their
work appropriately. As a worst case, incompetent developers are assumed to spend
the entire estimated work time until they get behind schedule. At this point, they
cannot evaluate whether their solution is nearly complete or far away from comple-
tion. Moreover, they cannot assess the correctness of their solution. HARRISON gives
a comment on the impact of the DUNNING-KRUGER effect on software development:

676 DUNNING, KRUGER (1999), p. 1121.
677 DUNNING, KRUGER (1999).
678 E.g., DUNNING (2006); HARRISON (2004); JORGENSEN (2004).

Chapter 5: Estimation Fulfillment Theory 173

“We’ve probably all run into hotshot programmers who speak in
bits and bytes, promise the moon, but somehow never seem to de-
liver their work products (at least ones that actually work) on time.
I never really thought of this as some kind of universal pattern. Ra-
ther, I simply assumed that it was the luck of the draw, and I con-
tinued to take both organizational as well as personal self-
assessments of capabilities at face value. After all, we’re taught
that self-confidence is important, and to show doubt in your capa-
bilities is the equivalent of hanging a sign that says ‘INCOMPE-
TENT’ around your neck. […] If it were true that the important
thing is gaining knowledge, the implications would be tremendous.
Rather than actually changing their processes, organizations could
simply study their processes to gain more knowledge. […] Obvi-
ously, programmers gain a better understanding of what they do
and how they do it if they actually track how they’re spending their
time.”679

5.1.2.4 Impact on the Causal Model

If the PARKINSON effect applies for single developers or the whole development
team, the working speed and work focus will be adjusted in a way that the actual
time for completing a work package is close to the given estimate. This can happen
either unconsciously or consciously.

First, novice developers might be affected by the DUNNING-KRUGER effect, and,
therefore, they cannot assess their own work in terms of quality and completeness.680
Moreover, novice developers are almost certainly on a low learning plateau and need
more time to complete work packages compared to more experienced developers.681
In consequence, they will invest the complete estimated time, being unconsciously
affected by the PARKINSON effect.

Second, developers might consciously fill all available time because this behavior
leads to relaxed workdays. In this case, developers might try to reach a high degree
of completion as soon as possible and then slow down or turn to gold-plating.682
Since developers are usually not awarded for being ahead of schedule, there might be

679 HARRISON (2004), pp. 5-7.
680 For the DUNNING-KRUGER effect see Section 5.1.2.3.
681 The Learning Curve Effect is described in Section 5.1.2.1.
682 Gold-plating is described within the context of the PARKINSON effect in Section 4.3.6.

174 Chapter 5: Estimation Fulfillment Theory

no incentive not to fill the available time. This behavior refers to the unconstructive
form of the PARKINSON effect because developers simply waste available time.683

Third, developers use the effort estimate as an essential component of the specifica-
tion. Specifications are often incomplete, vague, and leave room for interpretations.
On the other hand, good performance, high software quality, reliability, pretty graph-
ical interfaces, good user experience etc. are always welcome. Therefore, developers
will always find reasons to expand work time in good faith.

For example, one developer is assigned to a work package, which addresses the im-
plementation of a web-based, statistical report of sales data. Assuming the effort es-
timation is two workdays. The developer will interpret the work specification in a
way that suits a timebox of two workdays. He or she then implements the necessary
database queries and codes a straightforward, table-based output generation.

Alternatively, we assume the effort estimate to be four workdays. In this case, the
work specification can be interpreted differently. Accordingly, the developer creates
a first draft of the solution. Then he or she might optimize the database query for
better performance. Next, several different output styles are created, tested, and com-
pared. Table columns of the report are made sortable. Finally, a feature is added that
allows users to customize, which columns appear in the report.

This example illustrates the impact of knowing the available time. Since the effort
estimate is produced by project lead while analyzing what to build, the estimate is
again used by developers for answering the same question. This form of the
PARKINSON effect has already been classified as the constructive form, since devel-
opers use effort estimates to conform their interpretation of work packages.684

Finally, procrastination and PARKINSON entail the risk of systematic cost overruns.
Work packages that could have been completed ahead of schedule are completed on
time, while work packages that are completed behind schedule increase overall ef-
fort. Even if the effort estimate is precise and feasible, the project will end with cost
overruns.

Fig. 5.6 gives examples based on this thought. The first work package (WP 1) could
be completed ahead of schedule. The responsible developer, however, fills the avail-
able time, so that he or she finishes on time (PARKINSON). For the second work pack-

683 The PARKINSON effect can be interpreted in two ways: 1) in its unconstructive form, developers

adjust their working speed to fill unused time, and 2) in its constructive form, developers use ef-
fort estimates to conform their interpretation of work packages. See Section 4.3.6.

684 See Section 4.3.6.

Chapter 5: Estimation Fulfillment Theory 175

age (WP 2), the developer procrastinates at the beginning. Since the developers
needs the total estimated time for completion, the work package finally ends with
effort overruns. The other examples demonstrate that combinations of PARKINSON
and procrastination are possible (WP 3 and WP 4), that PARKINSON and procrastina-
tion might also be found in the middle of work packages (WP 6), and that work
packages can exceed the estimates even without such effects (WP 5).

Fig. 5.6: Systematic cost overruns caused by PARKINSON and procrastination

5.1.3 Building Block 3: Craftsmanship of Skilled

Individuals

Development process models, e.g., waterfall or iterative models, used technologies,
programming languages, as well as development environments have an impact on
overall effort.685 To be more precise, such factors influence the productivity of the
development team. Agile development methodologies, for example, favor communi-
cation and regular meetings in order to prevent information asymmetries.686 A reduc-
tion of information asymmetries might lead to a smaller amount of misinterpreted
requirements, which has a positive impact on the proportion of rework. In return,
overall productivity of the team increases.

Effort estimation techniques usually take the environmental characteristics into ac-
count.687 Especially when using expert estimation or estimation by analogy, specific

685 See Section 3.1.3.5.
686 See Section 3.1.2.3.
687 See, for example, the list of effort multipliers of COCOMO in Section 2.3.1.2.

WP 1

100%

WP 2

WP 3

WP 4

WP 5

„Normal“ Work Time

PARKINSON

Procrastination

Effort overrun

Estimated Time

WP 6

W
or

k
P

ac
ka

ge
s

(W
P

)

176 Chapter 5: Estimation Fulfillment Theory

properties of the company and the development staff are considered during the esti-
mation process, because project experience or historical project data is generated in-
house. However, a sophisticated development environment does not necessarily lead
to good estimates. Since sophisticated development techniques raise productivity,
effort estimates are presumably conformed to the achieved productivity level. In con-
sequence, a project might be completed in 80% of the time that would be required by
a less productive competitor. Nevertheless, this project might still have caused cost
overruns of 30% according to inappropriate effort estimation.

According to the discussed nature of software development, building software is still
a craftsmanship of skilled individuals, and, therefore, the individual developers final-
ly determine the success of a project.688 In the description of COCOMO’81 and CO-
COMO II, we have also seen that staff factors, like analyst and developer capability,
have the highest impact on project performance.689 Assuming that techniques like
estimation by analogy and expert judgment automatically consider technological,
product-specific as well as project-specific factors, the staff-oriented factors must
still be taken into account.

With regard to the high impact of staff factors, if the individual differences are not
well known, and, in consequence, they cannot be precisely incorporated in the effort
estimation, the actual efforts of the project will show a high variance, which nega-
tively affects the estimation accuracy. In view of this, it is not surprising that exper-
tise-based estimation techniques can result in high estimation accuracy.690 Experts
can intuitively take account of the human aspects of a development project. Senior
project managers most probably know who is skilled and reliable, who is good in
prototyping, and who is best in finishing projects and assuring high quality work. At
the same time, they know who might procrastinate, who fills available time with
gold-plating, and who needs motivation and coaching in order to work on the project
goals. The explorative analysis of the Exercise Dataset has given evidence that effort
variability caused by individual differences results in precise estimates, when assum-
ing a simple form of project control and a high intensity of the PARKINSON effect.

688 See Section 3.2.
689 These factors were gained by regression analyses based on empirical project data. See Section

2.3.1.2, 2.3.1.3, as well as 2.3.1.4.
690 See Section 2.4.

Chapter 5: Estimation Fulfillment Theory 177

5.1.4 Building Block 4: Accidental Complexity and

Invisibility of Software

In his book “The Mythical Man-Month,” published in 1975, FREDRICK BROOKS de-
scribes four inherent properties of software systems: complexity, conformity, change-
ability, and invisibility.691

5.1.4.1 Complexity

BROOKS argues that software – in terms of size – is more complex than any other
human construct. According to the fundamental ideas of high-level programming
languages692, no two parts of a software system will look alike. Any piece of code
that is at least needed twice becomes a unique subroutine in a way that it can be effi-
ciently reused. For BROOKS, this alone is enough to differentiate software from tan-
gible products like computer hardware or buildings as their production is dominated
by repetition.693

BROOKS divides complexity into essential and accidental complexity. Essential com-
plexity is problem inherent and thus unavoidable by definition, since any simpler
solution would not solve the problem. In contrast, accidental complexity is avoidable
since it refers to a complexity that we create on our own, i.e., it originates from the
process or the techniques of solving the problem. BROOKS argues that:

“The complexity of software is an essential property, not an acci-
dental one. Hence, descriptions of a software entity that abstract
away its complexity often abstract away its essence. For three cen-
turies, mathematics and the physical sciences made great strides by
constructing simplified models of complex phenomena, deriving
properties from the models, and verifying those properties by ex-
periment. This paradigm worked because the complexities ignored
in the models were not the essential properties of the phenomena. It
does not work when the complexities are the essence.”694

The inherent complexity of software makes communication among developers diffi-
cult, it causes low software quality, cost overruns, as well as schedule delays. Final-
ly, software has a great demand for learning und understanding, which “makes per-
sonnel turnovers a disaster.”695

691 BROOKS (1975).
692 WILKES et al. (1952).
693 BROOKS (1995b).
694 BROOKS (1987), p. 11.
695 BROOKS (1995b), p. 184.

178 Chapter 5: Estimation Fulfillment Theory

Accidental complexity varies with developers’ expertise since a problem can be
solved in different ways. Different solutions, however, might require different levels
of knowledge and experience. BIGGELEBEN demonstrates the general presence of
accidental complexity when working with class libraries of common programming
languages.696 His work promotes the construction and utilization of frameworks in
order to focus on the essence by shortening the gap between requirements and their
implementation (see Fig. 5.7).

Fig. 5.7: Shortening the gap between requirements and their implementation697

Although the usage of frameworks requires a certain amount of training, their benefit
is reducing effort and risk during the implementation phase. Especially, in the con-
text of web-based development, frameworks like Prototype, Scriptaculous, and
JQuery are well-received among developers.698 Another (web application) frame-
work that recently aroused much attention is Ruby on Rails which stands out due to
its unique incorporation of programming principles like Convention over Configura-
tion as well as DRY (“Don’t Repeat Yourself”).699 Basically, all of these frameworks
offer frequently required functions that are pre-built, easy to use, and well tested
across different browser platforms. In consequence, such frameworks reduce acci-
dental development effort as well as the risk of unnecessarily spending time with
bug-fixing.

5.1.4.2 Conformity

In contrast to fields like physics or chemistry, where researchers identify and work
with unifying principles, the inner structure of software systems appears arbitrary:

696 BIGGELEBEN (2007).
697 See BIGGELEBEN (2007).
698 FUCHS (2009); PROTOTYPE CORE TEAM (2009); RESIG (2009).
699 HEINEMEIER HANSSON (2008).

Requirements Programming Language /
Class Libraries

Requirements
Engineering

Conceptual
Modelling Implementation

Development Process

Requirements Programming Language /
Class Libraries

Requirements
Engineering

Conceptual
Modelling Implementation Framework

Truncated Development Process
Less effort, less risk

Chapter 5: Estimation Fulfillment Theory 179

“Much of the complexity he [the software developer] must master
is arbitrary complexity, forced without rhyme or reason by the
many human institutions and systems to which his interfaces must
conform.”700

BROOKS argues that much complexity comes from the need to conform software sys-
tems to other interfaces. This complexity does not result from design flaws. Instead,
complexity based on the demand for conformity is rather natural and cannot be re-
moved by any redesign of the system.701

5.1.4.3 Changeability

Software systems are permanently subject to change – during their operational phase
or even during development. Tangible products, like computer hardware, buildings,
or cars can be subject to change as well. However, tangible, manufactured products
are changed much less frequently than software. BROOKS suggests that:

“Partly it is because software can be changed more easily – it is
pure thought-stuff, infinitely malleable. Buildings do in fact get
changed, but the high costs of change, understood by all, serve to
dampen the whims of the changers.”702

The need for change depends on how software is used and perceived. At first, suc-
cessful, widely accepted software systems will be used at the edge or beyond the
original, intended domain. Software might be used in a way it was not designed
for.703 It co-evolves with its application domain and, therefore, requires change.704

Second, successful software might outlive its technical environment. The technical
infrastructure might become obsolete over time until it gets replaced by new technol-
ogy. In this case, the software must be changed in order to conform to its new envi-
ronment.705

5.1.4.4 Invisibility

Software is immaterial and thus invisible. Moreover, software cannot be visualized.
Illustrations, like Entity-Relationship Models or UML Class Diagrams – despite their

700 BROOKS (1995b), p. 184.
701 BROOKS (1995b).
702 BROOKS (1995b), pp. 184-185.
703 BROOKS (1995b).
704 LEHMAN (1980); LEHMAN (1996). See Section 3.1.2.2.
705 BROOKS (1995b).

180 Chapter 5: Estimation Fulfillment Theory

usefulness – are only geometric abstractions.706 Because software is neither two nor
three dimensional, it has no natural spatial representation. BROOKS argues that:

“As soon as we attempt to diagram software structure, we find it to
constitute not one, but several, general directed graphs superim-
posed one upon another. The several graphs may represent the
flow of control, the flow of data, patterns of dependency […]. In-
deed, one of the ways of establishing conceptual control over such
structure is to enforce link cutting until one or more of the graphs
becomes hierarchical.”707

Visualizations of software systems are always based on simplification and the re-
striction to a particular, isolated perspective. Visualization techniques do not provide
a general view on the system, which reflects all causalities and dependencies. As a
result, the general absence of sufficient visualization techniques has a severe, nega-
tive impact on designing, communicating, as well as understanding software sys-
tems.708

5.1.4.5 General Impact on Software Development

The presented, inherent properties of software systems explain the irreducible es-
sence of software. On the question whether software development has to be hard or
whether there is a silver bullet for attacking the essence, BROOKS writes:

“I believe the hard part of building software to be the specification,
design, and testing of this conceptual construct, not the labor of
representing it and testing the fidelity of the representation. […] If
this is true, building software will always be hard. There is inher-
ently no silver bullet.”709

Complexity turns software development into a naturally ambitious and challenging
task. Software developers are confronted with both the essential and the accidental
complexity. Since accidental complexity originates from the process of problem so-
lution, only the accidents can be reduced by technological progress, for example, by
introducing new programming concepts, domain-specific languages, or application
frameworks.

706 BROOKS (1995b).
707 BROOKS (1995b), pp. 185-186.
708 BROOKS (1995b).
709 BROOKS (1995b), p. 182.

Chapter 5: Estimation Fulfillment Theory 181

BROOKS argues that even if 90% of the overall complexity were based on accidents,
the elimination of all accidental complexity would still not give an order of magni-
tude improvement.710 In a recent panel discussion on “Hopes for the Silver,”
BROOKS adjusted the ratio of essential and accidental complexity to past technologi-
cal improvements (see Fig. 5.8):

“The great leaps of progress in the past were accomplished by
eliminating accidental difficulties […]. Of the remaining difficul-
ties, at least half seem to me to be essential, the very inherent com-
plexity of what we build. Therefore, no attack on accidental diffi-
culties can bring an order-of-magnitude improvement – indeed,
more than a factor of 2.”711

Fig. 5.8: Past and recent proportions of essential and accidental complexity

Regardless whether a ratio of 10:90 or 50:50 is more plausible today, these ratios
show that the room for improvements based on eliminating accidental complexity is
limited. As a result, software developers might soon – unless they already do – face a
point of improvement, which does not provide major productivity gains any longer.
They might get stuck between minor productivity gains and huge learning efforts that
are required to master new technologies. However, the ratio of essential and acci-
dental complexity does not exclusively determine the effort required by a particular
developer. Individual differences across developers, for example, different levels of
experience and capability, must also be considered when turning to development
effort. Correspondingly, another member of the aforementioned panel discussion
states that:

“Striving for excellence is the real silver bullet that will deliver an
order-of-magnitude improvement through growth, both personal
and professional. The silver bullet must come from within, rather

710 BROOKS (1995b).
711 FRASER et al. (2007), p. 1027.

10%90% 50%50%

Accidental
Complexity

Accidental
Complexity

Essential
Complexity

Technological and
methodological progress

182 Chapter 5: Estimation Fulfillment Theory

than without. We are the Silver Bullet—which we achieve by pro-
fessional excellence.”712

5.1.4.6 Impact on the Causal Model

To reprise, accidental complexity refers to a complexity that we create on our own. It
originates from the process or the techniques of solving the problem. The degree of
complexity depends both on the particular problem as well as the particular develop-
er. Due to individual differences, e.g., experience and capability, different developers
will most probably favor different solution approaches when faced with identical
problems.

Experienced and skilled developers might prefer approaches that make use of sophis-
ticated frameworks, libraries, or components, which on the one hand require a signif-
icant amount of time to learn, but on the other hand decrease solution effort exten-
sively.713 Ergo, they can reduce accidental complexity as well as the risk of getting
stuck with irrelevant details.

In opposition, novice developers try to solve a problem completely by hand because
they are unaware of more sophisticated solution approaches. Besides facing a higher
degree of accidental complexity, novice developers usually need more effort for writ-
ing code than experienced developers. They might also waste time with side effects
and bugs more often.

For project lead, it is hard to observe whether a particular developer works on a diffi-
cult solution or whether he or she is not challenged and, therefore, able to complete
the work package ahead of schedule instead. The invisibility of software makes
tracking progress even more difficult.714 Developers will always find ways to appear
busy, which restricts project lead to tracking progress on or above the work package
level.

In order to exert control, project lead must know about individual differences across
developers. According to the explorative analysis, this appears to be the only way of
reducing estimated effort without risking equivalent cost overruns caused by less
experienced developers.715

712 FRASER, MANCL (2008), p. 92.
713 See Section 5.1.4.1.
714 See Section 5.1.4.4.
715 See Section 4.3.8.

Chapter 5: Estimation Fulfillment Theory 183

5.1.5 Summary of Causal Relationships

With respect to comprehensibility, this subsection picks up the considerations dis-
cussed above and consolidates the supposed causal relationships of software devel-
opment projects into one causal model. This model describes an organizational set-
ting that is supposed to promote estimation fulfillment:

 Software developers show individual differences in terms of capa-1)
bility, experience, talent, learning behavior, etc. Accordingly, de-
velopers perform differently during development projects.

 Besides, developers gain experience and learn new skills over time. 2)
This process of learning and advancing is also different between
developers. Some might advance quickly, while others already
stagnate on a particular learning plateau.

 In past projects, single work packages were completed on time, 3)
ahead of schedule, or behind schedule. Generally, work packages
differ in terms of difficulty and size. Whether or not a work pack-
age was delivered on time, mainly depends on its difficulty and size
as well as the individual skill set of the responsible developer.

 Project lead gains experience over time and learns how to estimate 4)
future effort based on analogy or intuition. The most important in-
struments for effort estimation are breaking down the software sys-
tem into smaller elements, breaking down the development project
into work packages, as well as the identification of analogies.

 Effort estimates are produced and communicated at early project 5)
stages. Estimates (unconsciously) become target values.

 Project lead tracks progress according to the master project plan, 6)
which is based on the approved estimates. If a project gets behind
schedule, project lead will take action in order to put the project
back on track.

 Estimates also become target values for developers. If developers 7)
require too much time for completing work packages, and exceed
estimated effort, project lead will intervene. In opposition, if devel-
opers are generally able to finish work packages ahead of schedule,
they have three options to conform to the estimates. First, develop-

184 Chapter 5: Estimation Fulfillment Theory

ers can procrastinate (Student Syndrome). Second, they can fill the
available time, for example, with gold-plating (PARKINSON). Third,
they perceive the estimate as an essential part of work package
specifications. According to the effort estimate, developers adapt
their interpretation of the solution to implement. In consequence,
two identical requirements specifications only differing in the esti-
mated effort, lead to two different solutions.

 In view of that, work packages that are completed on time or be-8)
hind schedule might outnumber work packages that are completed
ahead of schedule. Therefore, projects generally tend to exceed the
estimated overall effort. Project lead, however, monitors overall ef-
fort and tries to minimize effort overruns.

 As a result, projects exceed estimated effort by moderate percent-9)
ages, i.e., 20-30%, on average. Except for rare outliers, projects do
not end with effort underruns. Consequently, estimated effort and
actual project effort are not two independent observations. A par-
ticular organizational setting leads to estimation fulfillment.

 Finally, the individual differences between developers and their 10)
appropriate consideration during effort estimation are supposed to
influence the average percentage of effort overruns. If individual
differences are taken into account precisely, the deviation of effort
estimate and actual project effort will have a lower spread.

5.2 Predictive Component

5.2.1 Central Theory Statement

The interplay between project lead and developers, the craftsmanship of software
development, as well as the inherent properties of software, especially complexity
and invisibility, give causal explanations for a particular organizational setting of
software development projects. Based on this causal model, the central statement of
the Estimation Fulfillment Theory reads as follows:

Chapter 5: Estimation Fulfillment Theory 185

The ex-ante estimation of software development effort and the ex-
post observation of actual project effort are not independent. Espe-
cially, if effort is estimated by expertise-based estimation tech-
niques, the effort estimate will become an essential part of the spec-
ification and turn into a self-fulfilling prophecy. Both project lead
and developers have interests and means to fulfill the approved es-
timate. In view of that and due to the individual differences across
developers, actual effort will exceed any plausible estimate.

In general, the theory is limited to team- and project-based software development
projects.

5.2.2 Assumptions

According to the supposed causality of software development projects, this theory
acts on the following specific and testable assumptions:

Assumption 1 (A1): Practitioners favor expertise-based techniques, i.e.,
Work Breakdown Structures, Estimation by Analogy (or intuition),
and/or (Wideband) Delphi.

Assumption 2 (A2): Expertise-based techniques allow early estimates
based on premature requirement specifications. Accordingly, if
practitioners estimate effort by expertise-based techniques, esti-
mates are produced and communicated at early project stages.

Assumption 3 (A3): Project lead tracks progress and takes necessary ac-
tions in order to prevent the project from getting behind schedule.
Thus, project lead conforms to the given estimates.

Assumption 4 (A4): Developers tend to procrastinate, fill available time
with gold-plating activities, and/or perceive effort estimates as an
essential part of work descriptions. Estimates, therefore, signifi-
cantly influence how developers interpret and process work pack-
ages. As a result, developers conform to effort estimates.

Assumption 5 (A5): The productivity of developers significantly varies
due to individual differences, e.g., different levels of capability, ex-
perience, and learning plateaus.

Besides these five verifiable assumptions, two general assumptions are made. First, it
is assumed that employees who are responsible for effort estimation have necessary

186 Chapter 5: Estimation Fulfillment Theory

skills to produce plausible estimates, i.e., estimates are not absurd and do not gener-
ally make the completion of projects impossible. Second, effort estimates are not
generally affected by continuous overestimation.

If all assumptions are satisfied, the observation of actual project effort will not be
independent of observed effort estimates. In consequence, the particular project or a
whole organization will be affected by estimation fulfillment (EF). In the following,
projects or organizations that are affected by estimation fulfillment are called EF-
type projects or EF-type organizations respectively. Conversely, projects or organi-
zations that are unaffected are called I-type projects or I-type organizations (inde-
pendent estimation).

5.2.3 Propositions

Given that both project lead and developers conform to approved estimates, the con-
sideration of the presented causal model leads to the following three propositions:

Proposition 1 (P1): Except for rare outliers, actual project efforts will
not fall below estimated efforts if the project is an EF-type project.

Proposition 2 (P2): Actual project efforts will exceed estimated efforts by
a moderate percentage, i.e., 20%-30%, on average, if the project is
an EF-type project.

Proposition 3 (P3): If individual differences between developers are sys-
tematically and precisely documented and taken appropriately into
account during effort estimation, the deviation of estimated and ac-
tual effort will reduce for EF-type projects.

The first two propositions P1 and P2 will be subject to an empirical validation on the
basis of expert interviews with software professionals. This approach, however, is
not suited for validating proposition P3. Its validation requires a broader comparative
analysis of EF-type companies, which differ in how they take individual differences
into account. This analysis is not part of this thesis. Nevertheless, relevant interview
responses concerning proposition P3 will be presented. Additionally, the rationale
behind P3 will also be discussed during the expert review.

Before turning to the validation of the theory, the empirical observability of estima-
tion fulfillment is discussed first. The following section introduces the idea of esti-
mation fingerprints. Afterwards, a survey of closely related research is given.

Chapter 5: Estimation Fulfillment Theory 187

5.3 Statistical Perspective

Depending on the estimation technique, the experience of staff members who esti-
mate effort, the individual differences across the developer staff, as well as project-
specific factors, software companies have specific distributions of estimated and ac-
tual effort over time. Given historical project data of one company, this specific dis-
tribution becomes empirically observable. Such distributions or density functions,
respectively, can be interpreted as estimation fingerprints for specific types of effort
estimation and its impact on actual project performance. In order to analyze and vis-
ualize the relationship of estimated and actual effort, a new variable is introduced
which is based on the variable z that has been defined in Section 4.3.5 (see Eq. 4.7):

1 1 az
z e

− = = Eq. 5.2

We use the reciprocal value of z at this point, since it describes effort over- or un-
derruns more intuitively. If z-1 is 1.0, the estimated and actual efforts perfectly match.
If z-1 is greater than 1.0, the project caused cost overruns. A value of 1.5 or 2.0, for
example, refers to cost overruns of 50% or 100% respectively. Conversely, if z-1 is
less than 1.0, the project was completed ahead of schedule.

In the following, different estimation fingerprints are introduced. A fingerprint refers
to the individual shape of probability density functions based on z-1. It has to be
pointed out that such density functions do not assume a specific theoretical distribu-
tion like the normal, log-normal, or RAYLEIGH distribution. Yet, the supposed empir-
ical distributions are all based on a bell-shape that might be skewed. In order to spec-
ify the presented fingerprints, general descriptive statistics like arithmetic mean, var-
iance, skewness, and kurtosis are discussed.

5.3.1 Estimation Fingerprints

Unbiased Estimation

As a start, the following Fig. 5.9 describes a balanced, unbiased, and low spread dis-
tribution of z-1.

188 Chapter 5: Estimation Fulfillment Theory

Fig. 5.9: Balanced, unbiased, low spread effort estimation

The mean of the given distribution is 1.0. Accordingly, most effort estimations are
accurate, and correspond with actual effort, which indicates that the estimation is not
biased. Moreover, the distribution is balanced, as it is symmetric. Therefore, effort
overruns can be compensated with effort underruns in the long run. If the distribution
were right-skewed, the skewness would indicate effects like PARKINSON or procrasti-
nation. Finally, this distribution has an acceptable peakedness, since most estimates
stay within a 25% tolerance (Pred(25)) according to the mean.

This fingerprint describes the ideal type of effort estimation. It is neither biased by
optimism nor by self-fulfillment. A closely related unbiased fingerprint is illustrated
in Fig. 5.10. This distribution has the same properties except for a higher spread,
which indicates lower estimation accuracy.

Fig. 5.10: Balanced, unbiased, highly spread effort estimation

Underestimation

In contrast to the presented unbiased fingerprints, Fig. 5.11 shows an example of
biased effort estimation. Generally, most of the actual efforts exceed the estimates.

1.0

Fr
eq

ue
nc

y

0.5 1.5 2.0

Balanced,
low spread

effort estimation

z-1

1.0

Fr
eq

ue
nc

y

0.5 1.5 2.0

Balanced,
highly spread

effort estimation

z-1

Chapter 5: Estimation Fulfillment Theory 189

Accordingly, the mean of z-1 is above 1.0. This is an indication of either optimism
bias or the continuous use of biased effort averages. The distribution, however, is
still balanced, which indicates that neither PARKINSON nor procrastination causes this
bias.

Fig. 5.11: Biased effort estimation

Continuous Overestimation

Analogously, Fig. 5.12 visualizes effort estimation that is biased by continuous over-
estimation. For this type, the mean of z-1 is less than 1.0. Again, this distribution is
balanced, and only affected by pessimism.

Fig. 5.12: Biased effort estimation due to continuous overestimation

Pseudo-perfect Estimation

Continuous overestimation is not necessarily obvious as it can be hidden by the
PARKINSON effect. In this case, quantitative analyses of estimates and actual effort
can mistakenly lead to perfect estimation accuracy. On the one hand, overestimation
can absorb escalated work packages. On the other hand, assuming that the
PARKINSON effect applies with a high intensity, developers will generally fill the

1.0

Fr
eq

ue
nc

y

0.5 1.5 2.0

Optimism bias /
inappropriate averages

z-1

1.0

Fr
eq

ue
nc

y

0.5 1.5 2.0

Continuous
Overestimation

z-1

190 Chapter 5: Estimation Fulfillment Theory

available time, for example, with gold-plating activities. As a result, nearly all work
packages are completed on time. Fig. 5.13 shows the corresponding distribution of
z-1. Its high peakedness and low spread suggest perfect effort estimation. If continu-
ous overestimation and PARKINSON affect the effort estimation, however, the finger-
print given in Fig. 5.13 does not result from high estimation accuracy but from a
strong bias.

Extreme forms of overestimation would even turn z-1 into a left-skewed distribution
assuming that the PARKINSON effect cannot consume all buffer time (denoted by the
dashed left-skewed distribution in Fig. 5.13). In this case, lots of projects are com-
pleted with less effort than estimated without having as many counterparts on the
effort overrun side. As this asymmetry reduces the mean of z-1 below 1.0, this alter-
native fingerprint lies between Continuous Overestimation and Pseudo-Perfect Esti-
mation.

Fig. 5.13: Pseudo-perfect effort estimation

PARKINSON-affected Estimation

Generally, procrastination and PARKINSON both affect z-1 in a way that it becomes
right-skewed. In this case, effort overruns cannot be compensated by effort un-
derruns. The estimates are therefore unbalanced and biased. The observation that no
project is completed with effort underruns gives strong evidence for the PARKINSON
effect. Parkinson-affected Estimation can be distinguished from Underestimation by
looking at the skewness of z-1. Underestimation caused by a permanent optimism
bias, for example, is symmetric while Parkinson-affected Estimation shows a typical
right-skewed shape. The corresponding distribution of z-1 is given in the following
Fig. 5.14.

1.0

Fr
eq

ue
nc

y

0.5 1.5 2.0

Perfect
effort estimation

or

Continuous
overestimation with high

PARKINSON intensity

z-1

Chapter 5: Estimation Fulfillment Theory 191

Fig. 5.14: Right-skewed, unbalanced effort estimation

Self-fulfilling Estimation

Finally, the last fingerprint describes self-fulfilling effort estimation. This fingerprint
has three important characteristics. First, nearly all actual efforts are above the esti-
mates. Thus, all values of z-1 are greater than 1.0. Projects completed with effort un-
derruns are the exception. Second, the distribution of z-1 is fairly symmetric. Third,
the mean of z-1 refers to an acceptable average effort overrun of, for example, 20%
(1.20). Fig. 5.15 visualizes an exemplary distribution of z-1 based on self-fulfilling
effort estimates. If a company has this particular fingerprint, it can be assumed that
the interests of project lead and developers are set in such a way that projects gener-
ally exceed estimated effort. This bias represents a quantitative evidence for estima-
tion fulfillment.

Fig. 5.15: Estimation Fulfillment

5.3.2 Fingerprint Classification

In order to evaluate which fingerprint matches the effort estimation of a company,
historical project data must be available. Generally, the more project data is availa-

1.0

Fr
eq

ue
nc

y

0.5 1.5 2.0

Right-skewed,
unbalanced

effort estimation
(100% PARKINSON)

z-1

1.0

Fr
eq

ue
nc

y

0.5 1.5 2.0

Balanced
underestimation

(estimation fulfillment)

z-1

192 Chapter 5: Estimation Fulfillment Theory

ble, the more significant are accuracy analysis results. When assessing a company’s
effort estimation by analyzing the distribution of z-1, practitioners as well as re-
searches must focus on the mean, the skewness, as well as the minimum of z-1. The
following Fig. 5.16 gives a simplified classification tree that allows identifying
which fingerprint is given. This classification tree is not complete, but it accounts for
the characteristics of the discussed fingerprints.

Fig. 5.16: Simplified classification tree for estimation fingerprints

5.4 Survey of Closely Related Research

The phenomenon of estimation fulfillment has not been subject to intensive research
in the past.716 There is only little research that addressed this issue. Generally, the
possibility that estimates might become self-fulfilling is obvious. In textbooks on
effort estimation, the self-fulfillment of estimates, if at all, is only mentioned as a
side note. BOEHM, for example, argues:

“If a software development cost estimate is within 20% of the ‘ide-
al’ cost estimate for the job, a good manager can turn it into a self-
fulfilling prophecy. The degrees of freedom, which allow the pro-
ject manager to do this, are the common slack components of the
software person’s typical workweek. […] These slack components

716 For example, the phrase “estimation fulfillment” does not lead to any appropriate results when

searched via Google Web Search (six results in total). Likewise, Google Scholar does not find
any articles. The same is true for related phrases, e.g., “estimate fulfillment,” or similar spellings.
In literature, the phenomenon of interest is usually addressed by using the terms “self-
fulfillment” or “self-fulfilling estimates.”

z-1 is balanced
(symmetric)

z-1 is
left-skewed

z-1 is
right-skewed

Minimum of
z-1 >= 1.0

Minimum of
z-1 < 1.0

Mean of
z-1 ≈ 1.0

Mean of
z-1 > 1.0

Mean of
z-1 < 1.0

Underestimation

Unbiased Estimation /
Pseudo-perfect Estimation

Estimation
Fulfillment

Continuous
Overestimation

Extreme Overestimation &
PARKINSON

PARKINSON-affected
Estimation

Chapter 5: Estimation Fulfillment Theory 193

– training, personal activities, general professional activities –
comprise about 30% of the software person’s time on the job.”717

Additionally, BOEHM discusses the PARKINSON effect as well as the deadline effect as
further influences on project performance.718 However, BOEHM’S brief argumenta-
tion (less than two pages of text) is restricted to the project management perspective,
and his quintessence is that there is a synergy between estimates and good project
planning and control, which allows managers to fulfill estimates.719 With reference to
GREGOR’S theory classification720, BOEHM outlines drivers and means to conform to
estimates, and, hence, he briefly addresses the questions “what is” as well as “why.”
Yet, his short argumentation neither explains “when” this happens (assumptions to
be supported), what exactly “will be” (propositions), nor does it provide a detailed
causal model.

Similarly, MCCONNELL writes about the purpose of estimates:

“Project planners often find a gap between a project’s business
targets and its estimated schedule and cost. If the gap is small, the
planner might be able to control the project to a successful conclu-
sion by preparing extra carefully or by squeezing the project’s
schedule, budget, or feature set. If the gap is large, the project’s
targets must be reconsidered. The primary purpose of software es-
timation is not to predict a project’s outcome; it is to determine
whether a project’s targets are realistic enough to allow the pro-
ject to be controlled to meet them.”721

MCCONNELL affirms the possibility of self-fulfilling estimates. Even more, he argues
that the purpose of estimates is not just prediction but setting targets to which devel-
opers and managers commit. Elsewhere in his work, MCCONNELL also introduces the
PARKINSON effect as well as the Student Syndrome as important influences on project
performance.722 However, those concepts and thoughts are not integrated in order to
present a complete causal model that addresses the relationship of estimates and ac-
tual project efforts. Therefore, the questions “what is” and “why” are only addressed
superficially. Moreover, the relevant building blocks are rather scattered throughout
the entire work. Yet, MCCONNELL shortly focuses on and agrees upon the problem of
permanent effort overruns:

717 BOEHM (1981), p. 591.
718 BOEHM (1981), pp. 592-593.
719 BOEHM (1981), p. 594.
720 GREGOR (2006), p. 620. See Section 1.3.
721 MCCONNELL (2006), p. 13.
722 MCCONNELL (2006), pp. 21-22.

194 Chapter 5: Estimation Fulfillment Theory

“We often speak of the software industry’s estimation problem as
though it were a neutral estimation problem – that is, sometimes
we overestimate, sometimes we underestimate, and we just can’t
get our estimates right. But the software [industry] does not have a
neutral estimation problem. The industry data shows clearly that
the software industry has an underestimation problem.”723

SOMMERVILLE also briefly addresses the idea of self-fulfilling estimates. Besides, he
notices a lack of rigorous research on this issue:

“Project cost estimates are often self-fulfilling. The estimate is
used to define the project budget, and the product is adjusted so
that the budget figure is realized. I do not know of any controlled
experiments with a project costing where the estimated costs were
not used to bias the experiment. A controlled experiment would not
reveal the cost estimate to the project manager. The actual costs
would then be compared with the estimated project costs. However,
such an experiment is probably impossible because of the high
costs involved and the number of variables that cannot be con-
trolled.”724

However, the idea of dependence between estimates and actual project effort is only
brought up in one sentence. The questions “what is” and “why” are not discussed. A
predictive component (“when” and “what will be”) is not provided either. Neverthe-
less, SOMMERVILLE notices a lack of research, i.e., controlled experiments, as well as
problems of conducting such experiments in this context.

JORGENSEN and SJOBERG address this lack of research by conducting case studies as
well as controlled experiments with computer science students to analyze the impact
of effort estimates on software project work.725 However, they faced some difficul-
ties when conducting the experiments:

“The low number of participants makes the interpretation of the p-
values difficult. We interpret the results as a weak indication of a
relationship between too low effort estimates and a pressure on the
software work that, for small programming tasks, can lead to less
use of effort on the cost of more errors. Clearly, larger, more real-
istic studies with professional software developers are needed to
validate the size and significance of that relationship.”726

723 MCCONNELL (2006), p. 27.
724 SOMMERVILLE (2006), p. 620.
725 JORGENSEN, SJOBERG (2000); JORGENSEN, SJOBERG (2001).
726 JORGENSEN, SJOBERG (2001), p. 950.

Chapter 5: Estimation Fulfillment Theory 195

Nevertheless, based on the findings of the case study analysis and the experiments,
JORGENSEN and SJOBERG conclude:

"Pre-planning effort estimates can have a major impact on the de-
tailed planning effort estimate. One of the experiments indicates
that this impact is present even when the estimators are told that
the early estimates are not based on historical data or expert
knowledge. The awareness of the size of this impact seems low.
[…] Effort estimates can have a strong impact on the project work.
The size and nature of this impact depend, among other variables,
on project priorities and completeness of requirements specifica-
tion. For example, we found that projects with high priority on
costs and incomplete requirements specifications were prone to ad-
just the work to fit the estimate when the estimates were too opti-
mistic, while too optimistic estimates led to effort overruns for pro-
jects with high priority on quality and well specified require-
ments."727

Another confirmation of estimates influencing actual effort is given by ABDEL-
HAMID and MADNICK.728 In the description of their integrated System Dynamics ap-
proach, they argue:

“The critical point is that a different estimate creates a different
project. This phenomenon is somewhat analogous to the ‘General
Heisenberg’ principle in experimentation: ‘When experimenting
with a system about which we are trying to obtain knowledge, we
create a new system’. […] By imposing different estimates on a
software project we create different projects.”729

In order to model and simulate the impact of estimates on actual project perfor-
mance, the system dynamics model contains a recursive flow, including the project
progress, the project status, man-day shortage, communication overhead, as well as
workforce hiring and firing (see Fig. 5.17). Why these elements were selected, is
only reasoned in a few words.730 Yet, this issue has been addressed by ABDEL-
HAMID and MADNICK in a previous publication on the impact of schedule estimation
on software project behavior.731

727 JORGENSEN, SJOBERG (2001), p. 951.
728 ABDEL-HAMID, MADNICK (1991).
729 ABDEL-HAMID, MADNICK (1991), p. 169.
730 ABDEL-HAMID, MADNICK (1991), p. 170.
731 ABDEL-HAMID, MADNICK (1986).

196 Chapter 5: Estimation Fulfillment Theory

Fig. 5.17: The feedback impact of schedule estimates as suggested by ABDEL-HAMID and
MADNICK732

Although the focus of ABDEL-HAMID and MADNICK’s work on system dynamics is
predominantly on predicting “what will be,” they have given comprehensive expla-
nations on “what is” and “why” in the aforementioned previous publication. How-
ever, their work can be understood rather as an instrument than as a theory or specif-
ic research results. Correspondingly, they explain:

“The objective of this [research] is to enhance systematically our
understanding of and gain insight into the general process by
which software development is managed. […] The [developed inte-
grative system dynamics] model was used as an experimentation
vehicle to study or predict the dynamic implications of an array of
managerial policies and procedures.”733

In comparison to other research efforts, the work of ABDEL-HAMID and MADNICK
has the most similarities with the Estimation Fulfillment Theory. Accordingly, it
must be considered as the most closely related research. However, besides numerous
parallels with the Estimation Fulfillment theory, there are major differences:

 The research approaches, i.e., EP theory construction vs. develop-1)
ing a system dynamics model, are completely different.

 The research objectives are different. While the Estimation Fulfill-2)
ment Theory exclusively concentrates on the dependence of esti-

732 ABDEL-HAMID, MADNICK (1986), p. 71.
733 ABDEL-HAMID, MADNICK (1991), Preface.

Productivity

Progress

Schedule
estimates

Project
perceived status

Man-day
shortages

Communication &
training overhead

Work force
hiring & firing

Chapter 5: Estimation Fulfillment Theory 197

mated and actual project effort, the System Dynamics approach ad-
dresses the entire software development process.

 The major focus of the system dynamics model is on schedule, not 3)
on effort.

 The system dynamics model does not address the individual devel-4)
oper. Therefore, the questions why individual developers conform
to estimates, how estimates influence the developer’s perception of
specifications and work descriptions, what individual differences
between developers imply, and by what means project lead reacts
to delays, are either not discussed or argued in a different way.

 ABDEL-HAMID and MADNICK do not provide limitations that expli-5)
cate “when” estimates influence software project behavior and
“when” they do not.

 Their work is based on partially different assumptions, since they 6)
assume that

“Once requirements are fully specified and the architectural design
phase is initiated, there will be no significant subsequent changes
in the users’ requirements.”734

Finally, it has to be pointed out that – despite obvious similarities – the specific an-
swers and arguments given by ABDEL-HAMID and MADNICK on “what is, why, how,
and what will be” are different to the EFT. Moreover, the forms of presentation are
worlds apart. The EFT is presented as an EP theory with a clear causal model (“what
is, why, how”), a set of assumptions (“when”), as well as a set of propositions
(“what will be”). The comprehensibility of its presentation was double-checked by
the expert review. In opposition, one must have profound knowledge on system dy-
namics modeling in order to understand and comprehend the arguments and findings
of ABDEL-HAMID and MADNICK. Accordingly, it is questionable whether they suc-
cessfully reach the relevant audience, which should include practitioners.

734 ABDEL-HAMID, MADNICK (1991), p. 20.

Chapter 6: Test of Estimation Fulfillment Theory 199

6 TEST OF ESTIMATION FULFILLMENT
THEORY

The Estimation Fulfillment Theory (EFT) is newly constructed, and, therefore, must
be confronted with empirical content in order to get validated. This validation either
results in confuting or corroborating the theory. As a first step, the assumptions and
propositions were tested by a set of qualitative, semi-structured expert interviews.
Second, the theory, the underlying causal model, the assumptions, and propositions
were discussed with an expert in order to review the drawn conclusions and made
assumptions during theory construction from the practitioner’s perspective.

6.1 Research Method and Research Design

6.1.1 Design of Expert Interviews

Qualitative interviews are typically “structured interviews,” “unstructured or semi-
structured interviews” or “group interviews.”735 A group interview, however, is also
either structured or semi-structured. Structured interviews are based on a complete
script that leaves no room for improvisation. This type is often used in surveys,
which do not require the presence of the researcher. In opposition, semi-structured
interviews are based on an incomplete script. A set of questions is prepared before-
hand, leaving room for improvisation during the interview.736

MYERS and NEWMAN list numerous difficulties, problems, and pitfalls in using quali-
tative interviews.737 For example, interviews are often conducted with a lack of trust
and a lack of time. Additionally, the level of entry, e.g., whether the interviewee is a
junior or senior manager, might influence the interview result. Other noted problems

735 FONTANA, FREY (2000); MYERS, NEWMAN (2007).
736 FONTANA, FREY (2000).
737 MYERS, NEWMAN (2007).

200 Chapter 6: Test of Estimation Fulfillment Theory

are the construction of knowledge during the interview situation, the ambiguity of
language, as well as the possibility that interviews can completely go wrong.738

In total, seven expert interviews were conducted. All interviews were semi-structured
and based on identical scripts. Two interviews were group interviews with two inter-
viewees. The interview script can be found in Appendix A.3. All interviews were
conducted in the first half of 2009, in face-to-face meetings, and usually at the inter-
viewee’s company.

During the interviews, handwritten notes, including quotes, were taken and typed
afterwards. Since the interviewees have to disclose business secrets, handwritten
notes were preferred to a tape recorder. While some interviewees explicitly refused
to be tape recorded, it was supposed that tape recording has a negative effect on the
willingness to disclose sensitive information. Similarly, HAYES and WALSHAM ar-
gue: “Detailed field notes were preferred to the use of a tape recorder, as it was
thought that tape recording would have led to less candid responses.”739 In general,
the interview questions were designed with respect to the aforementioned problems
and pitfalls.

Concerning the potential lack of trust, all interviewees were informed that the inter-
views can be done anonymously, and that they will receive a One-way Non-
Disclosure Agreement (NDA). “One-way” means that only the researcher signs the
contract, and only the researcher must ensure confidentiality. According to HAYES
and WALSHAM, “the initial part of the interview would be spent explaining the iden-
tity and purpose of the researcher(s), and reassuring interviewees that no attribution
would be given to their views in any subsequent discussion or reports.”740

Additionally, all interviewees were informed about the estimated minimal duration of
the interview. Pretests had shown that the interview could be completed in 1.5 hours
if questions were only briefly answered. Since the actual duration strongly depends
on the interviewee’s willingness to explain and disclose internal matters, the inter-
viewees could control the duration of the interview. They were encouraged to stop
the interview if it took too long. Yet, no interview had to be stopped due to time
problems or for other reasons.

All interview questions were kept as simple as possible and positioned in a deliberate
order to avoid the construction of knowledge during the interview. A common ques-

738 MYERS, NEWMAN (2007).
739 HAYES, WALSHAM (2001), p. 268.
740 HAYES, WALSHAM (2001), p. 268. MYERS, NEWMAN (2007), p. 22.

Chapter 6: Test of Estimation Fulfillment Theory 201

tion asked by the interviewees was “What did other interviewees say?” which was
never answered during the interviews. However, after the official interview phase,
interviewees who explicitly asked for it received feedback about their answers and a
more detailed introduction on the actual purpose of this research. Before and during
the interviews, the interviewees neither knew about the EFT nor were they informed
that answers are partially used for theory testing.

The selection of interviewees originated from the personal network of the author
(both private and professional). At first, based on direct contacts, a list of potential
interview candidates was compiled. Each candidate was addressed via e-mail, phone,
or personal meetings. They were asked about their involvement in effort estimation
and the willingness to make an interview. Whenever possible, the heads of develop-
ment were contacted as well. Afterwards, the interviewees were selected in terms of
their position, responsibility, and years of working experience. Therefore, most in-
terviewees have project lead experience, are senior managers and/or head of devel-
opment. All of them are concerned with effort estimation.

All interviews have been conducted in German. The interview responses presented in
the following were translated into English. Translated quotations are enclosed by
double quotations marks.

6.1.2 Analysis of Expert Interviews

The expert interviews are used to test whether or not the assumptions and proposi-
tions of the EFT can be found in practice. Following POPPER, a theory can never be
proven.741 The empirical feedback of experts, however, can be used to corroborate or
falsify the EFT.742 Concerning the basic idea of falsification, POPPER summarizes:

"It should be noted that a positive decision can only temporarily
support the theory [(corroboration)], for subsequent negative deci-
sions may always overthrow it [(falsification)]."743

In general, a theory must satisfy four requirements. These are falsifiability, logical
consistency, relative explanatory power, and survival.744 In order to test the survival
of a theory, it must be confronted with empirical content. In this study, the experts’
verbal responses are the empirical content the theory is confronted with. The hypo-

741 POPPER (1959).
742 LEE (1991).
743 POPPER (1959), p. 33.
744 POPPER (1959).

202 Chapter 6: Test of Estimation Fulfillment Theory

thetico-deductive model is applied to test qualitatively whether or not the interview
responses corroborate or contradict the theory.745 LEE explains:

“In hypothetico-deductive logic, the major premise is a general
theory, the minor premise is a set of facts (the ‘initial conditions’)
describing a situation, and the conclusion is what the theory pre-
dicts or hypothesizes to be observed in that specific situation. This
means that, even if a theory is not directly verifiable because it re-
fers to unobservable entities, it can still be tested indirectly,
through the observable consequences (equivalently called ‘predic-
tions’ or ‘hypotheses’) that are logically deducible from it. For ex-
ample, the theory that ‘All men are mortal’ can be tested through
its prediction that ‘Socrates is mortal’ by observing whether or not
Socrates dies. This also means that no theory can be conclusively
verified as true, since a new situation and a new prediction (‘Plato
is mortal’) would reopen the possibility for its being disproven. A
theory that is said to be ‘confirmed’ or ‘corroborated’ is one that
has survived such a test, but remains open to being disproven in fu-
ture tests.”746

Concerning deductive approaches as means of theory testing, LEE argues:

“In mathematical analysis, the validity of deductions involving
mathematical propositions can be readily checked by turning to the
rules of algebra. In qualitative analysis, there is no corresponding
body of rules as succinct or easily applied as the rules of algebra
for verifying the validity of deductions involving verbal proposi-
tions. To respond to this problem, it must first be emphasized that
mathematics is a subset of formal logic, not vice versa. Logical de-
ductions in the general case do not require mathematics. An MIS
case study that performs its deductions with verbal propositions
(i.e., qualitative analysis) therefore only deprives itself of the con-
venience of the rules of algebra; it does not deprive itself of the
rules of formal logic, to which it may therefore still turn when car-
rying out the task of making controlled deductions.”747

Since the EFT consists of both a set of assumptions and a set of propositions, the
assumptions must be tested first. If at least one of the assumptions is not satisfied, the
theory does not apply at all, and, therefore, the corresponding interview can neither
be used to corroborate nor to falsify the theory. In opposition, if all assumptions are
satisfied, the propositions of the EFT must hold true (corroboration). If all assump-

745 LEE (1991).
746 LEE (1991), p. 345.
747 LEE (1989), p. 40.

Chapter 6: Test of Estimation Fulfillment Theory 203

tions are satisfied, but at least one proposition fails in its application, the theory is
falsified.

Accordingly, the analysis of an expert interview leads to one of three potential re-
sults that are described in the following.

First, if all assumptions are supported by an expert interview, it is supposed that the
projects the interviewee refers to are affected by estimation fulfillment. If this is giv-
en, the two stated propositions (P1 and P2) must hold true, i.e., projects do not end
with less actual effort then estimated and projects do have a moderate percentage of
effort overruns on average (see Fig. 6.1). If the two propositions are supported, the
interview results will corroborate the EFT.748

Fig. 6.1: Corroboration of the EFT

Second, if at least one assumption is unconfirmed, the interview does not allow fur-
ther testing of the theory, since there is not enough evidence that the projects are af-
fected by estimation fulfillment. In this case, the interview neither falsifies nor cor-
roborates the EFT (see Fig. 6.2).

748 POPPER (1959).

A1

A2

A3

A4

A5

Estimation
Fulfillment

P1

P2

All assumptions
supported

EF-type
projects

All propositions
hold true

Corroboration
of the EFT

204 Chapter 6: Test of Estimation Fulfillment Theory

Fig. 6.2: Unsupported assumptions

Third, if all assumptions are supported, but at least one proposition does not hold
true, the EFT in its particular form will be falsified (see Fig. 6.3).749 However, coun-
ter-findings might also reveal differences between projects or companies that can be
used to define further limitations of the EFT. If this is both feasible and plausible, the
counter-findings do not necessarily falsify the theory, but narrow its applicability (ad
hoc adjustment).750 In other words, counter-findings might increase a theory’s accu-
racy on the expense of relevance. Correspondingly, KUHN argues:

“All experiments can be challenged, either as to their relevance or
their accuracy. All theories can be modified by a variety of ad hoc
adjustments without ceasing to be, in their main lines, the same
theories. It is important, furthermore, that this should be so, for it
is often by challenging observations or adjusting theories that sci-
entific knowledge grows.”751

749 POPPER (1959).
750 KUHN (1970).
751 KUHN (1970), p. 13.

A1

A2

A3

A4

A5

Estimation
Fulfillment

P1

P2

At least one
assumption
unsupported

Chapter 6: Test of Estimation Fulfillment Theory 205

Fig. 6.3: Falsification of the EFT

For example, if one interviewee explained that his or her employee solely uses the
Function Point method to estimate effort, one assumption (estimation by analogy)
would be unsupported. In consequence, the interview would neither allow corrobo-
rating nor falsifying the theory. Conversely, if all assumptions were supported, but
one interviewee reported that lots of projects end with effort underruns, Proposition 1
would be violated, and, consequently, the theory would be falsified.

Finally, the two general assumptions made, i.e. project managers can produce plausi-
ble estimates while not being affected by continuous overestimation, are not subject
to an empirical validation in this research as they require an in-depth analysis of each
interviewee, as well as each interviewee’s company.752

6.2 Interview Results

In the following, the conducted expert interviews are briefly presented.753 Besides the
focus on the assumptions and propositions of the EFT, the biography of the inter-
viewee, his or her professional experience, the employer, and especially the process
of effort estimation are described. Since all interviewees wanted the interviews to be
anonymized, the names of the interviewees and their employers were changed.

752 The two general assumptions are supposed to be satisfied due to economic considerations: If staff

members who are responsible for effort estimation were generally unable to produce plausible es-
timates, they would get out of engagement in the log run. Similarly, if companies were affected
by continuous overestimation, they would have severe problems in acquiring new projects.

753 A short overview of further lessons learned can be found in Appendix A.4.

A1

A2

A3

A4

A5

Estimation
Fulfillment

P1

P2

All assumptions
supported

EF-type
projects

At least one
proposition

violated

Falsification
of the EFT

Couter-finding allows
incoporating a new,
plausible limitation

206 Chapter 6: Test of Estimation Fulfillment Theory

6.2.1 Expert Interview #1

The first interview was conducted on January, 16th 2009 with BOB who is currently
employed by EnSwiss, a Swiss company focusing on energy trading and supply. The
interview took 4.5 hours. Biographical details of the interviewee are given in the fol-
lowing Tab. 6.1.

Tab. 6.1: Biographical details of BOB

Biographical details of the interviewee

Synonym BOB

Year of birth 1978

Age 31

Nationality German

Professional experience 5.5 years

University / Graduation Fachhochschule Münster, business administration, 2003

Current employment

Role Analyst

Time of employment 1/2008 until today

Job description Requirements engineering, professional project lead, process design,
documentation, Assistant head of development.

Completed projects 4

For the last six years, BOB has been working for two different companies, which are
both outlined in the following Tab. 6.2. BOB’s department at EnSwiss is responsible
for conducting large projects, which typically address the development, customiza-
tion and/or introduction of Energy Trading and Risk Management (ETRM) as well as
accounting systems.

Tab. 6.2: Employers of BOB

Company #1 “Energy One”

Synonym Energy One

City, Country Vienna, Austria

Turnover per year 10-15 million €

Employees 70

Market Software development, energy trading, consulting

Core competence Energy Trading and Risk Management (ETRM) systems

Typical customers Midsize and large energy companies

Former Employment

Role Product manager

Time of employment 1/2004 until 12/2007

Job description Responsible for particular modules of the energy trading system.
Requirements & Design. Project leadership.

Completed projects 6

Chapter 6: Test of Estimation Fulfillment Theory 207

Company #2 “EnSwiss”

Synonym EnSwiss

City, Country Zurich, Switzerland

Turnover per year > 1 billion €

Employees > 500

Market Energy trading & supply. Focus of BOB’S department: Software
development, project leadership

Core competence Energy. BOB’S department: large projects, ETRM systems, account-
ing systems

Typical customers BOB’S department: international subsidiaries, contractors of EnSwiss

Projects members 8 – 40

Project volumes 500,000 to typically over 1 million €

For his current employer EnSwiss, BOB is responsible for effort estimation. He de-
scribes the estimation process as follows:

We start each project with a kick-off workshop, where I meet two,
three, or up to six representatives of the project owner. These rep-
resentatives are usually experts. We discuss and collect business
cases to get a picture of the software and the project goal. This
kind of workshop lasts several days. The goal of the workshop is to
identify the relevant business processes and to determine the
boundaries, both of the software system and the project, in order to
prevent a “moving target.”

After the workshop, I start writing a business concept, which takes
one or two months. The business concept comprises all require-
ments of the software – that is, business requirements, technical re-
strictions, and further constraints. Both the customer and my su-
pervisor receive a copy of the business copy for review.

When the concept is completed, I meet with project lead. Based on
the business concept, we create a full list of required tasks and a
first, coarse-grained project plan. At this point, we produce the
first effort estimates based on experience and analogies. The crea-
tion of the project plan usually takes some days.

Next, I arrange an appointment with all relevant peer developers.
This meeting is internal, so the project owner does not participate.
My job is to present the business concept, explaining the business
details, and informing about the project plan. I already present the
effort estimates per work package. During this meeting, the peer
developers give feedback and discuss the estimates with me. For
complex tasks, they usually turn in their comments later. This meet-
ing is repeated two or three times, each lasting about two hours.
The result of this meeting series is a complete work breakdown for

208 Chapter 6: Test of Estimation Fulfillment Theory

the project including effort estimates and responsibilities per task.
My boss gets a copy of this plan for review.

Afterwards, I meet with project lead in order to create the final, de-
tailed project plan. At this point, we have received the reviews and
change requests for the business concepts. For project planning,
we simply use MS Project. Large projects can easily fill the walls
of our corridors. The detailed plan contains all tasks, their depend-
encies, the responsible developers, as well as the planned dura-
tions.

The next step is the project kick-off, which is attended by project
lead, the representatives of the project owner, peer developers, and
– if required – external suppliers. We present the detailed project
plan and inform about the schedule. When the project is started, we
permanently monitor and evaluate the actual efforts per task in or-
der to intervene if problems occur.

Accordingly, effort estimation is based on an expertise-based technique, i.e., estima-
tion by analogy and experience. Assumption A1 is therefore supported. Effort esti-
mates are produced before project kick-off, and, hence, during an early planning
phase. Moreover, BOB stated that actual efforts are permanently monitored and com-
pared to the estimates in order to take actions. In view of that, assumption A2 and A3
are also supported. With respect to the PARKINSON effect, BOB answered:

I do not adjust my working time consciously, but – when I think
about that now – I do unconsciously. And when I continue thinking
about that, this effect definitely applies for most – if not all – of my
colleagues, too.

Concerning the question whether or not he can work faster if deadlines have to be
met, he stated that:

Yes, but we also do overtime. I am not sure. Maybe I can increase
my personal productivity by 20% by focusing on the critical task.
Or I stay at home and work there. This definitely gives me a great
increase of productivity since I will be less disturbed by daily busi-
ness, for example, phone calls or discussions with colleagues.

Accordingly, BOB and his colleagues tend to conform their working time to given
estimates, which supports assumption A4. The question whether there is a notewor-
thy difference between developers in terms of capability and talent was clearly con-
firmed by BOB:

“There are big differences. It’s like day and night!”

Chapter 6: Test of Estimation Fulfillment Theory 209

Moreover, he explained that the productivity ratio between developers is at least 1:4.
He pointed out that there are also significant differences between developers in terms
of domain knowledge and technical skills. Generally, if novice developers are em-
ployed, the productivity ratio between novice developers and experienced staff
members is 1:5 or even more. Accordingly, assumption A5 is also supported.

Since all five assumptions are satisfied, the projects BOB participated in are supposed
to be affected by estimation fulfillment. With regard to the deviation of estimated
effort, BOB answered:

Effort overruns are around +20%. The worst case was +100%,
which was a single case. However, we never have projects with ef-
fort underruns.

This is in line with the propositions P1 and P2. In consequence, all assumptions and
propositions are satisfied, and, therefore, the findings from this expert interview pri-
marily corroborate the EFT.

Finally, with respect to proposition P3, BOB commented on the documentation and
consideration of individual differences between developers:

Yes, we do after project completion. We conduct ‘Lessons Learned’
meetings with developers. Therefore, the result is rather qualita-
tive. However, we use skill matrices with a four-point rating scale:
‘Zero experience,’ ‘Basic Experience,’ ‘High Experience,’ and
‘Expert.’ An entry can refer to anything, for example, general do-
main experience, energy trading, project lead experience, Java
programming skills, or SQL.

I think the skill matrices are very detailed and helpful. We cannot
invest more effort in analyzing and documenting the skills of our
developers without establishing something like an intelligence ser-
vice.

6.2.2 Expert Interview #2

The second interview was conducted on February, 5th 2009 with TOM who is em-
ployed by a large German software development and consulting company. The inter-
view took three hours. Biographical details of the interviewee are given in the fol-
lowing Tab. 6.3. A brief summary of his current employer, SolutionFactory, follows
in Tab. 6.4.

210 Chapter 6: Test of Estimation Fulfillment Theory

Tab. 6.3: Biographical details of TOM

Biographical details of the interviewee

Synonym TOM

Year of birth 1967

Age 41

Nationality German

Professional experience 15 years

University / Graduation Fachhochschule Wilhelmshaven, 2003

Current employment

Role Solution Architect

Time of employment 1997 until today

Job description IT consulting & software development; business/technical re-
quirements analysis; conception & design

Completed projects 10-15

Tab. 6.4: Employer of TOM

Company Details

Synonym SolutionFactory

City, Country Frankfurt (and other cities), Germany

Turnover per year > 250 million €

Employees > 1.500

Market IT Consulting

Core competence IT Consulting, Individual Solutions, IT Management, SAP Con-
sulting, Application Management

Typical customers Large German companies (finance, insurance, production, tele-
communications)

Project members 20-30

Project volumes 10-15 million € (last two projects)

As a senior manager and solution architect, TOM is personally involved in the effort
estimation process. Effort estimation at SolutionFactory was described as follows:

At first, we do a coarse-grained analysis of central and obvious re-
quirements. Multiple staff members attend this process. Based on
this analysis, we develop a primary solution idea. Next, this idea is
decomposed into work packages. The effort per work package
ranges from one day to one week. Now, we take an excel template
and start to list all work packages. Each work package is briefly
specified.

The excel sheet is given to three colleagues, typically senior man-
agers or experienced junior managers. For large projects, the
sheet is given to five or six persons. Each recipient separately esti-
mates effort for each work package. Effort is noted as a single val-
ue per work package. This process usually lasts one or two hours.
Finally, all excel sheets are collected and the deviation between the

Chapter 6: Test of Estimation Fulfillment Theory 211

estimates are subject to a group discussion. In this discussion, we
adjust the estimates until everyone agrees.

In view of that, the depicted effort estimation utilizes work-breakdowns, estimation
by analogy and experience, as well as group discussions that are similar to Wideband
Delphi. Assumption A1 is therefore supported. Moreover, the estimation process is
based on early requirements and done before a detailed project plan is created. This
satisfies assumption A2. Regarding assumption A3 (“project leads conforms to the
given estimates”), the interview did not lead to a clear discussion of this aspect.
However, when explaining how developers react on deadlines, TOM explained:

I do not think that anyone can just work faster in order to meet a
deadline. Developers rather refrain from unnecessary details or
gold-plating respectively. Another way to meet deadlines is going
for an 80% solution.

If going for an 80% solution is interpreted as an action of project lead to conform to
the project plan, assumption A3 will be supported. With respect to the PARKINSON
effect, TOM explained:

I might fill available time if no new work packages are pending.
Nevertheless, one might generally tend to do gold-plating. Howev-
er, developers might not necessarily fill the entire available time.
Maybe, they fill 50% of the time.

The explanations of TOM concerning deadlines and PARKINSON lead to the conclu-
sion that he and his colleagues tend to conform their working time to given estimates.
Assumption A4 is supported. Concerning whether or not there are significant indi-
vidual differences between developers, TOM stated:

Yes, these differences are extremely high. I think the variety of ca-
pability and talent across software developers is much bigger com-
pared to other occupational groups. “And some developers are
good for nothing.”

TOM assumed that his general productivity has at least doubled during the last 12
years of his professional experience. He continued:

According to my project experience, there are developers who need
ten times the effort to complete work packages as I need – sad but
true. There are also colleagues who have the same years of profes-
sional experience as me, but they have not advanced over the time.
They are still on the level of an untalented junior developer. I think
a good junior works at 30 to 50% of a good senior.

212 Chapter 6: Test of Estimation Fulfillment Theory

According to his explanations, assumption A5 is satisfied. Therefore, the projects
TOM took part in are supposed to be EF-type projects. TOM commented on effort
overruns:

That’s hard to say. As a general rule, projects exceed estimated ef-
fort. Since I am not personally involved with project reviews, I do
not know precise percentages. However, I am quite sure that effort
overruns are around 20 to 30%.

With regard to effort underruns, he continued:

No, effort underruns were never observed for large projects. How-
ever, small projects have been completed ahead of schedule.

As a result, proposition P1 is satisfied, but the previous explanation yields an inter-
esting counter-finding regarding proposition P2. While proposition P2 is supported
for large or midsize projects, there is a conflict with small projects. However, the
project size is an obvious characteristic that allows differentiating projects. Thus, the
project size can be used as a limitation in order to exclude small projects from the
theory. In consequence, if small projects are excluded, proposition P2 is supported,
which leads to a second corroboration of the EFT.

Finally, concerning proposition P3, TOM explained:

We have a skill information system, which is based on a job matrix.
This matrix has 15 levels. A novice software developer usually
starts at level 5, because you also find all secretaries and assistants
in that system. The highest level ever given is 13. That’s our Lead
Architect. The matrix contains general capabilities, for example,
project experience or project lead experience. Accordingly, there is
no fine, detailed documentation of specific developer skills. There-
fore, when staffing projects, we ask in a large circle “Who is good
at what?”

6.2.3 Expert Interview #3

The third expert interview was conducted on February, 13th 2009 with VINCE who is
currently employed by BankIT, a German company focusing on software solutions
and IT consulting for the financial sector. The interview took 4 hours. Biographical
details of the interviewee are given in the following Tab. 6.5.

Chapter 6: Test of Estimation Fulfillment Theory 213

Tab. 6.5: Biographical details of VINCE

Biographical details of the interviewee

Synonym VINCE

Year of birth 1971

Age 38

Nationality German

Professional experience 16 years

University / graduation WWU Münster, Information Systems, 1998

Current employment

Role Quality Manager

Time of employment 1998 until today

Job description Definition of development process models, monitoring development
processes during projects, documentation & review, managing im-
provements, official release of software solutions, final inspection

Completed projects 15-20 per year

VINCE has been employed by BankIT for 16 years. His major responsibility is quality
management. Therefore, he is concerned with most software development projects
that are started by BankIT. His employer is briefly outlined in Tab. 6.6.

Tab. 6.6: Employer of VINCE

Company Details
Synonym BankIT
City, Country Undisclosed, Germany
Turnover per year ~ 15 million €
Employees ~ 130
Market IT Consulting, Software development
Core competence Controlling systems, Risk controlling
Typical customers Large and mid-sized European banks
Project members 2-15
Project sizes 100-1,000 man-days

With respect to the process of effort estimation, VINCE explained:

At first, we collect and list all major requirements. This list con-
tains anything, for example, algorithms, GUI descriptions, or use
cases. One staff member then produces the effort estimates accord-
ing to this list. Sometimes more persons are assigned to effort esti-
mation. All estimates are based on comparisons with and experi-
ence from past projects. The effort is estimated for creating the
business requirements as well as design and implementation. Other
aspects, for example, project management and testing, are estimat-
ed by surcharges. After finalizing the list, the result is discussed
with a senior manager in order to challenge and adjust the esti-
mates. Afterwards, if the required budget is approved, the project
plan will be created.

214 Chapter 6: Test of Estimation Fulfillment Theory

Generally, a risk buffer of 15% is reserved for each project. This
buffer, however, must be officially requested from upper manage-
ment.

Again, effort estimation is based on an expertise-based approach, which satisfies
assumption A1. Since estimates are produced before the conception of the project
plan, and, therefore, before developers start with design and implementation, as-
sumption A2 is also supported. With regard to assumption A3, VINCE explained dur-
ing the interview:

We use Scrum. Accordingly, we arrange daily meetings with all de-
velopers for discussing critical problems as well as the general
project status. These are very short meetings lasting 15 or 20
minutes. However, daily Scrums are important so that everyone
stays informed and that project lead sees how the project evolves.

Therefore, project lead at BankIT tracks progress. During the interview, the inter-
viewee did not explicitly describe potential actions of project lead to respond to in-
consistencies with the project plan. However, it is reasonable to suppose that daily
meetings between project lead and developers entail reactions on deviations of a pro-
ject. In consequence, assumption A3 is supported.

With respect to PARKINSON and deadlines, VINCE noted:

For me, the Parkinson effect does not apply. However, the effect
applies for developers. They fill available time with unnecessary
activities. […]

I think I can work faster in order to meet deadlines when switching
into a “do not disturb” mode.

Accordingly, developers conform to given estimates, which satisfies assumption A4.
Concerning the individual differences between developers in terms of capability and
talent, VINCE commented:

Yes, there are perceptible differences. […] There are developers
who busy themselves with something for weeks, “but the result is
nothing but trash.” On the other hand, “if you assign two really
good developers, they will always do well, no matter whether speci-
fications were good or bad.”

This comment supports assumption A5. In consequence, the interview results support
all five assumptions, which leads to the conclusion that estimation fulfillment can be

Chapter 6: Test of Estimation Fulfillment Theory 215

found at BankIT. The deviation of estimated effort and actual project efforts was de-
scribed as follows:

All projects usually consume the reserved risk buffer of 15 or 20%.
Additionally, project effort still exceeds these buffers. Rarely, pro-
jects end with cost overruns of 40%. However, 40% refers to budg-
et overruns, not effort. Generally, projects never show effort un-
derruns. Maybe I have seen three projects in the last ten years with
the actual effort below estimated effort.

I must point out that effort and budget are quite mixed. Overtime
and weekend working, for example, are not taken into account
since developers do this on a “voluntary” basis.

Accordingly, propositions P1 and P2 could be validated in this case. Corresponding-
ly, the third expert interview also corroborated the EFT. Finally, with respect to
proposition P3, VINCE explained:

We do not document developer capabilities systematically. Howev-
er, we discuss target agreements with developers. Therefore, we se-
lect developers rather by intuition. Our developer pool contains 30
to 35 developers. During effort estimation, we do not know who
will be assigned to a work package. We assume that this will be
done by someone who’s capable.

6.2.4 Expert Interview #4

The forth expert interview, conducted on March, 18th 2009, was a group interview
with PETE and MARC who are both employed by Objects Inc. This German company
offers IT services to energy providers and public transportation services. Objects Inc.
offers energy suppliers to outsource all customer-related processes, e.g., billing and
settlement. PETE has been employed by Objects Inc. since its foundation in 1999. He
works as a consultant for software solutions and has both project lead and effort es-
timation experience. MARC has been employed as head of software solutions at
Objects Inc. since 2005. Biographical details of both interviewees are given in the
following Tab. 6.7.

216 Chapter 6: Test of Estimation Fulfillment Theory

Tab. 6.7: Biographical details of PETE and MARC

Biographical details of the interviewee (Pete)
Synonym PETE
Year of birth 1972
Age 36
Nationality German
Professional experience 9 years
University / Graduation Geo informatics, 1999 (discontinued)
Current employment
Role Consultant for software solutions
Time of employment 2000 until today
Job description Effort estimation, project lead, support and maintenance
Completed projects 10 – 15

Biographical details of the interviewee (Marc)
Synonym MARC
Year of birth 1971
Age 37
Nationality German
Professional experience 11 years
University / Graduation Business administration, 1996
Current employment
Role Head of software solutions
Time of employment 2005 until today
Job description Head of software solutions, effort estimation, project lead, team lead,

personnel responsibility, key account manager, IT process manager
Completed projects 10

The company PETE and MARC work for is outlined in the following Tab. 6.8.

Tab. 6.8: Employer of PETE and MARC

Company Details
Synonym Objects Inc.
City, Country (undisclosed), Germany
Turnover per year ~ 20 million €
Employees ~ 170 (25 software developers)
Market Energy trade and supply
Core competence IT Service, Process outsourcing for energy suppliers
Typical customers Energy suppliers and public transportation companies
Project members 1-30
Project volumes ~ 10,000 € (small); ~ 5 million € (large)

The process of effort estimation was explained by MARC:

Effort estimation is based on experience. Additionally, we discuss
each project with colleagues who are experts for certain topics.
Generally, effort is estimated in man-days. We focus on functional
requirements in order to produce estimates. We try to consider
worst cases, but we rather concentrate on the most likely case. Be-
sides, we adjust the estimates by surcharges for project manage-

Chapter 6: Test of Estimation Fulfillment Theory 217

ment, for example. Finally, the estimates are summed up and de-
termine the project costs that will be then given to the customer.

In view of that, effort estimation is an expertise-based technique, which satisfies as-
sumption A1. Furthermore, estimates are produced early and determine overall pro-
ject costs of which the project owner gets informed. Thus, assumption A2 is also
supported. With respect to assumption A3, PETE explained:

The project status is tracked by the central project office, which
monitors all projects at Objects Inc. The project leaders continu-
ously report on the project status, including the current budget
overview as well as qualitative information. The project office re-
acts to overruns. Typically, the project plan is reworked and
changes are discussed with the customer. Work packages are re-
moved only if forced by circumstances, for example, if the integra-
tion of a third party system is much harder than expected. Howev-
er, in this case, work packages are rather replaced by worka-
rounds.

Accordingly, the project progress is monitored and project lead takes action if neces-
sary. This supports assumption A4. On the question whether or not he is affected by
the PARKINSON effect, PETE only answered:

“No, I am always done on time.”

Since he evaded further questions, his answer allows three conclusions. First, PETE
told the truth and his work performance is independent of given estimates. Second,
PETE could not imagine to be affected by the PARKINSON effect. Third, he did not
want to admit this in presence of his boss. However, MARC chimed in:

“We often exceed deadlines.”

With regard to conforming to deadlines, they were in complete agreement. Both stat-
ed that one could not work faster in order to meet deadlines. However, they ex-
plained that developers either work overtime or they stop others from disturbing
them. Accordingly, developers at least conform to estimates to meet deadlines.
PETE’S response allows concluding that he is unconsciously affected by the
PARKINSON effect. Always finishing work packages on time would indicate the con-
structive form of PARKINSON (see Section 4.3.6), so that PETE uses the estimates to
organize and interpret work packages appropriately. MARC’S comment suggests pro-
crastination and the PARKINSON effect as well. Therefore, their responses allow con-
cluding that developers are not independent of given estimates. Thus, assumption A4
is satisfied.

218 Chapter 6: Test of Estimation Fulfillment Theory

Furthermore, PETE and MARC agreed that there are perceptible individual differences
between developers. While PETE estimated a productivity factor of 1:2 between de-
velopers, MARC gave a higher factor of 1:4, which satisfies assumption A5.

Again, all assumptions are affirmed by the interview results. Projects at Objects Inc.
seem to be affected by estimation fulfillment. Regarding the deviation of actual and
estimated effort, MARC explained:

I think projects exceed estimated effort by 10 to 20%. The maximal
common deviation is +40%. In the past, there were, of course, pro-
jects that were finished with +100%. These are exceptions. Con-
versely, there were projects that were clearly overestimated. These
projects could be completed with -30% of the estimated effort.

Generally, schedule overruns are worse. Overruns of 40 to 50%
are no surprise. Projects that should be completed in one year re-
quire 18 months, for example.

With reference to effort underruns, he continued:

If projects are dominated by unfamiliar or new requirements, effort
will frequently be exceeded. We are not happy about that. If pro-
jects allow routine and analogies, effort estimates are better. How-
ever, except for projects of which we know that they were clearly
overestimated, actual effort never falls below estimated effort.

Accordingly, projects at Objects Inc. generally exceed the estimates by a moderate
percentage. As explained by MARC, effort underruns are an exception and caused by
obvious overestimation. This is in line with the propositions P1 and P2. For that rea-
son, the findings of expert interview #4 also corroborate the EFT.

Finally, with regard to individual differences of developers and their consideration
during effort estimation, MARC explained:

We use a human resource development model. This is based on a
skill matrix with a four-point rating scale. An entry describes one
particular skill, for example, a programming language. The list of
entries is standardized.

However, we do not explicitly draw on this model during effort es-
timation. We rather ask experienced developers to adjust our esti-
mates and to consider the skill sets of potential developers. Moreo-
ver, work packages are usually assigned to specialists. Besides, we
have special budgets for on-the-job trainings, which compensate
budget overruns caused by novice developers.

Chapter 6: Test of Estimation Fulfillment Theory 219

6.2.5 Expert Interview #5

The interviewee of the fifth expert interview was MARCUS who works for Newtec
Inc. This German company focuses on individual software solutions as well as IT
consulting. Newtec Inc. is not limited to special business domains. Typical customers
are German medium-sized businesses as well as DAX-listed companies.754 The in-
terview was conducted on March, 20th 2009 and took two hours. Biographical details
of MARCUS are given in the following Tab. 6.9.

Tab. 6.9: Biographical details of MARCUS

Biographical details of the interviewee

Synonym MARCUS

Year of birth 1977

Age 31

Nationality German

Professional experience 5 years

University / Graduation Münster, Information Systems (MScIS), 2003

Current employment

Role Software developer

Time of employment 1/2007 until today

Job description Software development, Maintenance, Effort Estimation,
Specifications, Testing

Completed projects 2

Since 2007, MARCUS has been employed by Newtec Inc. Besides software develop-
ment and maintenance, he is also concerned with effort estimation. His employer
Newtec Inc. is briefly outlined in Tab. 6.10.

Tab. 6.10: Employer of MARCUS

Company details

Synonym Newtec Inc.

City, Country (undisclosed), Germany

Turnover per year ~ 10 million €

Employees ~130 (including ~100 software developers)

Market Project software, resource planning software, service management

Core competence Web-based solutions, individual business solutions, Java

Typical customers Midsize and large, DAX-listed companies

Project members 1 – 15

Project volumes Small projects: 10 man-days, midsize projects: ~6 man-month, large
projects: ~3 man-years

The effort estimation approach used at Newtec Inc. was described as follows:

754 DAX (German abbr.): German Stock Index ("Deutscher Aktienindex").

220 Chapter 6: Test of Estimation Fulfillment Theory

First, we collect all requirements. Usually, we have the functional
specification document at hand. Thus, the software system can be
divided into modules. Likewise, the development process can be di-
vided into small work packages. For each work package, we esti-
mate effort by analogy and gut feeling. Next, we summarize all es-
timates in order to get the total number of man-days. For new de-
velopment projects we add an extra risk surcharge. Next, we dis-
tribute effort to design, implementation, testing, quality assurance
etc. After the estimates are produced and we have decided on the
percentages for the different development phases, we turn to the
master project plan.

In view of that, effort estimation at Newtec Inc. makes use of analogy, intuition, as
well as gut feeling. Hence, assumption A1 is supported. Moreover, since MARCUS
describes that estimates are produced after an initial requirements analysis and before
the conception of the project plan, assumption A2 is also satisfied. With respect to
assumption A3, he explained:

We have a time tracking system based on our internal ERP system.
Working time is accounted on the work package level. This data is
used by project lead to monitor subprojects and track progress.
The status of a subproject is reported to the chief project lead. If a
subproject gets behind schedule, they will decide whether to re-
move work packages or to move certain packages into later releas-
es. However, they usually inform the customer about their deci-
sions.

Accordingly, project lead conforms to the given estimates. Therefore, assumption A3
is supported. Concerning the question if developers also conform to estimates,
MARCUS continued:

I think, the PARKINSON effect applies since developers always find
ways to optimize or beautify a solution. I have to point out that
most of our projects are fixed-price projects. However, we also do
“body leasing.” In this case, we officially work for the customer
and the entire working time is directly accounted. Therefore, de-
velopers will always fill available time since the customer has to
pay for it.

In contrast, if developers have to meet calendar deadlines, they
cannot just work faster. Maybe you can increase your productivity
by 20% for a short time by working focused and concentrated. I
think, however, that meeting calendar deadlines generally leads to
overtime.

Chapter 6: Test of Estimation Fulfillment Theory 221

Nevertheless, while I am completing a work package, I definitely
consider the given effort estimate. The estimate is as important as
the functional specification. You generally work against time. So, it
is the combination of specification and estimate, which determines
the solution.

This explanation reflects that developers also conform to estimates. Therefore, as-
sumption A4 is satisfied. Besides, the previous explanation contains an interesting
differentiation of project types. All interviewees implicitly referred to fixed-price
projects. MARCUS, however, pointed out that for some projects at Newtec Inc. prices
are not fixed upfront and, for that reason, all spent effort will be billed. For this pro-
ject type, actual effort will never be less than estimated, and, thus, one will always
find estimation fulfillment. However, the interests and incentives of all involved
stakeholders are different compared to fixed-price projects.

With regard to assumption A5, the aspect of individual differences across developers
was described as follows:

There are noteworthy differences between developers. However,
lots of them represent the average. Besides, there are some very
good developers as well as some botchers who get nothing done.
[…] I think low qualified developers work at 80% of the average
while good developers work at 130%. […]

Over time, my domain knowledge has increased most. Technically,
I would say I stayed on the same level, for example, in terms of
programming skills. I think my overall productivity raised by 300%
when I consider the increase of domain knowledge.

Accordingly, assumption A5 is supported. In consequence, all five assumptions are
satisfied. The projects MARCUS was involved in are supposed to be affected by esti-
mation fulfillment. Regarding the deviation of estimated effort, he explained:

Small projects are completed around ±10%. Some of them are
above, some below the estimate. For example, a change request is
estimated to take one day, but it was completed by one developer in
5 hours. Conversely, large projects are arranged to fit the esti-
mates. However, these projects still exceed the estimates by ap-
proximately 10% or more.

Thus, if small projects are excluded (see interview #2), the propositions P1 and P2
are both supported. This interview shows once more that small projects are special
and cannot be included into the theory. Nevertheless, as all assumptions and proposi-
tions are satisfied, the findings from this expert interview corroborate the EFT.

222 Chapter 6: Test of Estimation Fulfillment Theory

Concerning proposition P3, MARCUS noted:

We use excel spreadsheets to document staff skills. However, the
spreadsheets are based on self-assessment. The spreadsheet asks
about technological aspects, for example, J2EE, SQL, Maven etc.
Each developer answers whether he or she ‘has no idea,’ knows
‘only theory,’ or is an ‘expert.’

6.2.6 Expert Interview #6

The sixth expert interview was conducted on April, 1st 2009 with HALE who is head
of development at BankIT, which is already known from expert interview #3 (see
Section 6.2.3). HALE has been employed by BankIT since 1996. He has been con-
cerned with all projects during his employment. He estimated that BankIT runs 20 to
30 projects per year. The interview with HALE took 2.5 hours. Biographical details of
the interviewee are given in the following Tab. 6.11.

Tab. 6.11: Biographical details of HALE

Biographical details of the interviewee

Synonym HALE

Year of birth 1969

Age 39

Nationality German

Professional experience 15 years

University / Graduation Fachhochschule Steinfurt, Mechanical Engineering, 1994

Current employment

Role Head of development

Time of employment 1996 until today

Completed projects All; ~ 20-30 per year

As head of development, HALE takes an important part in the effort estimation pro-
cess at BankIT. Besides, he is concerned with a recent redesign of that process. HALE
explained:

We start with the requirements document, which, of course, con-
tains all known requirements and features. We use this document to
start working on an effort spreadsheet. Therefore, we break down
the project into work packages, which have a maximal net duration
of five days. Three or four senior staff members are then assigned
to effort estimation. Estimates are generally based on experience
and intuition. Finally, we consolidate the results in order to get av-
erages.

We recently designed a new estimation approach and we are still
working on it. We call it “estimation poker.” When the list of work

Chapter 6: Test of Estimation Fulfillment Theory 223

packages is finished, we arrange a meeting with experienced, sen-
ior managers as well as the project owner. In this meeting, we run
through the list of work packages. For each work package each
participant chooses a playing card. A playing card has a number,
which represents man-days. When all participants have cards, they
must lay them down on the table. Then we start a group discussion
in order to reach consensus on the estimate. Since all cards stay on
the table, no one can change his opinion without discussing and
justifying his or her decision.

Accordingly, it is confirmed again that effort estimation at BankIT is an expertise-
based approach. The recently designed “estimation poker” has similarities with
Wideband Delphi. Assumptions A1 and A2 are satisfied. HALE continued:

We record effort estimates, as they are part of the project plan.
Moreover, we have a time tracking system that is used for projects.
Based on this data, we track project progress daily in order to rec-
ognize trends. […]

We recently started to use ranges instead of single values. Thus, the
result of the estimation process is a range of effort. During the pro-
ject, we aim at the lower limit of that range. If we see that we can
reach the minimum or that we are too fast, we include further re-
quirements.

The previous explanation of HALE describes how project lead reacts on the project
progress, which supports assumption A3. With respect to the PARKINSON effect and
deadlines, HALE answered:

Yes, developers fill available time with gold-plating. Regardless
which time limit or budget is set, it will be expended.

In contrast, when deadlines have to be met, I think developers can-
not simply increase workload. They rather have to do overtime or
weekend working.

Accordingly, assumption A4 is supported. On individual differences between devel-
opers, HALE commented:

There are differences, but they are not immense. I think the overall
productivity difference between the most experienced and a novice
developer is 50%.

Although this productivity ratio must be taken as low, it still allows a notable varia-
tion of effort. Moreover, HALE stated that developers do not necessarily differ in
general productivity, but they differ in fields of expertise, so that the body of

224 Chapter 6: Test of Estimation Fulfillment Theory

knowledge is spread over the entire developer team. Thus, assumption A5 is satis-
fied. With respect to the deviation of actual and estimated effort, HALE explained:

As said before, we use risk buffers of 15 to 20% for each project.
However, buffers are always used up. Next, there are two types of
projects. The first type has clear, comprehensible specifications.
For this type, the deviation of actual and estimated effort is around
30 to 40%. The second type is characterized by unclear, vague, or
ambiguous specifications. Here, effort overruns of up to 100% are
probable. In opposition, effort underruns are a rare exception.

Generally, there are always deviations in terms of budget, scope,
and schedule. According to my personal experience, I have to say
that “approved budgets are always gone.”

In view of that, the propositions P1 and P2 are supported. Since all assumptions and
propositions hold true, the findings from this expert interview corroborate the EFT.

With regard to proposition P3, Hale explained:

We do not use profiles. “You have to know who’s good at what.”
This knowledge is mainly based on appraisal interviews with de-
velopers in which we agree on objectives.

6.2.7 Expert Interview #7

The seventh interview was conducted on April, 16th 2009 with KAY and CHRIS who
work for Performix Inc., a company that offers Enterprise Content Management
(ECM) and Corporate Performance Management solutions. The company focuses on
software development and consulting in equal shares. Typical customers are German
medium-sized businesses as well as larger DAX-listed companies. Performix Inc.
does not focus on special business domains. The group interview took two hours.
Biographical information of the two interviewees is given in the following Tab. 6.12.
A brief summary of Performix Inc. follows in Tab. 6.13.

Chapter 6: Test of Estimation Fulfillment Theory 225

Tab. 6.12: Biographical details of KAY and CHRIS

Biographical details of the interviewee (Kay)

Synonym KAY

Year of birth 1959

Age 49

Nationality German

Professional experience 15 years

University / Graduation Computer Linguistics, 2004

Current employment

Role Head of Enterprise Content Management

Time of employment 2008 until today

Job description Project lead, effort estimation, personnel responsibility

Completed projects 4 projects at Performix Inc. (~ 75 projects at former employers)

Biographical details of the interviewee (Chris)

Synonym CHRIS

Year of birth 1980

Age 28

Nationality German

Professional experience 2 years

University / Graduation Information Systems, 2006

Current employment

Role Enterprise Content Management Developer

Time of employment 2007 until today

Job description Software development

Completed projects 6

Tab. 6.13: Employer of KAY and CHRIS

Company Details

Synonym Performix Inc.

City, Country (undisclosed), Germany

Turnover per year ~ 10 million €

Employees ~ 100 (including 20 software developers)

Market Software development, IT consulting, solution provider

Core competence Enterprise Content Management, Corporate Performance Manage-
ment, Database Consulting

Typical customers German medium-sized businesses, DAX-listed companies; no
special business domain

Project members 3-4

Project sizes Three classes: 1) 70-80 man-days, 2) 100-300 man-days, 3) up to
1.000 man-days

In the following, the statements given by KAY and CHRIS exclusively refer to ECM
projects since they do not collaborate in projects that address Corporate Performance
Management solutions. The process of effort estimation was explained by KAY:

226 Chapter 6: Test of Estimation Fulfillment Theory

We estimate effort on the basis of professional expertise. Therefore,
we search our staff for contact persons who have appropriate com-
petences. Effort estimation is generally a mixture of experience and
gut feeling. We try to find analogies or reference values. I think
that “effort estimation is located somewhere in a gray area of cog-
nition and perception.”

Generally, we begin with an analysis of requirements and regularly
use UML modeling. However, we produce estimates before turning
to fine-grained specifications. In consequence, estimated effort and
budget become fixed values for fixed price projects.

Accordingly, effort estimation is based on an expertise-based approach, which sup-
ports assumption A1. Since estimates are produced before detailed specifications are
created, assumption A2 is also supported. With regard to the assumptions A3 and
A4, CHRIS explained:

You can work faster if you are put under pressure. However, this
option is limited in time. Typically, if project lead expects a follow-
up project, they will tell us: “Make it work first – you can make it
nice later.” Thus, we move parts of a work package into the next
project. Moreover, project lead might change the project plan so
that we have to meet a calendar deadline. Usually, this is done by
overtime. Nevertheless, project lead takes care of the project pro-
gress and intervenes if anything goes wrong.

During development, a Scrum sprint is processed as follows: Pro-
ject lead maintains a backlog with prioritized work packages. De-
pending on the team size and the available time, project lead de-
termines how much effort can be assigned to the team. Next, we –
the team – estimate effort for each work package. These estimates
become target values. During the sprint, we process work packages
according to their priority.

“Since we don’t like to work for nothing,” we want the actual total
effort to be in line with the initially estimated effort, on which the
project price is based.

In view of that, project lead monitors projects and takes actions if necessary. During
a Scrum sprint, developers produce their own estimates, which they use as target
values. Therefore, they conform to these estimates. The development process design
most likely causes delays at later project stages since work packages are dynamically
assigned to teams and sprints. Due to the dynamic and flexibility between project
lead and developer teams, both sides are supposed to conform to estimates, and,

Chapter 6: Test of Estimation Fulfillment Theory 227

hence, assumptions A3 and A4 are satisfied. With respect to individual differences
between developers, KAY stated:

There are differences and they are elementary. “I think there is
something like a developer gene. You simply have it or not.”

CHRIS explicitly agreed on KAY’S statement. Moreover, both KAY and CHRIS esti-
mated that the general productivity ratio between their colleagues is around 1:4. Ac-
cordingly, assumption A5 is supported.

As all five assumptions are satisfied, the projects CHRIS and KAY participated in are
supposed to be affected by estimation fulfillment. The deviation of actual and esti-
mated effort was explained as follows:

Actual and estimated efforts strongly deviate. I think the larger
projects are, the stronger they deviate. However, things got better
during the last decade. Today, effort overruns of 100% are ex-
treme. Ten years ago, I saw projects with overruns of 300%. Nev-
ertheless, good projects are completed with effort overruns of 10 or
15%. I think typically we finish projects with overruns of 20%.

And we never finish large projects with effort underruns. In con-
trast, small projects can be completed while falling below the esti-
mates. However, small projects are different because they only
have one Scrum sprint. Therefore, it can happen that developers
have a good day and finish ahead of schedule. Larger projects with
more than one sprint have never been completed with effort un-
derruns.

This statement contains an interesting counter-finding that helps stating the theory
more precisely. On the one hand, proposition P1 is supported since projects typically
end with effort overruns of approximately 20%. On the other hand, effort underruns
are also given, which again contradicts proposition P2. However, effort underruns
have only been achieved for small projects. In this case, projects were characterized
as small if they are completed in one Scrum sprint. For large projects, covering more
than one sprint, proposition P2 is supported. This confirms that the project size must
be incorporated into the theory as a limitation.

6.3 Discussion of Findings

Interestingly, all effort estimation approaches described by the interviewees belong
to the class of expertise-based techniques. None of them used parametric models,
Function Points Analysis, or variants of the FPA. This might be an indication that

228 Chapter 6: Test of Estimation Fulfillment Theory

HEEMSTRA’S survey results (see Section 2.4) still apply for software development
companies today.755 Some of the interviewees explained that they heard of Function
Points Analysis, for example, during their undergraduate studies. One interviewee
named the 3-Point Estimation technique. However, none of the interviewees knew
COCOMO or Delphi.

Nevertheless, all interviewees make use of work-breakdown techniques. Both the
software system as well as the development process is broken down to smaller ele-
ments, for example, work packages. This is always done at an early project stage and
usually based on the initial requirements document. Afterwards, effort is estimated
per work package. For this process, all companies rely on experience, analogy, gut
feeling, and/or intuition.

The total estimated effort is given as a single value. Only one interviewee explained
that his company recently changed the effort estimation process in order to use rang-
es. Using ranges instead of single values is highly recommended, for example, by
MCCONNELL, since ranges better reflect project risks and make the process of includ-
ing or excluding requirements more transparent.756

Generally, the estimation processes described by the interviewees do not rely on sin-
gle persons. All approaches are based on either group decisions, the consolidation of
multiple estimations, review processes, and/or the consultation with business experts.
However, the interviewees neither explained why they designed their approaches as
they are nor why they decided for or against particular process steps. Similarly, none
of the interviewees referred to theoretical foundations or techniques that are dis-
cussed in literature. One exception is given by interview #6, because the interviewee
described a newly introduced estimation technique, which they call “estimation pok-
er.” Although they use a slightly different name, this technique is known as “plan-
ning poker,” especially in the context of agile software development.757

The estimation approaches used by the interviewees appeared to have evolved in the
past until they have become established. This might explain why some of the inter-
viewees pointed at conflicts between their established estimation technique and their
recent decision for iterative development.

Almost all projects run by the interviewees’ companies had fixed prices. One excep-
tion was given by interview #5, as the corresponding company offers labor leasing.

755 HEEMSTRA (1992).
756 MCCONNELL (2006).
757 E.g., COHN (2005).

Chapter 6: Test of Estimation Fulfillment Theory 229

In this case, the customer has to pay for all invested effort and, as a consequence,
developers always fill available time. Therefore, this special case was excluded from
the interview.

Since the initial effort estimation determines the project costs as well as the final
price, effort estimates become target values, which must be met in order to make
profit. Correspondingly, none of the interviewees described or asked for an inde-
pendency between effort estimates and actual project effort. Estimates are rather used
and communicated as if they were precise calculations. This is in line with the fact
that five of six companies favor single-valued estimates over ranges.758

Project lead generally monitors projects and tracks progress in order to intervene if
necessary. For the interviews #2 and #3, the actions of project lead were not dis-
cussed in detail. However, according to the explanations of these two interviewees,
project lead regularly monitors projects and discusses the project status with devel-
opers. This suggests that project lead has the option of taking necessary actions.
Moreover, the interviewees #3 and #6 work for the same company. As mentioned
above, the corresponding company, BankIT, has recently started to use ranges. Inter-
viewee #6 explained that they dynamically include or exclude requirements in order
to meet the estimated range. Similarly, interviewee #2 explained that developers go
for an 80% solution in order to meet deadlines. This decision, however, is supposed
to be made by project lead. Therefore, the assumption A3 is regarded as supported by
the interviews #2 and #3 as well.

In consequence, all interviews confirmed that project lead tries to conform to ap-
proved estimates during a project. Typical actions that were noted by the interview-
ees are putting pressure on developers, initiating overtime, weekend working and
nightshifts, including and excluding requirements, reprioritizing work packages,
changing the project plan, as well as moving work packages into follow-up projects.

One interviewee referred to the problem of mixed effort, budget, and schedule.
Therefore, a precise tracking of project effort while the project is running is difficult.
Precise totals are only available after the project is completed.

Nevertheless, all interviewees agreed and confirmed that developers also conform to
estimates. Procrastination, the Parkinson effect, as well as gold-plating were consid-
ered as plausible drivers. Besides, the interviews showed that developers also use
estimates as target values since they generally work against time. Since developers
are usually not rewarded for being ahead of schedule, they try to use the available

758 Two of the seven interviews were conducted at the same company (BankIT).

230 Chapter 6: Test of Estimation Fulfillment Theory

time to optimize, beautify, and test a solution. In consequence, most work packages
are delivered on time. Due to technical problems, high complexity, underestimation,
or high difficulty, some work packages exceed the estimates. In consequence, pro-
jects also exceed the total estimated effort.

Concerning the individual performance of developers, all interviewees agreed that
there are significant differences across developers. The responses of the interviewees
open two dimensions in this context. First, there are differences in terms of overall
productivity. Second, developers have different domains of knowledge, experience,
and expertise. While some interviewees reported productivity ratios of up to 1:10,
some interviewees noted that overall productivity might not necessarily be different,
but some developers are limited to a small area of expertise. A common response
was that effort estimation would be much easier if developers were similar in terms
of capability and experience. However, good developers are rare and always sought-
after.

Interestingly, concerning the question if individual differences of developers are ex-
plicitly taken into account during effort estimation, KAY (interview #7) stated that he
tries to break this habit. He explained that teams are usually heterogeneous and that
the consideration of individual differences lowers the overall effort for a team, since
good developers need less time for solutions. However, he noted that the considera-
tion of differences will become a risk if good developers drop out, for example, be-
cause of other important projects, illness, or resignation. He prefers to promote learn-
ing from each other and to give good developers time for helping their colleagues.

Each of the seven interviews supports all five assumptions. Therefore, the corre-
sponding companies are supposed to be affected by estimation fulfillment. Proposi-
tion P1 (effort overruns) was supported by all interviews without any exception. The
reported mean effort overruns range from 10 to 40% (see Tab. 6.14).

Tab. 6.14: Summary of interview findings

Interview Company A1 A2 A3 A4 A5 P1 Overrun P2 Counter-finding
#1 EnSwiss + + + + + + 20% + /
#2 SolutionFactory + + +/d + + + 20-30% + Small projects
#3 BankIT + + +/d + + + 20% + /
#4 Objects Inc. + + + + + + 10-20% + /
#5 Newtec Inc. + + + + + + 10% + Small projects
#6 BankIT + + + + + + 30-40% + /
#7 Performix Inc. + + + + + + 20% + Small projects
+ = supported, d = debatable, / = no counter-findings

Chapter 6: Test of Estimation Fulfillment Theory 231

Conversely, with regard to proposition P2 (effort underruns), three interviews (#2,
#5, and #7) had contradicting results. However, the corresponding interviewees de-
scribed identical situations in which effort underruns have been observed in the past.
They all agreed that effort underruns only happened for small projects, which are
clearly different from midsize or large projects.

According to MARCUS (interview #5), small projects have a limited effort of approx-
imately ten man-days. Similarly, CHRIS and KAY (interview #7) characterized pro-
jects as small if they are processed within a single Scrum sprint. For small projects,
positive and negative deviations of actual and estimated effort do not compensate,
since these projects only have a few work packages. Therefore, some small projects
are completed with less effort than estimated. MARCUS gave a simple example: “A
change request is estimated to take one day, but it was completed by one developer
in 5 hours.” Accordingly, the project size must be used to define a limitation that
excludes small projects from the theory.

Finally, all seven interviews corroborated the EFT. For that reason, no further expert
interviews were conducted. Previously, two interview series with ten interviews per
series were planned. Of the first series, three interviews were not arranged after a
preliminary talk, as the interviewees had only little experience with effort estimation.
A second series was regarded as necessary, because it was expected that less inter-
views support the assumptions. However, since all interviews of the first series sup-
ported the assumptions, the contribution of a second interview series was strongly
doubted, and, therefore, not conducted. It has to be noted that the first expert inter-
view series refers to project experiences based on at least 330 software development
projects.

6.4 Expert Review

The expert review was conducted in order to allow an evaluation of the EFT, i.e., the
underlying causal model, its assumptions, propositions, as well as the presented es-
timation fingerprints from the practitioner’s perspective.759 The goal of the expert
review is to determine whether or not practitioners can comprehend and agree upon
the theory construction. Besides, it could be discussed whether or not the findings
from the expert interviews were correctly understood and led to acceptable conclu-

759 The conduction of an expert review is motivated by the recommendations of HEVNER et al.

(2004) concerning the evaluation of newly designed artifacts in the context of design science re-
search. A related evaluation approach is the use of focus groups as discussed by GIBSON,
ARNOTT (2007).

232 Chapter 6: Test of Estimation Fulfillment Theory

sions. The expert review was conducted with the first interviewee, BOB, in April
2009 after the EFT was completely constructed and written down. The expert review
took 2.5 hours.

6.4.1 Review of Causal Relationships

At first, the supposed causal relationships were discussed as given in Section 5.1.5.
Each point was separately addressed. The points 1 to 4 were accepted immediately.
With reference to point 5 (“Estimates (unconsciously) become target values”), BOB
explained:

In the beginning, there is always just a basic project idea. We have
to get budget first. Thus, we must produce rough estimates based
on a coarse-grained breakdown of the project idea. This is done
using experience and analogy. We use day rates and – if known –
additional hardware or license costs in order to estimate the re-
quired budget, let’s say 10 million CHF.

If the budget is approved, we will initiate a kick-off workshop,
which normally lasts two days. In this workshop, we discuss the
project with business experts in order to develop more precise
business requirements. The result is the project scope represented
by a project initiation concept or business concept respectively.

Now, we hand over the business concept to the business experts
who must proceed with business requirements engineering in order
to gain detailed business requirements. This point is exactly where
estimates have already become target values. Business experts are
strongly influenced by or even forced to conform to the given pro-
ject scope and the approved budget. At this point, estimates have
become guidelines for the project.

Accordingly, estimates can already become target values on the planning and man-
agement level of a project before any developer gets in touch with the project and
even before any work package gets specified in detail. The initial project estimation
used for budget approval influences the project scoping, which in turn influences any
detailed specifications.

Point 6 (“Project lead tracks progress”) was also confirmed. BOB added:

Of course, we monitor how a project evolves in order to intervene.
“A project plan is a living construct.” Typically, we have to com-
municate pressure of time and remind developers of the importance
of milestones. If the project gets behind schedule, we often have to
rework the project plan. We must resolve resource conflicts, repri-

Chapter 6: Test of Estimation Fulfillment Theory 233

oritize work packages, or even discard minor requirements in or-
der to go for an 80 or 90% solution. Above and beyond, calendar
deadlines and estimated effort must be seen differently. If the pro-
ject is about to miss a calendar deadline, we order overtime, week-
end working, or nightshifts through the disciplinary superiors.
This, of course, causes effort overruns for the corresponding work
packages.

With reference to point 7 (“Estimates also become target values for developers”),
BOB pointed out:

We cannot disregard the fact that a few developers want to perform
and evolve. They complete work packages ahead of schedule. This
type of developer, however, is rare. Other developers use available
time for self-fulfillment. They implement functionality that is not
required, but that does not bother anyone either. Nevertheless, the
idea of procrastination, gold-plating, and the interpretation of es-
timates as part of the specification are plausible and can definitely
be found in practice. I think that developers generally spend more
time than estimated. Therefore, they mainly conform to the esti-
mates because project lead responses to the chronic tendency of
exceeding estimates.

Accordingly, point 8 (“Projects generally tend to exceed the estimated overall ef-
fort”) was also confirmed. BOB commented on point 9:

Effort underruns are a rare exception. Effort overruns of 20%-25%
are typical.

Finally, with regard to point 10 (“The consideration of individual difference reduces
the deviation of estimates and actual efforts”), BOB stated:

I think this is true. We have to give shorter estimates to good devel-
opers in order to minimize overall effort. If we did not know who
can perform well, we would not be able to do so. On the contrary,
we have to take into account that some developers are not very ex-
perienced. Otherwise, our project plan would include predefined
effort overruns. I think that ignoring individual differences of de-
velopers causes higher deviations of estimates as well as overall
actual effort. If we did not consider the skill sets of our developers,
we might face average effort overruns of 40% or more, which
would not be acceptable.

234 Chapter 6: Test of Estimation Fulfillment Theory

6.4.2 Review of Assumptions, Propositions, and Central

Theory Statement

Subsequent to the review of the causal model, the assumptions as given in Section
5.2.2 were discussed. With respect to readability, the assumptions will be repeated in
footnotes. Assumption A1 was accepted immediately.760 With regard to assumption
A2761, BOB explained:

“Getting budget for a project is not based on wishful thinking.” We
have to convince the higher management of the project. Therefore,
we need a good plan that contains early, rough estimates. Other-
wise, we get no budget. In consequence, this assumption will al-
ways be satisfied for our company.

Concerning assumption A3762, BOB added:

A project leader is forced to fulfill the project plan. That’s his or
her job. Especially milestones are important. He or she should
have an intrinsic motivation that the project plan and the estimates
get fulfilled.

Correspondingly, BOB commented on assumption A4763:

Most developers do not volunteer to conform to the estimates. Some
developers are simply bellyachers. I think half of them always say
that they need more time, or that the specification cannot be im-
plemented in the given timebox. They rather commit to the esti-
mates since they receive orders and they do not want to get into
trouble. However, pressure is mandatory. Otherwise, the project
must be cancelled right after project kick-off.

Finally, assumption A5 was confirmed as plausible.764

760 Assumption A1: Practitioners favor expertise-based techniques, i.e. Work Breakdown Structures,

Estimation by Analogy (or intuition), and/or (Wideband) Delphi.
761 Assumption A2: Expertise-based techniques allow early estimates based on premature require-

ment specifications. Accordingly, if practitioners estimate effort by expertise-based techniques,
estimates are produced and communicated at early project stages.

762 Assumption A3: Project lead tracks progress and takes necessary actions in order to prevent the
project from getting behind schedule. Thus, project lead conforms to the given estimates.

763 Assumption A4: Developers tend to procrastinate, fill available time with gold-plating activities,
and/or perceive effort estimates as an essential part of work descriptions. Estimates, therefore,
significantly influence how developers interpret and process work packages. As a result, devel-
opers conform to effort estimates.

764 Assumption A5: The productivity of developers significantly varies due to individual differences,
e.g., different levels of capability, experience, and learning plateaus.

Chapter 6: Test of Estimation Fulfillment Theory 235

After reviewing the propositions, BOB assessed all three propositions as plausible.765
Moreover, he added that they hold true according to his project experience. With
respect to proposition P3, he explained:

For lots of developers, the determination of their skill sets is rather
a “best guess.” The skill sets work as reference values. They can
also be wrong or biased, for example, because one developer was
performing exceptionally well when his or her skills were dis-
cussed. Later, however, the developer showed worse performances
in subsequent projects. From our point of view, it is almost infeasi-
ble to gain more precise information about the skills of our devel-
opers.

Nevertheless, I think our development environment is rather con-
stant. We stay in the same domain, we have similar project owners,
and we do not change technology frequently. Our staff is also con-
stant. Therefore, I believe the central question for effort estimation
is “Who does the work?” Our approach helps answering this ques-
tion. If we could exactly predict the skills of our developers, we
would finish projects on time. There would be no deviation except
for projects that are subject to a “force majeure.” Generally, I
agree that the remaining, unconsidered individual differences must
have the greatest impact on effort overruns.

With regard to the central statement of the EFT, BOB noted:

The statement is comprehensible and plausible. To put it in other
words, one can also summarize the theory by saying “I know that
my boss won’t bite my head off if the project estimate is exceeded
by 20% or 30%.”

Finally, the estimation fingerprints were evaluated as reasonable. BOB noted that
both the fingerprints referring to underestimation and continuous overestimation are
unlikely to be found in practice. Concerning the estimation fulfillment fingerprint,
BOB argued that the fingerprint is most probably right-skewed.

765 Proposition P1: Except for rare outliers, actual project efforts will not fall below estimated efforts

if the project is an EF-type project.
 Proposition P2: Actual project efforts will exceed estimated efforts by a moderate percentage, i.e.

20%-30%, on average, if the project is an EF-type project.
 Proposition P3: If individual differences between developers are systematically and precisely

documented and taken appropriately into account during effort estimation, the deviation of esti-
mated and actual effort will reduce for EF-type projects.

Chapter 7: Conclusion 237

7 CONCLUSION

This chapter concludes the thesis. First, the research process including the central
research questions is recapitulated. Next, the major contributions are summarized.
Section 7.3 details the theory’s implications for research and practice. Afterwards,
Section 7.4 explains the limitations of this study. Finally, an outlook to future re-
search is given in Section 7.5.

7.1 Reprise

This thesis is motivated by the relevance of understanding and conducting effort es-
timation in software development projects. Whilst other research focuses on the de-
velopment, improvement, and alignment of estimation approaches, this thesis ad-
dresses the behavioral impact of effort estimates on actual project effort. The ques-
tion whether estimated and actual efforts are dependent or independent is of utmost
importance in order to understand the behavior of developers, the fundamental
mechanisms in software development projects, as well as to understand and contrib-
ute to discussions of estimation accuracy. Accordingly, two research questions were
addressed:

 Is it reasonable to assume a general independency of estimated and 1)
actual software development effort?

 How do developers and project lead influence the relationship be-2)
tween estimated and actual software development effort?

In order to answer these questions, a multi-method-based study was designed. The
study design starts with an exploratory study using empirical data, statistical data
analysis, as well as simple random subsamples. The results of this exploratory study,
combined with previous research and the subjective previous knowledge of the re-
searcher, led to the conclusion that it is not reasonable to assume a general independ-
ency of estimated and actual software development effort. This insight formed the

238 Chapter 7: Conclusion

basis for the development of a new theory that focuses on both explanation and pre-
diction (EP theory). The new theory explains how and why estimates influence actual
project efforts. Additionally, the theory explains under which circumstances compa-
nies are affected by estimation fulfillment, and what the economic consequences are.
The theory was tested by semi-structured expert interviews conducted with software
professionals in order to corroborate the theorized propositions. The responses of the
experts confirmed all propositions. Additionally, an expert review was conducted in
order to validate the acceptability and comprehensibility of both the theory and its
development from the practitioners’ perspective.

7.2 Contributions

This thesis contributes to the body of knowledge of software engineering by discuss-
ing and gathering knowledge about one particular, but essential aspect of develop-
ment effort estimation. A new theory was developed which is capable of explaining
why and predicting how particular software development projects evolve. The Esti-
mation Fulfillment Theory states that – under defined circumstances – projects will
generally end with moderate effort overruns, which is not the result of insufficient
estimation accuracy. Except for rare outliers, projects will not go below the estimated
effort. Small projects are a general exception, and, in consequence, they are excluded
from the EFT. According to the expert interviews, a project can be classified as small
if it covers only one scrum sprint or if estimated effort is less than a certain number
of man-days. This classification is supposed to vary between companies. Neverthe-
less, estimation fulfillment is assumed to be natural in software development pro-
jects. Even more, it can be understood as an important enabler for successful project
completion.

The study makes several contributions. As the central contribution, it offers a com-
prehensible, empirically corroborated EP theory that describes dependence between
estimated effort and actual development effort. In addition, the theory provides a
causal model, as well as a set of assumptions and propositions. For that reason, it
explains “why” companies can generally be affected by estimation fulfillment,
“when” a particular company or project is affected, and which economic conse-
quences “will” manifest. The theory helps understanding the underlying mechanisms
of software development projects and offers a new perception of and participation in
discussions of effort estimation techniques and estimation accuracy. Perhaps most
importantly, the theory gives a name to an extrinsically simple, but intrinsically
complex phenomenon.

Chapter 7: Conclusion 239

Besides this central contribution, additional contributions are summarized in Tab.
7.1. This overview assigns contributions to different phases of this study as well as
different types of contribution, which originate either from the applied methodology
or from particular study results.

Tab. 7.1: Additional contributions of the study

Phase of
research

Type of
contribution

Discussion

Explorative
study

Methodology The exploratory study was based on data gained from an e-learning
platform used by second semester bachelor students. In the research
community, there is a debate whether it is appropriate to use students as
subjects for experimental studies.766 Yet, the student datasets were help-
ful for analyses and exploration. Most important, the exploration based
on the dataset led to the central idea of the theory, that is, in order to
achieve acceptable estimation accuracy, the project members must use
estimates as targets. Software professionals could corroborate the devel-
oped theory, based on this central idea. This gives another confirmation
that students can be used as subjects for experimental as well as explora-
tive studies.

 Methodology The concept of simple random samples could be successfully adopted to
simulate small development projects.767 This approach offered a fast and
easy-to-use instrument to assess the influence of different settings on
estimation accuracy.

 Results The analyses of the student datasets confirmed the individual differences
paradigm.768 The students were considerably different in any dimension
addressed. They showed different solution capabilities, different solution
efforts, as well as different working speeds.769 Although students were
classified in terms of capability, it was impossible to produce accurate
estimates. It was necessary to incorporate project control and the
PARKINSON effect, which both influence the actual effort, in order to get
“good” estimates.770

Theory
construction

Methodology This study followed the theory classification scheme, recently recom-
mended by GREGOR.771 In particular, the EFT is an EP theory, which
offers both explanation and prediction. In this context, this study gives a
contribution by demonstrating how this classification scheme can be
applied for theory construction. It gives an example of how to combine
and present a causal model, assumptions, as well as propositions.772

766 See introduction of Chapter 4.
767 See Section 4.3.4.
768 See Section 3.1.3.7.
769 See Sections 4.3.1, 4.3.2, and 4.3.3.
770 See Section 4.3.5.
771 GREGOR (2006). See Section 1.3.
772 See Sections 5.1, 5.2.2, and 5.2.3.

240 Chapter 7: Conclusion

Phase of
research

Type of
contribution

Discussion

Empirical
testing

Methodology This study shows how to test a theory by qualitative, semi-structured
expert interviews in the domain of software development and software
effort estimation. It gives reasons why theory construction is not contra-
dictory to qualitative methods and an interpretive research position.773

 Methodology This study made use of an expert review.774 This approach is regarded as
helpful in order to test whether incorrect conclusions have been drawn,
whether the theory is comprehensible for practitioners, and whether the
theory might have mistakenly turned into an ivory-tower theory.

 Results Besides corroborating the EFT, the expert interview results provide a
general insight into software development projects.775 The responses
show that the addressed software companies have many similarities and
only a few differences in their process designs as well as estimation
approaches. All companies have moved away from static, sequential
development in favor of iterative development processes. Currently,
agile development methodologies have a perceivable influence on soft-
ware companies.

7.3 Implications for Research and Practice

Projects that are affected by estimation fulfillment (EF-type) are supposed to perform
differently than projects for which effort estimates and actual project efforts are in-
dependent figures (I-type). If this holds true, there are three important implications
for research and practice, which are briefly discussed in the following.

7.3.1 Misinterpreted Research Results

Problems and challenges in software development projects might be overrated or
misinterpreted. Research studies, which aim at analyzing the impact of particular
factors on project performance, might be biased if simultaneously analyzing EF-type
and I-type projects. EF-type projects might be completed with effort overruns of 25%
on average without having faced any noteworthy problems during the development
processes. A statistical analysis might mistakenly identify factors that appear respon-
sible for effort overruns.

This idea is briefly illustrated by an example. Assuming a dataset used for a research
study contains a number of EF-type projects. These projects have in common that
they favor Java and Scrum. All EF-type projects show effort overruns around 25%.
The I-type projects in the dataset ended with effort overruns of 30% as well as effort

773 See Section 1.3.
774 See Section 6.4.
775 See Sections 6.2 and 6.3 as well as Appendix A.4.

Chapter 7: Conclusion 241

underruns of 20%. Researchers might mistakenly assume that all projects face diffi-
culties during development. A statistical analysis might incorrectly identify Scrum,
for example, as a negative influence on project performance. Additionally, due to the
difficulty of measuring productivity (see next section), the study might overlook that
all EF-type projects perform on a higher productivity level than the I-type projects.

In order to prevent such incorrect conclusions, researchers must analyze the estima-
tion fingerprint of an organization before turning to their central research questions.
If a company shows a typical estimation fulfillment fingerprint, both the researchers
and practitioners can identify the gap between effort estimates and average actual
effort. This gap, e.g., 20% on average, must be excluded from the actual efforts in
order to free the data from the estimation fulfillment effect.

7.3.2 Immeasurability of Productivity

The evolution of developer productivity over time might be immeasurable. Exper-
tise-based estimation techniques, e.g., estimation by analogy, usually generate time-
based estimates. Such techniques do not aim at metrics like Lines of Code or Func-
tion Points that reflect the software size. Therefore, the software size is unknown.
However, the software size is necessary to quantify the output of a software devel-
opment project. In consequence, it is not possible to immediately analyze the rela-
tionship of input, i.e., the actual effort, and the output.

In order to analyze productivity over time, researches (or practitioners) must generate
software size metrics retrospectively. However, such figures might lead to incorrect
study results.776 Lines of Code vary with programming languages and the program-
ming styles of different developers. Similarly, the ex-post generation of Function
Points might also be biased. First, the known actual project efforts might influence
the researcher. Second, the researcher might have insufficient knowledge and experi-
ence with the FPA. Third, Function Point metrics might be too low if functional
specifications were incomplete at project start. This might be the case if developers
use the effort estimates for interpreting vague and incomplete specifications, and if
they implement more functionality than officially specified. In this case, the ratio of
implemented Function Points per man-day would be too low. Forth, criticism on
Function Points has noted that technology independence is not given. Fifth, Function
Points might ignore the intended level of software quality and customer satisfaction,

776 General problems of longitudinal analyses on developer productivity are addressed in Section

3.1.3.6.

242 Chapter 7: Conclusion

which was achieved by tolerated gold-plating activities throughout the projects, not
by quality specifications.

Additionally, if an EF-type company mistakenly responses to effort overruns by sys-
tematically increasing estimates by 20% in order to reduce the gap between actual
and estimated effort, developers might still conform to the estimate, for example, by
implementing more functionality than specified. In this case, a productivity analysis
might incorrectly identify a negative evolution of developer productivity.

In general, companies that face estimation fulfillment are advised to refrain from
simply increasing effort estimates in order to reduce the estimation gap. An increase
of estimates might only lead to higher actual efforts without improving estimation
accuracy.

7.3.3 Impact on Estimation Accuracy

EF-type projects and companies can bias estimation accuracy studies. As explained
before, statistical analyses might mistakenly lead to the conclusion that one estima-
tion technique is more accurate than another. Studies on estimation accuracy, for
example, showed higher estimation accuracy for estimation by analogy in contrast to
algorithmic approaches.777 Such results must be controversially discussed when con-
sidering estimation fulfillment.

Algorithmic approaches often require detailed information. Accordingly, project
management might have already written detailed specifications before turning to
effort estimation. In this case, detailed specifications might influence developers how
to interpret work packages while they emancipate from the given estimates. In con-
sequence, potential effort overruns are not based on estimation fulfillment, but they
actually refer to inaccurate estimates. If a dataset contains both EF-type and I-type
projects, this aspect must be taken into account and be eliminated before comparing
estimation techniques.

7.4 Limitations

Although this study was planned, designed, conducted, and reviewed as rigorously as
possible, it has – like any other research – various limitations:

• The presented understanding of the nature of software development
might not be shared by all members of the research community.

777 See Section 2.4.

Chapter 7: Conclusion 243

While it was attempted to present the underlying understanding
thoroughly, someone might disagree with it, and, in consequence,
disagree with the theory’s foundation.

• The exploratory study used second semester students as subjects.
Moreover, it was based on simulated development projects, which,
in turn, were based on exercises solution attempts. It might be de-
batable whether this approach is acceptable or not.

• The theory construction focused on explanation and prediction. The
theory could have addressed the goal of “design and action” as
well.778 This would contribute to the relevance of this thesis. For
example, the theory could have given advice to project managers
on how to react if they are confronted with estimation fulfillment.

• The theory was validated on the basis of semi-structured expert in-
terviews. Typical difficulties, problems, and pitfalls in using quali-
tative interviews have been addressed in Section 6.1.1. Even
though much effort was invested in the design of the interview
script, and although much attention was given during the expert in-
terviews not to make such mistakes, the conducted interviews
might still have been biased, especially with regard to the construc-
tion of knowledge and the ambiguity of language.

• The selection of experts limits this study. Although the interview-
ees look back to hundreds of development projects referring to dif-
ferent industry sectors, any further interview could provide an in-
teresting counter-finding or even falsify the theory. Particularly, all
companies are located in Germany or Switzerland. Therefore, this
study ignores (at least) culture as a potential building block of the
theory’s causal model. In addition, there might be special industry
sectors for which the theory does not apply.

• As a final point, the combination of interpretive and positivist un-
derstandings might face opposition of those who strictly regard the-
se understandings as contrary, conflicting, and/or being mutually
exclusive.

778 GREGOR (2006). See Tab. 1.1.

244 Chapter 7: Conclusion

7.5 Outlook

The goal of this thesis was to analyze the relationship of estimated and actual devel-
opment effort. Thus, a theory was developed in order to explain how and why esti-
mates have an essential impact on actual project efforts. Besides, this thesis gives
name to a complex phenomenon. This (at least) might inspire other researchers to
explore the field of estimation fulfillment. There are various questions and aspects
touched, but left open by this study:

• The (optional) proposition P3 was stated as part of the EFT, but it
was excluded from the theory validation.779 This proposition can be
subject to future research. However, such an in-depth study of
software development projects is – if at all feasible – regarded as
difficult and time-consuming.

• The estimation fingerprints are a suggestion to identify different
types of relationships between estimated and actual development
effort. Future research can confront the concept of estimation fin-
gerprints with quantitative empirical project data.

• Another interesting aspect is to explore in more detail why some
companies are affected by estimation fulfillment while others are
not. This would contribute to and fine-tune the set of stated as-
sumptions.

• Similarly, it would be interesting to see whether the EFT still holds
true when being applied in different cultural settings. This could be
analyzed by conducting expert interviews with software profes-
sionals from U.S. companies or Asian companies, e.g., from India,
China, or Japan.

• As a final point, research can address the perspective of top man-
agement on estimation fulfillment. It would be interesting to know
if there is a general concern, or if top managers ignore the phenom-
enon as long as profits are made.

779 See Section 5.2.3. Proposition 3: If individual differences between developers are systematically

and precisely documented and taken appropriately into account during effort estimation, the de-
viation of estimated and actual effort will reduce for EF-type projects.

Chapter 7: Conclusion 245

This research is just a small step towards a broad understanding of self-fulfilling es-
timates. More research is undoubtedly needed to explore and understand the effect of
estimation fulfillment in detail.

References 247

REFERENCES

Abdel-Hamid, T.; Madnick, S. E.: Software Project Dynamics: An Integrated
Approach. Prentice Hall, 1991.

Abdel-Hamid, T. K.; Madnick, S. E.: Special Feature: Impact of Schedule
Estimation on Software Project Behavior. In: IEEE Software, 3 (1986) 4, pp.
70-75.

Abran, A.; Robillard, P. N.: Function points analysis: an empirical study of its
measurement processes. In: Software Engineering, IEEE Transactions on, 22
(1996) 12, pp. 895-910.

Agarwal, R.; Prasad, J.: Are Individual Differences Germane to the Acceptance of
New Information Technologies? In: Decision Sciences, 30 (1999) 2, pp. 361-
391.

Agrawal, M.; Chari, K.: Software Effort, Quality, and Cycle Time: A Study of CMM
Level 5 Projects. In: Software Engineering, IEEE Transactions on, 33 (2007) 3,
pp. 145-156.

Akintoye, A.: Analysis of factors influencing project cost estimating practice. In:
Construction Management & Economics, 18 (2000) 1, pp. 77-89.

Albrecht, A. J.: Measuring Application Development Productivity. In: Proceedings of
the Joint SHARE, GUIDE, and IBM Application Development Symposium.
Monterey, California 1979, pp. 83–92.

Albrecht, A. J.; Gaffney Jr, J. E.: Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. In: IEEE
Transactions on Software Engineering, 9 Special Edition (1983) 6, pp. 639-
648.

American Society of Civil Engineers: Journal of Construction Engineering and
Management. 2008. Available at http://scitation.aip.org/coo/. Last access on.

Arditi, D.; Mochtar, K.: Trends in productivity improvement in the US construction
industry. In: Construction Management & Economics, 18 (2000) 1, pp. 15-27.

Armstrong, W. W.: Dependency structures of database relationships. In: IFIP
Congress, 74 (1974), pp. 580–583.

Bach, J.: Enough about process: what we need are heroes. In: Computer, 12 (1995)
2, pp. 96-98.

Bach, J.: What Software Reality Is Really About. In: Computer, 32 (1999) 12, pp.
148-149.

Baloff, N.: Startups in Machine-lntensive Production Systems. In: Journal of
Industrial Engineering, 17 (1966) 1, pp. 25-32.

248 References

Baloff, N.: Extension of the Learning Curve-Some Empirical Results. In: Operations
Research Quarterly, 22 (1971) 4, pp. 329-340.

Balzert, H.: UML Kompakt. 2. Edition. Spektrum Akad. Verlag, München, 2005.

Banker, R. D.; Chang, H.; Kemerer, C. F.: Evidence on Economies of Scale in
Software Development. In: Information and Software Technology, 36 (1994) 5,
pp. 275-282.

Banker, R. D.; Kauffman, R. J.; Kumar, R.: An Empirical Test of Object-Based
Output Measurement Metrics in a Computer Aided Software Engineering
(CASE) Environment. In: Journal of Management Information Systems, 8
(1991) 3, pp. 127-150.

Banker, R. D.; Kemerer, C. F.: Scale Economies in New Software Development. In:
IEEE Transactions on Software Engineering, 15 (1989) 10, pp. 1199-1205.

Barnett, L.: Outliers in Statistical Data. 3. Edition. Wiley, 1994.

Bartol, K. M.; Martin, D. C.: Managing Information Systems Personnel: A Review of
Literature and Managerial Implications. In: MIS Quarterly, 6 (1982) 1, pp. 49-
70.

Basili, V. R.; Turner, A. J.: Iterative Enhancement: A Practical Technique for
Software Development. In: IEEE Transactions on Software Engineering,
(1975), pp. 390-396.

Beaver, J. M.; Schiavone, G. A.: The Effects of Development Team Skill on Software
Product Quality. In: ACM SIGSOFT Software Engineering Notes, 31 (2006)
3, pp. 1-5.

Beck, K.; Andres, C.: Extreme Programming Explained: Embrace Change. 2.
Edition. Addison-Wesley Professional, 2004.

Beck, K.; Beedle, M.; van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler,
M.; Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries, R.; Kern, J.; Marick, B.;
Martin, R. C.; Mellor, S.; Schwaber, K.; Sutherland, J.; Thomas, D.: The Agile
Manifesto. 2001. Available at http://www.agilemanifesto.org/. Last access on
2008-09-20.

Becker, J.; Niehaves, B.: Epistemological perspectives on IS research: a framework
for analysing and systematizing epistemological assumptions. In: Information
Systems Journal, 17 (2007), pp. 197-214.

Beecham, S.; Baddoo, N.; Hall, T.; Robinson, H.; Sharp, H.: Motivation in Software
Engineering: A systematic literature review. In: Information and Software
Technology, 50 (2008) 9-10, pp. 860-878.

Beeri, C.; Bernstein, P. A.: Computational problems related to the design of normal
form relational schemas. In: ACM Transactions on Database Systems (TODS),
4 (1979) 1, pp. 30-59.

References 249

Belady, L. A.; Lehman, M. M.: A Model of Large Program Development. In: IBM
System Journal, 15 (1976) 3, pp. 225-252.

Belady, L. A.; Lehman, M. M.: Program System Dynamics or the Metadynamics of
Systems in Maintenance and Growth. In: Program Evolution. Edited by M. M.
Lehman, L. A. Belady. Academic Press, London, 1985.

Bergeron, F.; St-Arnaud, J. Y.: Estimation of information systems development
efforts: a pilot study. In: Information & Management, 22 (1992) 4, pp. 239-
254.

Berry, D. M.: The Inevitable Pain of Software Development: Why There Is No Silver
Bullet. In: Proceedings of the Radical Innovations of Software and Systems
Engineering in the Future. Eds.: M. Wirsing, A. Knapp, S. Balsamo. Venice,
Italy 2004, pp. 50-74.

Biggeleben, M.: From Communication to Implementation. In: Proceedings of the 8.
Internationale Tagung Wirtschaftsinformatik. Karlsruhe 2007.

Biggeleben, M.; Grgecic, D.; Holten, R.; Schäfermeyer, M.: E-Learning-Szenarien
an der Massenuniversität - Technische Realisierung und Erfolgsmessung. In:
E-Learning in Hochschule und Weiterbildung. Einsatzchancen und
Erfahrungen. Reihe: Erwachsenenbildung und lebenslanges Lernen. Edited by
R. Holten, D. Nittel. Frankfurt, 2009a, S. 127-145.

Biggeleben, M.; Holten, R.: Enlist. 2009a. Available at http://www.ise.wiwi.uni-
frankfurt.de/enlist/frontend/index.php. Last access on 2009-08-10.

Biggeleben, M.; Holten, R.: Spielwiesen/Playgrounds. 2009b. Available at
http://www.ise.wiwi.uni-frankfurt.de/spielwiesen/. Last access on 2009-08-10.

Biggeleben, M.; Kolbe, H.; Schäfermeyer, M.; Vranesic, H.: Prüfkriterien für
Geschäftsmodelle im Kontext von Software as a Service. In: Proceedings of the
9. Internaltionale Tagung Wirtschaftsinformatik. Vienna 2009b.

Blanche, M. T.; Durrheim, K.; Painter, D.: Research in Practice: Applied Methods
for the Social Sciences. 2. Edition. UTC Press, 2008.

Bless, C.; Higson-Smith, C.; Kagee, A.: Fundamentals of Social Research Methods:
An African Perspective. 4. Edition. Juta Legal and Academic Publishers, 2007.

Boehm, B.: A view of 20th and 21st century software engineering. In: Proceedings of
the 28th International Conference on Software Engineering. Shanghai, China
2006, pp. 12-29.

Boehm, B.; Abts, C.; Chulani, S.: Software development cost estimation approaches
- A survey. In: Annals of Software Engineering, 10 (2000a) 1, pp. 177-205.

Boehm, B.; Basili, V. R.: Gaining Intellectual Control of Software Development. In:
Computer, 33 (2000) 5, pp. 27-33.

250 References

Boehm, B.; Basili, V. R.: Software Defect Reduction Top 10 List. In: Computer, 34
(2001) 1, pp. 135-137.

Boehm, B.; Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods. In:
Computer, 36 (2003) 6, pp. 57-66.

Boehm, B. W.: The High Cost of Software. In: Practical Strategies for Developing
Large Software Systems. Edited by E. Horowitz. Addison-Wesley, Reading,
MA, 1975.

Boehm, B. W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs,
1981.

Boehm, B. W.: A Spiral Model of Software Development and Enhancement. In:
Proceedings of the International Workshop on Software Process and Software
Environments. 1985.

Boehm, B. W.: Industrial software metrics top 10 list. In: IEEE Software, 4 (1987) 5,
pp. 84-85.

Boehm, B. W.: A Spiral Model of Software Development and Enhancement. In: IEEE
Computer, 21 (1988) 4, pp. 61-72.

Boehm, B. W.; Abts, C.; Brown, A. W.; Chulani, S.; Clark, B. K.; Horowitz, E.;
Madachy, R.; Reifer, D. J.; Steece, B.: Cost Estimation with COCOMO II.
Prentice-Hall, 2000b.

Boehm, B. W.; Clark, B.; Horowitz, E.; Westland, C.; Madachy, R.; Selby, R.: Cost
Models for Future Software Life Cycle Processes: COCOMO II. In: Annals of
Software Engineering, Special Volume on Software Process and Product
Measurement (1995), pp. 45-60.

Bortz, J.; Döring, N.: Forschungsmethoden und Evaluation für Human-und
Sozialwissenschaftler: Für Human-und Sozialwissenschaftler. 4. Edition.
Springer, Berlin, 2006.

Breakwell, G. M.; Smith, J. A.; Fife-Schaw, C.; Hammond, S.: Research methods in
psychology. 3. Edition. Sage, 2006.

Briand, L. C.; Emam, K. E.; Surmann, D.; Wieczorek, I.; Maxwell, K. D.: An
assessment and comparison of common software cost estimation modeling
techniques. In: Proceedings of the 21st international conference on Software
engineering. Los Angeles 1999, pp. 313-322

Brooks, F. P.: The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, Reading, MA, 1975.

Brooks, F. P.: No Silver Bullet: Essence and Accidents of Software Engineering. In:
IEEE Computer, 20 (1987) 4, pp. 10-19.

Brooks, F. P.: The Mythical Man-Month after 20 Years. 1995a. Available at
ftp.cs.washington.edu/pub/se/icse17/brooks.ps.Z. Last access on 2008-09-21.

References 251

Brooks, F. P.: The Mythical Man-Month: Essays on Software Engineering.
Anniversary Edition. Addison-Wesley, Reading, MA, 1995b.

Brown, P. S.; Gould, J. D.: An experimental study of people creating spreadsheets.
In: ACM Transactions on Information Systems (TOIS), 5 (1987) 3, pp. 258-
272.

Bundschuh, M.; Dekkers, C.: Variants of the IFPUG Function Point Counting
Method. In: The IT Measurement Compendium - Estimating and
Benchmarking Success with Functional Size Measurement Edited, Springer
Berlin, Heidelberg, 2008, pp. 397-407.

Burrell, G.; Morgan, G.: Sociological Paradigms and Organisational Analysis.
Ashgate Publishing, Aldershot, UK et al., 1979.

Carlson, J. G.: Cubic Learning Curves: Precision Tool for Labor Estimating. In:
Manufacturing Engineering and Management, 71 (1973) 5, pp. 22-25.

Carlson, J. G.: How Much Does Forgetting Cost? In: Industrial Engineering, 8
(1976) 9, pp. 40-47.

Chamberlin, D. D.; Boyce, R. F.: SEQUEL: A Structured English Query Language.
In: Proceedings of the 1974 ACM SIGFIDET Workshop on Data Description.
1974, pp. 249–264.

Chapman, A.: Conscious Competence Learning Model. 2009. Available at
http://www.businessballs.com/consciouscompetencelearningmodel.htm. Last
access on 2009-02-19.

Chatman, V. V.: CHANGE-POINTs: A proposal for software productivity
measurement. In: Journal of Systems and Software, 31 (1995) 1, pp. 71-91.

Cheesman, J.; Daniels, J.: UML components: a simple process for specifying
component-based software. Addison-Wesley, 2000.

Chen, W. S.; Hirschheim, R.: A paradigmatic and methodological examination of
information systems research from 1991 to 2001. In: Information Systems
Journal, 14 (2004) 3, pp. 197-235.

Chidamber, S. R.; Kemerer, C. F.: A Metrics Suite for Object Oriented Design. In:
IEEE Transactions on Software Engineering, 20 (1994) 6, pp. 476-493.

Chulani, S.: Bayesian Analysis of Software Cost and Quality Models (Dissertation).
University of Southern California, Los Angeles, 1999.

Chulani, S.; Boehm, B.; Steece, B.: Bayesian Analysis of Empirical Software
Engineering Cost Models. In: IEEE Transactions on Software Engineering, 25
(1999) 4.

Clark, B.; Devnani-Chulani, S.; Boehm, B.: Calibrating the COCOMO II Post-
Architecture Model. In: Proceedings of the 20th International Conference on
Software Engineering. Kyoto, Japan 1998, pp. 477-480.

252 References

Clarkson, M.: Developing It Staff: A Practical Approach. Springer, 2001.

Cochran, E. B.: New concepts of the Learning Curve. In: Journal of Industrial
Engineering, 11 (1960) 4, pp. 317-327.

Cockburn, A.; Highsmith, J.: Agile Software Development: The People Factor. In:
IEEE Computer, 34 (2001) 11, pp. 131-133.

Codd, E. F.: A Relational Model of Data for Large Shared Data Banks. In:
Communications of the ACM, 13 (1970) 6, pp. 377-387

Codd, E. F.: Further Normalization of the Database Relational Model. In: Data Base
Systems. Edited by R. Rustin. Prentice-Hall, Englewood Cliffs, NJ, 1972.

Codd, E. F.: Recent Investigations into Relational Data Base Systems. In:
Proceedings of the Information Processing 74. Amsterdam 1974, pp. 1017–
1021.

Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. 2. Edition. 1988.

Cohn, M.: Agile Estimating and Planning. Prentice Hall, 2005.

Cohn, M.; Ford, D.: Introducing an Agile Process to an Organization. In: Computer,
36 (2003) 6, pp. 74-78.

Conte, S. D.; Dunsmore, H. E.; Shen, V. Y.: Software Engineering Metrics and
Models. Benjamin-Cummings Publishing Co. Inc., Redwood City, CA, 1986.

Conway, R.; Schultz, A.: The Manufacturing Progress Function. In: Journul of
Industrial Engineering, 10 (1959) 1, pp. 39-53.

Cooper, A. C.: R&D Is More Efficient in Small Companies. In: Harvard Business
Review, 42 (1964) 3, pp. 75-83.

Coplien, J. O.: Multi-Paradigm Design. 1999.

Coram, M.; Bohner, S.: The impact of agile methods on software project
management. In: Proceedings of the Engineering of Computer-Based Systems,
2005. ECBS '05. 12th IEEE International Conference and Workshops on the.
2005, pp. 363-370.

Corsten, H.: Produktionswirtschaft: Einfuehrung in das industrielle
Produktionsmanagement. 11 Edition. Oldenbourg, München, 2007.

COSMIC: The COSMIC Functional Size Measurement Method Version 3.0 -
Measurement Manual. 2007a. Available at http://www.gelog.etsmtl.ca/cosmic-
ffp/updates/COSMIC_Method_v3.0_Measurement_Manual.pdf. Last access on
2009-01-14.

COSMIC: The COSMIC Functional Size Measurement Method Version 3.0 - Method
Overview. 2007b. Available at http://www.gelog.etsmtl.ca/cosmic-
ffp/updates/COSMIC_Method_v3.0_Documentation_Overview.pdf. Last
access on 2009-01-13.

References 253

COSMIC: History of Functional Size Measurement. 2008. Available at
http://www.cosmicon.com/historycs.asp. Last access on 2009-01-13.

COSMIC: Overview of the COSMIC FFP Method. 2009. Available at
http://www.cosmicon.com/overview.asp. Last access on 2009-01-14.

Cox, B. J.: Planning the software industrial revolution. In: IEEE Software, 7 (1990)
6, pp. 25-33.

Crosby, P. B.: Quality Is Free. McGraw-Hill, 1979.

Curtis, B.: Fifteen years of psychology in software engineering: Individual
differences and cognitive science. In: Proceedings of the 7th international
Conference on Software Engineering. 1984, pp. 97-106

Custer, R. L.; Scarcella, J. A.; Stewart, B. R.: The Modified Delphi Technique - A
Rotational Modification. In: Journal of Vocational and Technical Education, 15
(1999) 2, pp. 50-58.

D'Souza, D. F.; Wills, A. C.: Objects, components, and frameworks with UML.
Addison-Wesley Reading, MA, 1998.

Dalkey, N.; Helmer, O.: An Experimental Application of the Delphi Method to the
Use of Experts. In: management Science, 9 (1963) 3, pp. 458-467.

Davidson, F. P.; Huot, J. C.: Management trends for major projects. In: Project
Appraisal, 4 (1989) 3, pp. 133–142.

Davis, A. M.: Fifteen Principles of Software Engineering. In: IEEE Software, 11
(1994) 6, pp. 94-96, 101.

DeMarco, T.; Lister, T. R.: Peopleware. Dorset House Pub. Co New York, NY, New
York, NY, 1987.

Dickey, T. E.: Programmer variability. In: Proceedings of the IEEE, 69 (1981) 7, pp.
844-845.

Dickmann, M. H.; Stanford-Blair, N.: Connecting Leadership to the Brain. Corwin
Press, 2000.

Dijkstra, E. W.: Letters to the editor: go to statement considered harmful. In:
Communications of the ACM, 11 (1968) 3, pp. 147-148.

Dijkstra, E. W.: The humble programmer. In: Communications of the ACM, 15
(1972) 10, pp. 859-866.

Dolado, J. J.: A study of the relationships among Albrecht and Mark II Function
Points, lines of code 4GL and effort. In: Journal of Systems and Software, 37
(1997) 2, pp. 161-173.

Donnelly, R. A.: The complete idiot's guide to statistics. Alpha, 2004.

254 References

Douglas McIlroy, M.: Mass-Produced Software Components. In: Software
Engineering Concepts and Techniques (1968 NATO Conference of Software
Engineering). Edited by J. M. Buxton, P. Naur, B. Randell. NATO Science
Committee, 1968, pp. 79-87.

Dunning, D.: Strangers to ourselves. In: The Psychologist, 19 (2006) 10, pp. 600-
603.

Dunning, D.; Johnson, K.; Ehrlinger, J.; Kruger, J.: Why people fail to recognize
their own incompetence. In: Current Directions in Psychological Science, 12
(2003) 3, pp. 83-87.

Dunning, D.; Kruger, J.: Unskilled and Unaware of It: How Difficulties in
Recognizing One's Own Incompetence Lead to Inflated Self-Assessments. In:
Journal of Personality and Social Psychology, 77 (1999) 6, pp. 1121–1134.

Ebbinghaus, H.: Memory: A contribution to experimental psychology (Translation
published in 1964). 1885.

Edmonds, E. A.: A process for the development of software for non-technical users
as an adaptive system. In: General Systems: Yearbook of the Society for
General Systems Research, 19 (1974), pp. 215–218.

Efron, B.: Bootstrap Methods: Another Look at the Jackknife. In: The Annals of
Statistics, 7 (1979a) 1, pp. 1-26.

Efron, B.: Computers and the Theory of Statistics: Thinking the Unthinkable. In:
SIAM Review, 21 (1979b) 4, pp. 460-480.

Efron, B.; Tibshirani, R.: An Introduction to the Bootstrap. Chapman and Hall, New
York, 1993.

Fagan, M. E.: Design and code inspections to reduce errors in program
development. In: IBM System Journal, 15 (1976) 3, pp. 182-211.

Falconer, D. J.; Mackay, D. R.: Ontological Problems of Pluralist Research
Methodologies Eds.: W. D. Haseman, D. L. Nazareth, D. Goodhue. Milwaukee
1999, pp. 624-626.

Fandel, G.; Blaga, S.: Aktivitätsanalytische Überlegungen zu einer Theorie der
Dienstleistungsproduktion. In: Zeitschrift für Betriebswirtschaft, 1 (2004)
2004, pp. 1-21.

Finnie, G. R.; Wittig, G. E.; Desharnais, J. M.: A comparison of software effort
estimation techniques: Using function points with neural networks, case-based
reasoning and regression models. In: Journal of Systems and Software, 39
(1997) 3, pp. 281-289.

Fitzgerald, B.; Howcroft, D.: Competing dichotomies in IS research and possible
strategies for resolution. In: Proceedings of the 19th International Conference
on Information Systems (ICIS). Helsinki, Finland 1998.

References 255

Fitzgerald, G.; Hirschheim, R.; Mumford, E.; Wood-Harper, A. T.: Information
Research Methodology: An Introduction to the Debate. In: Research Methods
in Information Systems. Edited by R. Hirschheim, G. Fitzgerald, E. Mumford,
A. T. Wood-Harper. Amsterdam, 1985, pp. 3-9.

Flyvbjerg, B.; Holm, M. S.; Buhl, S.: Underestimating Costs in Public Works
Projects. In: Journal of the American Planning Association, 68 (2002) 3, pp.
279-295.

Fontana, A.; Frey, J. H.: The interview: From structured questions to negotiated text.
In: Handbook of qualitative research. Edited by Y. S. Lincoln, N. K. Denzin.
Sage, Thousand Oaks, CA, 2000, pp. 645-672.

Forrester, J. W.: Industrial dynamics. Pegasus Communications, Waltham, MA,
1961.

Forrester, J. W.: Principles of Systems. 2nd Edition. Pegasus Communications,
Waltham, MA, 1968.

Forrester, J. W.: Urban Dynamics. Pegasus Communications, Waltham, MA, 1969.

Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling
Language. 3. Edition. Addison-Wesley, Boston, MA, 2003.

Fraser, S.; Mancl, D.: No Silver Bullet: Software Engineering Reloaded. In: IEEE
Software, 25 (2008) 1, pp. 91-94.

Fraser, S. D.; Brooks, F. P.; Fowler, M.; Lopez, R.; Namioka, A.; Northrop, L.;
Parnas, D. L.; Thomas, D.: "No silver bullet" reloaded: Retrospective on
"Essence and Accidents of Software Engineering". Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems and
applications companion. Montreal, Quebec, Canada 2007.

Frohnhoff, S.: Große Softwareprojekte. In: Informatik-Spektrum, 31 (2008) 6, pp.
566-575.

Fuchs, T.: script.aculo.us - web 2.0 javascript. 2009. Available at
http://script.aculo.us/. Last access on 2009-06-12.

Funahashi, K.: On the approximate realization of continuous mappings by neural
networks. In: Neural Networks, 2 (1989) 3, pp. 183-192

Galea, S.: The Boeing Company: 3D Function Point Extensions, V2.0, Release 1.0.
Boeing Information and Support Services, Research and Technology Software
Engineering, 1995.

Garmus, D.; Herron, D.: Function Point Analysis: Measurement Practices for
successful Software Projects. Addison-Wesley, Boston, MA, 2001.

Garnett, N.; Pickrell, S.: Benchmarking for construction: theory and practice. In:
Construction Management & Economics, 18 (2000) 1, pp. 55-63.

256 References

Gibbs, W. W.: Software's chronic crisis. In: Scientific American, 271 (1994) 3, pp.
72-81.

Gibson, M.; Arnott, D.: The Use of Focus Groups in Design Science Research. In:
Proceedings of the 18th Australasian Conference on Information Systems.
Toowoomba 2007, pp. 327-337.

Gielecki, M.; Hewlett, J.: Commercial Nuclear Electric Power in the United States:
Problems and Prospects. 1994.

Glass, R. L.: Facts and Fallacies of Software Engineering. Addison-Wesley
Professional, 2002.

Glass, R. L.: IT Failure Rates - 70% or 10-15%? In: IEEE Software, 22 (2005) 3, pp.
112, 110-111.

Glass, R. L.: The Standish report: does it really describe a software crisis? In:
Communications of the ACM, 49 (2006) 8, pp. 15-16.

Goel, A. L.: Software reliability models: Assumptions, limitations, and applicability.
In: IEEE Transactions on Software Engineering, SE 11 (1985) 12, pp. 1411-
1423.

Goldratt, E. M.: Critical Chain. North River Press, Great Barrington, MA, 1997.

Google: Google Analytics. 2009. Available at
http://www.google.com/intl/en/analytics/index.html. Last access on 2009-07-
29.

Grady, R. B.: Practical software metrics for project management and process
improvement. Prentice Hall, New Yersey, 1992.

Greenfield, J.; Short, K.: Software factories: assembling applications with patterns,
models, frameworks and tools. In: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications. 2003, pp. 16-27.

Gregor, S.: The Nature of Theory in Information Systems. In: MIS Quarterly, 30
(2006) 3, pp. 611-642.

Halstead, M. H.: Elements of Software Science. Elsevier, New York, 1977.

Harrison, W.: Clueless-and oblivious. In: IEEE Software, 21 (2004) 3, pp. 5-7.

Harter, D. E.; Krishnan, M. S.; Slaughter, S. A.: Effects of Process Maturity on
Quality, Cycle Time, and Effort in Software Product Development. In:
management Science, 46 (2000) 4, pp. 451-466.

Harvey, N.: Improving judgment in forecasting. In: Principles of Forecasting: A
Handbook for Researchers and Practitioners. Edited by J. S. Armstrong.
Boston, 2001, pp. 59-80.

References 257

Hatch, M. J.; Cunliffe, A. L.: Organization Theory: Modern, Symbolic, and
Postmodern Perspectives. 2. Edition. Oxford University Press, New York, NY,
USA, 2006.

Hayes, N.; Walsham, G.: Participation in groupware-mediated communities of
practice: a socio-political analysis of knowledge working. In: Information and
Organization, 11 (2001) 4, pp. 263-288.

Haykin, S.: Neural Networks: A Comprehensive Foundation. 2. Edition. Prentice
Hall, 1998.

He, J.; Butler, B. S.; King, W. R.: Team Cognition: Development and Evolution in
Software Project Teams. In: Journal of Management Information Systems, 24
(2007) 2, pp. 261-292.

Heemstra, F. J.: Software cost estimation. In: Information and Software Technology,
34 (1992) 10, pp. 627-639.

Heinemeier Hansson, D.: Ruby on Rails. 2008. Available at
http://www.rubyonrails.org/. Last access on 2009-06-12.

Hetzel, B.: Making Software Measurement Work: Building an Effective Measurement
Program. John Wiley & Sons, Inc., New York, NY, 1993.

Hevner, A. R.; March, S. T.; Park, J.; Ram, S.: Design Science in Information
Systems Research. In: MIS Quarterly, 28 (2004) 1, pp. 75-105.

Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley Longman,
Amsterdam, 2002.

Highsmith, J.; Cockburn, A.: Agile Software Development: The Business of
Innovation. In: IEEE Computer, 34 (2001) 9, pp. 120-127.

Hihn, J.; Habib-Agahi, H.: Cost estimation of software intensive projects: a survey of
current practices. In: Proceedings of the 13th International Conference on
Software Engineering. Austin, Texas, USA 1991, pp. 276–287.

Hill, J.; Thomas, L. C.; Allen, D. E.: Experts' estimates of task durations in software
development projects. In: International Journal of Project Management, 18
(2000) 1, pp. 13-21.

Hill, T. P.: On Goods and Services. In: Review of Income and Wealth, 23 (1977) 4,
pp. 315-338.

Hirschheim, R.: Information Systems Epistemology: An Historical Perspective. In:
Research Methods in Information Systems. Edited by E. Mumford, R.
Hirschheim, G. Fitzgerald, A. T. Wood-Harper. Amsterdam, 1985, pp. 13-35.

Hollmann, J. K.; Dysert, L. R.: Escalation Estimation: Working With Economics
Consultants. In: AACE International Transactions, (2007), pp. 01.01-01.06.

258 References

Holten, R.; Dreiling, A.; Becker, J.: Ontology-Driven Method Engineering for
Information Systems Development. In: Ontological Analysis, Evaluation, and
Engineering of Business Systems Analysis Methods. Edited by P. Green, M.
Rosemann. IDEA Group Publishing, Hershey, 2004, pp. 174-215.

Howard, A.: On site: Software Engineering Project Management. In:
Communications of the ACM, 44 (2001) 5, pp. 23-24.

Howells, J.: Innovation, Consumption and Services: Encapsulation and the
Combinatorial Role of Services. In: The Service Industries Journal, 24 (2004)
1, pp. 19-36.

Humphrey, W. S.: Managing the Software Process. Addison-Wesley, 1989.

Hunt, A.; Thomas, D.: The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley Professional, 2000.

IEEE Computer Society: The Software Engineering Body of Knowledge - Chapter
11. 2008a. Available at
http://www2.computer.org/portal/web/swebok/html/ch11#INTRODUCTION.
Last access on 2009-06-10.

IEEE Computer Society: The Software Engineering Body of Knowledge -
Introduction to the Guide. 2008b. Available at
http://www2.computer.org/portal/web/swebok/html/ch1#Ref1. Last access on
2009-06-10.

IEEE Standards Association: IEEE Standard Glossary of Software Engineering
Terminology. 1990.

InfoQ.com: Interview: Jim Johnson of the Standish Group. 2006. Available at
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS. Last
access on 2008-09-30.

International Function Point Users Group: Function Point Counting Practices
Manual, Release 4.0. Westerville, Ohio, 1994.

ISO: ISO 9001:2008, Quality Management Systems - Requirements. International
Organization for Standardization, Geneva, Switzerland, 2008.

Jackson, M. A.: The Role of Architecture in Requirements Engineering. In:
Proceedings of the Proceedings of the IEEE International Conference on
Requirements Engineering. Colorado Springs 1994, pp. 241.

Jacobson, I.; Christensen, M.; Jonsson, P.; Overgaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison-Wesley, New York,
1992.

Jantzen, K.: Verfahren der Aufwandsschätzung für komplexe Softwareprojekte von
heute. In: Informatik-Spektrum, 31 (2008) 1, pp. 35-49.

References 259

Jeffery, D. R.; Low, G. C.; Barnes, M.: A Comparison of Function Point Counting
Techniques. In: IEEE Transactions on Software Engineering, 19 (1993) 5, pp.
529-532.

Jenkins, A. M.; Naumann, J. D.; Wetherbe, J. C.: Empirical Investigation of Systems
Development Practices and Results. In: Information & Management, 7 (1984)
2, pp. 73-82.

Jones, C.: A short History of Function Points and Feature Points. Software
Productivity Reserch Inc., 1988.

Jones, C.: Applied Software Measurement: Assuring Productivity and Quality.
McGraw-Hill, New York, 1996.

Jones, C.: Applied Software Measurement: Global Analysis of Productivity and
Quality. 3. Edition. McGraw-Hill Professional, 2008.

Jorgensen, M.: A review of studies on expert estimation of software development
effort. In: Journal of Systems and Software, 70 (2004) 1-2, pp. 37-60.

Jorgensen, M.: Estimation of Software Development Work Effort: Evidence on
Expert Judgment and Formal Models. In: International Journal of Forecasting,
23 (2007) 3, pp. 449-462.

Jorgensen, M.; Boehm, B.: Software Development Effort Estimation: Formal Models
or Expert Judgment? In: IEEE Software, (2009).

Jorgensen, M.; Grimstad, S.: Over-optimism in Software Development Projects: The
Winner’s Curse. In: Proceedings of the International Conference on
Electronics, Communications and Computers. 2005, pp. 280-285.

Jorgensen, M.; Molokken, K.: How large are software cost overruns? A review of the
1994 CHAOS report. In: Information and Software Technology, 48 (2006) 4,
pp. 297-301.

Jorgensen, M.; Shepperd, M.: A Systematic Review of Software Development Cost
Estimation Studies. In: IEEE Transactions on Software Engineering, 33 (2007)
1, pp. 33-53.

Jorgensen, M.; Sjoberg, D.: Empirical studies on effort estimation in software
development projects. In: Proceedings of the International Conference on
Challenges of Information Technology Management in the 21st Century.
Anchorage, Alaska, United States 2000, pp. 778-779.

Jorgensen, M.; Sjoberg, D. I. K.: Impact of effort estimates on software project work.
In: Information and Software Technology, 43 (2001) 15, pp. 939-948.

Kagel, J. H.; Levin, D.: The Winner's Curse and Public Information in Common
Value Auctions. In: American Economic Review, 76 (1986) 5, pp. 894.

Kan, S. H.: Metrics and Models in Software Quality Engineering. Addison-Wesley,
1993.

260 References

Kaner, C.; Bach, J.; Pettichord, B.: Lessons Learned in Software Testing: A Context-
Driven Approach. Wiley, 2002.

Karner, G.: Metrics for Objectory. Master Thesis, Linkoping University (LiTH-IDA-
Ex-9344:21), Linkoping, Sweden, 1993.

Kauffman, R.; Kumar, R.: Modeling Estimation Expertise in Object Based ICASE
Environments. Report. Stern School of Business, New York University. New
York 1993.

Kemerer, C. F.: An empirical validation of software cost estimation models. In:
Communications of the ACM, 30 (1987) 5, pp. 416-429.

Kemerer, C. F.: Reliability of function points measurement: a field experiment. In:
Communications of the ACM, 36 (1993) 2, pp. 85-97.

Kernighan, B. W.; Ritchie, D. M.: The C Programming Language. Prentice Hall,
1978.

Kerzner, H.: Project Management: A Systems Approach to Planning, Scheduling and
Controlling. 2. Edition. New York, 1984.

Khoshgoftaar, T.; Pandya, A.; Lanning, D.: Application of neural networks for
predicting program faults. In: Annals of Software Engineering, 1 (1995) 1, pp.
141-154.

Kilian-Kehr, R.; Terzidis, O.; Voelz, D.: Industrialization of the Software Sector. In:
Wirtschaftinformatik, 49 (2007) Special Issue, pp. 62-71.

Kitchenham, B.; Lawrence Pfleeger, S.; McColl, B.; Eagan, S.: An empirical study of
maintenance and development estimation accuracy. In: Journal of Systems and
Software, 64 (2002a) 1, pp. 57-77.

Kitchenham, B.; Linkman, S.: Estimates, uncertainty, and risk. In: IEEE Software,
14 (1997) 3, pp. 69-74.

Kitchenham, B.; Mendes, E.: Why comparative effort prediction studies may be
invalid. In: Proceedings of the 5th International Conference on Predictor
Models in Software Engineering. Vancouver, British Columbia, Canada 2009.

Kitchenham, B.; Pfleeger, S. L.; McColl, B.; Eagan, S.: A case study of maintenance
estimation accuracy. In: Journal of Systems and Software, 64 (2002b) 1, pp.
57-77.

Kitchenham, B. A.; Pickard, L. M.; MacDonell, S. G.; Shepperd, M. J.: What
accuracy statistics really measure. In: IEE Proceedings Software, 148 (2001)
3, pp. 81-85.

Klein, W. M.; Kunda, Z.: Exaggerated Self-Assessments and the Preference for
Controllable Risks. In: Organizational Behavior and Human Decision
Processes, 59 (1994) 3, pp. 410-427.

References 261

Kluckhohn, C.; Murray, H. A.: Personality formation: The determinants. In:
Personality in nature, society, and culture. Edited by C. Kluckhohn, H. A.
Murray. Edition 2, New York, 1953, pp. 53-72.

Knuth, D. E.: The Art of Computer Programming. Volume 1: Fundamental
Algorithms. 1 Edition. Addison-Wesley Series in Computer Science and
Information Processing, 1968.

Koehler, D. J.; Harvey, N.: Confidence Judgments by Actors and Observers. In:
Journal of Behavioral Decision Making, 10 (1997) 3, pp. 221-242.

Kotler, P.; Adam, S.; Brown, L.; Armstrong, G.: Principles of Marketing. 3. Edition.
Prentice Hall, 2006.

Krueger, C. W.: Software Reuse. In: ACM Computing Surveys, 24 (1992) 2, pp. 131-
183.

Kuhn, T. S.: Logic of Discovery or Psychology of Research? In: Criticism and the
Growth of Knowledge. Edited by I. Lakatos, A. E. Musgrave. Cambridge
University Press, London, 1970.

Kunow, A.: Anreizsteuerung unter Berücksichtigung von Lernkurveneffekten.
Wiesbaden, 2006.

Landis, L.; McGarry, F.; Waligora, S.; Pajerski, R.; Stark, M.; Kester, R.;
McDermott, T.; Miller, J.: Manager’s Handbook for Software Development
(Revision 1). Report SEL-84-101. NASA Software Engineering Laboratory.
1990.

Laranjeira, L. A.: Software size estimation of object-oriented systems. In: Software
Engineering, IEEE Transactions on, 16 (1990) 5, pp. 510-522.

Larman, C.; Basili, V. R.: Iterative and Incremental Development: A Brief History.
In: Computer, 36 (2003) 6, pp. 47-56.

Laughery Jr., K. R.; Laughery Sr., K. R.: Human factors in software engineering: a
review of the literature. In: Journal of Systems and Software, 5 (1985) 1, pp. 3-
14

Lederer, A. L.; Prasad, J.: Information systems software cost estimating: a current
assessment. In: Journal of Information Technology, 8 (1993) 1, pp. 22-33.

Lee, A. S.: A Scientific Methodology for MIS Case Studies. In: MIS Quarterly, 13
(1989) 1, pp. 32-50.

Lee, A. S.: Integrating Positivist and Interpretive Approaches to Organizational
Research. In: Organization Science, 2 (1991) 4, pp. 342-365.

Lee, A. S.: Rigor and Relevance in MIS Research: Beyond the Approach of
Positivism Alone. In: MIS Quarterly, 23 (1999) 1, pp. 29-33.

Lee, A. S.; Baskerville, R. L.: Generalizing Generalizability in Information Systems
Research. In: Information Systems Research, 14 (2003) 3, pp. 221-243.

262 References

Lehman, M. M.: Programs, Life Cycles and Laws of Software Evolution. In:
Proceedings of the IEEE. 1980, pp. 1060-1076.

Lehman, M. M.: Laws of Software Evolution Revisited. In: Proceedings of the
Software Process Technology - Proceedings of the 5th European Workshop.
Nancy, France 1996, pp. 108–124.

Lehman, M. M.; Ramil, J. F.: Evolution in Software and Related Areas. In:
Proceedings of the Proceedings of the 4th International Workshop on
Principles of Software Evolution. International Conference on Software
Engineering. Vienna, Austria 2001, pp. 1-16.

Leong, F. T. L.; Austin, J. T.: The Psychology Research Handbook: A Guide for
Graduate Students and Research Assistants. 2. Edition. Sage, 2005.

Levenshtein, V. I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet Physics Doklady, 10 (1966).

Liebchen, G. A.; Shepperd, M.: Software productivity analysis of a large data set
and issues of confidentiality and data quality. In: Proceedings of the Software
Metrics, 2005. 11th IEEE International Symposium. 2005, pp. 3 pp.

Linda, A.; Chester, A. I.; Nancy, Y.; Anna, A. R.: Group Learning Curves: The
Effects of Turnover and Task Complexity on Group Performance. In: Journal of
Applied Social Psychology, 25 (1995) 6, pp. 512-529.

LINDO Systems: LINDO Systems - Optimization Software: Integer Programming,
Linear Programming, Nonlinear Programming, Global Optimization. 2009.
Available at http://www.lindo.com/. Last access on 2009-07-29.

Linstone, H. A.; Turoff, M.: Delphi Method: Techniques and Applications. Addison-
Wesley, 1975.

Linstone, H. A.; Turoff, M.: Delphi Method: Techniques and Applications. 2002.
Available at http://www.is.njit.edu/pubs/delphibook/.

Little, T.: Schedule estimation and uncertainty surrounding the cone of uncertainty.
In: Software, IEEE, 23 (2006) 3, pp. 48-54.

Madachy, R. J.: A Software Project Dynamics Model for Process Cost, Schedule and
Risk Assessment (Dissertation). University of Southern California, 1994.

Mansfield, E.; Rapoport, J.; Schnee, J.; Wagner, S.; Hamburger, M.: Research and
innovation in the modern corporation. New York, 1971.

Martin, J.: Rapid application development. Macmillan Publishing Co., Inc., 1991.

Matson, J. E.; Barrett, B. E.; Mellichamp, J. M.: Software development cost
estimation using function points. In: IEEE Transactions on Software
Engineering, 20 (1994) 4, pp. 275-287.

Maxwell, K. D.; Forselius, P.: Benchmarking software development productivity. In:
IEEE Software, 17 (2000) 1, pp. 80-88.

References 263

Maxwell, K. D.; Van Wassenhove, L.; Dutta, S.: Software Development Productivity
of European Space, Military and Industrial Applications. In: IEEE
Transactions on Software Engineering, 22 (1996) 10, pp. 706-718.

McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft
Press Redmond, WA, USA, 1996.

McConnell, S.: Code Complete. 2. Edition. Microsoft Press, Washington, 2004.

McConnell, S.: Software Estimation: Demystifying the Black Art. Microsoft Press,
Redmond, WA, 2006.

Metcalfe, R. M.; Boggs, D. R.: Ethernet: distributed packet switching for local
computer networks. In: Communications of the ACM, 19 (1976) 7, pp. 395-
404.

Mills, H.: Top-down programming in large systems. In: Debugging Techniques in
Large Systems. Edited by R. Rustin. Englewood Cliffs, N.J., Prentice-Hall,
1971.

Molokken-Ostvold, K.; Jorgensen, M.: Group Processes in Software Effort
Estimation. In: Empirical Software Engineering, 9 (2004) 4, pp. 315-334.

Molokken, K.: Effort and schedule estimation of software development projects
(PhD thesis). Oslo, 2004.

Molokken, K.; Jorgensen, M.: A Review of Surveys on Software Effort Estimation. In:
Proceedings of the Proceedings of the 2003 International Symposium on
Empirical Software Engineering. 2003, pp. 223-230.

Moore, G.: Cramming more components onto integrated circuits. In: Electronics
Magazine, 38 (1965) 8.

Morin, L. H.: Estimation of Resources for Computer Programming Projects.
University of North Carolina, Chapel Hill, NC, 1973.

Mukhopadhyay, T.; Vicinanza, S. S.; Prietula, M. J.: Examining the Feasibility of a
Case-Based Reasoning Model for Software Effort Estimation. In: MIS
Quarterly, 16 (1992) 2, pp. 155-171.

Myers, G. J.: A controlled experiment in program testing and code
walkthroughs/inspections. In: Communications of ACM, 21 (1978) 9, pp. 760-
768.

Myers, M. D.; Newman, M.: The qualitative interview in IS research: Examining the
craft. In: Information and Organization, 17 (2007) 1, pp. 2-26.

NASA Office of Human Capital: Competency Management System (CMS). 2006.
Available at http://ohcm.gsfc.nasa.gov/cms/home.htm. Last access on 2008-09-
27.

264 References

Nash, S. H.; Redwine, S. T.: People and organizations in software production: a
review of the literature. In: ACM SIGCPR Computer Personnel, 11 (1988) 3,
pp. 10-21.

Naur, P.; Randell, B.: Software Engineering: Report on a conference sponsored by
the NATO Science Committee. Report. Garmisch, Germany 1969.

Nelson, E. A.: Management Handbook for the Estimation of Computer Programming
Costs. Report AD-A648750. Systems Development Corp. 1966.

Newby-Clark, I. R.; Ross, M.; Buehler, R.; Koehler, D. J.; Griffin, D.: People Focus
on Optimistic Scenarios and Disregard Pessimistic Scenarios While Predicting
Task Completion Times. In: Journal of Experimental Psychology: Applied, 6
(2000) 3, pp. 171-181.

Niehaves, B.; Dreiling, A.; Ribbert, M.; Holten, R.: Conceptual Modeling - An
Epistemological Foundation. In: Proceedings of the American Conference on
Information Systems. New York, NY, USA 2004, pp. 4232-4242.

Norden, P. V.: Useful tools for project management. In: Management of Production.
Edited by M. K. Starr. Baltimore, 1970, pp. 71-101.

Object Management Group: Unified Modeling Language Specification 1.5. 2004.
Available at
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
. Last access on 2009-06-24.

Park, R. E.: Software Size Measurement: A Framework for Counting Source
Statements. Report CMU/SEI-92-TR-20. Software Engineering Institute.
Pittsburg, PA 1992.

Parkinson, C. N.: Parkinson's Law. In: The Economist, November (1955).

Parkinson, C. N.: Parkinson's Law and other Studies in Administration. Boston,
1957.

Parnas, D. L.; Clements, P. C.: Rational design process: How and why to fake it. In:
IEEE Transactions on Software Engineering, 12 (1986) 2, pp. 251-257.

Paynter, J.: Project estimation using screenflow engineering. In: Proceedings of the
International Conference on Software Engineering: Education and Practice.
Dunedin, New Zealand 1996, pp. 150-159.

Pett, M. A.: Nonparametric Statistics in Health Care Research: Statistics for Small
Samples and Unusual Distributions. 2. Edition. Sage, 1997.

Pham, H.: Software Reliability. Springer-Verlag New York, Inc., 1999.

Phan, D.; Vogel, D.; Nunamaker, J.: The search for perfect project management. In:
Computerworld, 22 (1988) 39, pp. 95-100.

Poppendieck, M.; Poppendieck, T.: Lean Software Development: An Agile Toolkit. 1
Edition. Addison-Wesley Longman, Amsterdam, 2003.

References 265

Popper, K. R.: The Logic of Scientific Discovery. Hutchinson, London, UK, 1959.

Popper, K. R.: The Logic of Scientific Discovery. Unwin Hyman, London, 1980.

Premraj, R.; Shepperd, M.; Kitchenham, B.; Forselius, P.: An Empirical Analysis of
Software Productivity over Time. In: Proceedings of the 11th IEEE
International Software Metrics Symposium (METRICS'05). 2005.

Premraj, R.; Twala, B.; Mair, C.; Forselius, P.: Productivity of Software Projects by
Business Sector: An Empirical Analysis of Trends. In: Proceedings of the 10th
IEEE International Software Metrics Symposium. Chicago, USA 2004.

Prototype Core Team: Prototype JavaScript framework: Easy Ajax and DOM
manipulation for dynamic web applications. 2009. Available at
http://www.prototypejs.org/. Last access on 2009-06-12.

Putnam, L. H.: A General Empirical Solution to the Macro Software Sizing and
Estimating Problem. In: IEEE Transactions on Software Engineering, SE-4
(1978) 4, pp. 345-361.

Putnam, L. H.; Myers, W.: Measures for Excellence: Reliable Software on Time,
within Budget. Prentice Hall PTR, Englewood Cliffs, N.J., 1991.

Quantitative Software Management: QSM Function Point Programming Languages
Table. 2005. Available at http://www.qsm.com/FPGearing.html. Last access on
2009-01-06.

Quantitative Software Management: QSM Home: SLIM Software Cost Estimation
and Project Management Tools, Training, and Services. 2008. Available at
http://www.qsm.com/index.html. Last access on 2008-12-01.

Randell, B.: Software engineering in 1968. In: Proceedings of the 4th international
conference on Software Engineering. 1979, pp. 1-10.

Randell, B.: The 1968/69 NATO Software Engineering Reports. 1996. Available at
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html.
Last access on 2008-12-16.

Recker, J. C.: Understanding Process Modelling Grammar Continuance: A study of
the Consequences of Representational Capabilities. Queensland University of
Technology. Brisbane 2008.

Reel, J. S.: Critical success factors in software projects. In: Software, IEEE, 16
(1999) 3, pp. 18-23.

Resig, J.: jQuery: The Write Less, Do More, JavaScript Library. 2009. Available at
http://jquery.com/. Last access on 2009-06-12.

Roberts, E. B.: A Simple Model of R&D Project Dynamics. In: Managerial
Applications of System Dynamics. Edited by E. B. Roberts. MIT Press,
Cambridge, MA, 1981.

266 References

Rosenkranz, C.; Holten, R.: On the Role of Conceptual Models in Information
Systems Research – From Engineering to Research. In: Proceedings of the 15th
European Conference on Information Systems (ECIS 2007). St. Gallen,
Switzerland 2007.

Royce, W. W.: Managing the Development of Large Software Systems: Concepts
and Techniques. In: Proceedings of the Proceedings of WesCon. 1970.

Rubey, R. L.: High Order Languages for Avionics Software - A Survey, Summary,
and Critique. In: Proceedings of the NAECON. 1978.

Rubin, H. A.: Macro-estimation of software development parameters: The
ESTIMACS system. In: Proceedings of the Conference on software
development tools, techniques, and alternatives (SOFTAIR). Arlington,
Virginia 1983.

Rumelhart, D. E.; Hinton, G. E.; Williams, R. J.: Learning Internal Representations
by Error Propagation. In: Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Edited, MIT Press, Cambridge, MA, 1986, pp.
318-362

Runeson, P.: Using Students as Experiment Subjects - An Analysis on Graduate and
Freshmen Student Data. In: Proceedings of the Empirical Assessment in
Software Engineering. 2003, pp. 95-102.

Sääksjärvi, M.; Lassila, A.; Nordström, H.: Evaluating the Software as a Service
Business Model: From CPU Time-Sharing to Online Innovation Sharing. In:
Proceedings of the IADIS International Conference e-Society 2005, Qawra,
Malta (2005), pp. 177-186.

Sackman, H.; Erikson, W. J.; Grant, E. E.: Exploratory experimental studies
comparing online and offline programming performance. In: Communications
of the ACM, 11 (1968) 1, pp. 3-11.

Schach, S. R.: Software engineering. 2nd Edition. Aksen Associates & Irwin,
Boston, MA, 1992.

Schach, S. R.: Object-Oriented and Classical Software Engineering. Sixth Edition.
McGraw Hill, New York, 2005.

Scherer, F. M.: Firm Size, Market Structure, Opportunity, and the Output of Patented
Inventions. In: American Economic Review, 53 (1965).

Schmidt, D. C.: Model-Driven Engineering. In: IEEE Computer, 39 (2006) 2, pp. 25-
31.

Schmookler, J.: The Size of Firm and the Growth of Knowledge. In: Patents,
Invention, and Economic Change. Edited by J. Schmookler. Cambridge, MA,
1972.

References 267

Schneeweiß, C.: Einführung in die Produktionswirtschaft. 7 Edition. Springer,
Berlin, Heidelberg, New York, 1999.

Schneider, G.; Winters, J. P.: Applying Use Cases: A Practical Guide. Addison
Wesley, Boston, MA, 1998.

Schwaber, K.: Scrum Development Process. In: Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications. 1995,
pp. 117-134.

Schwartz, J.: Analyzing Large-Scale System Development. In: Proceedings of the
1968 NATO Conference. 1968.

Sekaran, U.: Research Methods for Business: A Skill Building Approach. 4. Edition.
Wiley, 2003.

Selby, R. W.: Software engineering: Barry W. Boehm's lifetime contributions to
software development, management, and research. Wiley & Sons, 2007.

Shepperd, M.; Schofield, C.: Estimating Software Project Effort using Analogies. In:
IEEE Transactions on Software Engineering, 23 (1997) 11, pp. 736-743.

Shepperd, M.; Schofield, C.; Kitchenham, B.: Effort estimation using analogy. In:
Proceedings of the Proceedings of the 18th International Conference on
Software Engineering. 1996, pp. 170-178.

Simon, H. A.: Making Management Decisions: The Role of Intuition and Emotion.
In: Academy of Management Executive, 1 (1987), pp. 57-63.

Simpson, E. H.: The Interpretation of Interaction in Contingency Tables. In: Journal
of the Royal Statistical Society. Series B (Methodological), 13 (1951) 2, pp.
238-241.

Simpson, J.; Weiner, E.: The Oxford English Dictionary. Second Edition. 1989.

Sjøberg, D. I. K.; Hannay, J. E.; Hansen, O.; Kampenes, V. B.; Karahasanovic, A.;
Liborg, N. K.; Rekdal, A. C.: A survey of controlled experiments in software
engineering. In: IEEE Transactions on Software Engineering, 31 (2005) 9, pp.
733-753.

Smidts, C.; Huang, X.; Widmaier, J. C.: Producing reliable software: an experiment.
In: Journal of Systems and Software, 61 (2002) 3, pp. 213-224.

Sneed, H.: Die Data-Point-Methode. In: ONLINE, ZfD, 90 (1990) 5, pp. 48.

Sneed, H. M.: Schätzung der Entwicklungskosten von objektorientierter Software. In:
Informatik-Spektrum, 19 (1996) 3, pp. 133-140.

Software Productivity Research: Function Points or Feature Points? 2009a.
Available at http://www.spr.com/products/choosing.shtm. Last access on 2009-
01-08.

268 References

Software Productivity Research: What Are Feature Points? 2009b. Available at
http://www.spr.com/products/feature.shtm. Last access on 2009-01-08.

Sommerville, I.: Software Engineering. 5th Edition. Addison-Wesley, Reading, MA,
1996.

Sommerville, I.: Software Engineering. 8. Edition. Addison Wesley, 2006.

Spector, A.; Gifford, D.: A computer science perspective of bridge design. In:
Communications of the ACM, 29 (1986) 4, pp. 267-283.

St-Pierre, D.; Maya, M.; Abran, A.; Desharnais, J. M.; Bourque, P.: Full Function
Points: Counting Practices Manual. Report 1997-04. Software Engineering
Management Research Laboratory and Software Engineering Laboratory in
Applied Metrics, University of Quebec. Montreal 1997.

Standish Group International: The Chaos Report. 1994. Available at
www.standishgroup.com. Last access on.

Standish Group International: Extreme CHAOS. 2001. Available at
http://www.standishgroup.com. Last access on.

Steinberg, S. J.; Steinberg, S. L.: Geographic Information Systems for the Social
Sciences: Investigating Space and Place. Sage Publications, Inc., 2005.

Stensrud, E.; Myrtveit, I.: Human Performance Estimating with Analogy and
Regression Models: An Empirical Validation. In: Proceedings of the Fifth
International Symposium on Software Metrics (METRICS'98). 1998, pp. 205-
213.

Sternberg, R. J.; Berg, C. A.: Intellectual development. Cambridge University Press,
1992.

Stroustrup, B.: The C++ Programming Language. 3rd Edition. Addison-Wesley,
2000.

Sun Microsystems Inc.: Developer Resources for Java Technology. 2008. Available
at http://java.sun.com/. Last access on 2008-09-15.

Surowiecki, J.: The Wisdom of Crowds: Why the Many Are Smarter Than the Few
and How Collective Wisdom Shapes Business, Economies, Societies and
Nations. Little, Brown, 2004.

Symons, C. R.: Function Point Analysis: Difficulties and Improvements. In: IEEE
Transactions on Software Engineering, 14 (1988) 1, pp. 2-11.

Takeuchi, H.; Nonaka, I.: The new product development game. In: Harvard Business
Review, 64 (1986) 1, pp. 137-146.

Tassc: Tassc Software Solutions On Time. 2009. Available at http://www.tassc-
solutions.com/index.htm. Last access on 2009-01-09.

References 269

Taylor & Francis Group: Journal of Construction Management and Economics.
2008. Available at http://www.tandf.co.uk/journals/titles/01446193.html. Last
access on 2008-10-02.

The PHP Group: PHP: Hypertext Preprocessor. 2008. Available at
http://www.php.net/. Last access on 2008-09-05.

Tichy, W. F.: Hints for Reviewing Empirical Work in Software Engineering. In:
Empirical Software Engineering, 5 (2000) 4, pp. 309-312.

Touran, A.; Lopez, R.: Modeling Cost Escalation in Large Infrastructure Projects.
In: Journal of Construction Engineering & Management, 132 (2006) 8, pp.
853-860.

Tukey, J. W.: Exploratory Data Analysis. Addison-Wesley, Reading, MA, 1977.

Tukey, J. W.: We need both Exploratory and Confirmatory. In: The American
Statistician, 34 (1980) 1, pp. 23-25.

Turner, M.; Budgen, D.; Brereton, P.: Turning Software into a Service. In: Computer,
36 (2003) 10, pp. 38-44.

U.S. Department of Energy: An Analysis of Nuclear Power Plant Operating Costs: A
1995 Update. 1995.

USC-CSE: COCOMO II - Model Definition Manual. 2008. Available at
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman20
00.0.pdf. Last access on 2008-12-12.

van Deursen, A.; Klint, P.; Visser, J.: Domain-specific languages: an annotated
bibliography. ACM Press New York, NY, USA, 2000.

Verner, J.; Tate, G.: Estimating size and effort in fourth-generation development. In:
Software, IEEE, 5 (1988) 4, pp. 15-22.

Verner, J. M.; Tate, G.: A Model for Software Sizing. In: Journal of Systems and
Software, 7 (1987) 2, pp. 173-177.

Verner, J. M.; Tate, G.; Jackson, B.; Hayward, R. G.: Technology dependence in
function point analysis: a case study and critical review. Proceedings of the
11th international conference on Software engineering. Pittsburgh,
Pennsylvania, United States 1989.

Vogelezang, F.: Using COSMIC-FFP for sizing, estimating and planning in an ERP
environment. In: Applied Software Measurement Proceedings of the
IWSM/MetriKon 2006. Edited by A. Abran, M. Bundschuh, G. Büren, R. R.
Dumke. Potsdam, 2006.

W3C: HyperText Markup Language (HTML) Home Page. 2004. Available at
http://www.w3c.org/MarkUp/. Last access on 2004-11-11.

Wagner, C. H.: Simpson's Paradox in Real Life. In: The American Statistician, 36
(1982) 1, pp. 46-48.

270 References

Walsham, G.: Interpretive case studies in IS research: nature and method. In:
European Journal of Information Systems, 4 (1995) 1, pp. 74-81.

Walston, C. E.; Felix, C. P.: A Method of Programming Measurement and
Estimation. In: IBM Systems Journal, 16 (1977) 1, pp. 54-73.

Weber, R.: The Rhetoric of Positivism Versus Interpretivism: A Personal View. In:
MIS Quarterly, 28 (2004) 1, pp. iii-xii.

Weinberg, S. L.; Abramowitz, S. K.: Statistics Using SPSS: An Integrative
Approach. 2. Edition. Cambridge University Press, 2008.

Weinstein, N. D.: Unrealistic optimism about future life events. In: Journal of
Personality and Social Psychology, 39 (1980) 5, pp. 806-820.

Weinwurm, G. F.: On the Management of Computer Programming. Auerbach
Publications, 1970.

Whitmire, S. A.: 3D Function Points: Scientific and Real-Time Extensions to
Function Points. In: Proceedings of the Pacific Northwest Software Quality
Conference. 1992.

Wilcoxon, F.: Individual Comparisons by Ranking Methods. In: Biometrics Bulletin,
1 (1945) 6, pp. 80-83.

Wilkes, M. V.; Wheeler, D. J.; Gill, S.: The Preparation of Programs for an
Electronic Digital Computer. 1952.

Williams, L.; Cockburn, A.: Agile Software Development: It's about Feedback and
Change. In: Computer, 36 (2003) 6, pp. 39-43.

Wright, T. P.: Factors Affecting the Cost of Airplanes. In: Journal of Aeronautical
Sciences, 128 (1936) 3, pp. 122-128.

Yeaple, R. N.: Why are small R&D organizations more productive? In: Engineering
Management, IEEE Transactions on, 39 (1992) 4, pp. 332-346.

Yelle, L. E.: The Learning Curve: Historical Review and Comprehensive Survey.
1979.

Yin, R. K.: Case Study Research: Design and Methods. 3 Edition. SAGE
Publications, Thousand Oaks, CA, USA et al., 2003.

Zenger, T. R.: Explaining Organizational Diseconomies of Scale in R&D: Agency
Problems and the Allocation of Engineering Talent, Ideas, and Effort by Firm
Size. In: management Science, 40 (1994) 6, pp. 708-729.

Zmud, R. W.: Individual Differences and MIS Success: A Review of the Empirical
Literature. In: management Science, 25 (1979) 10, pp. 966-979.

Appendix 271

APPENDIX

A.1 SQL Trainer Exercises

Original exer-
cise number /
Altered exer-
cise number

Exercise text (German & English) / Solution

1 / 2 German: Listen Sie alle Einträge über alle Spalten der Tabelle “sales” auf. Hinweis für
die folgenden Aufgaben: Die Datensätze der Tabelle "sales" sind als einzelne Geschäfts-
vorfälle zu verstehen.

English: List all records of the table “sales“. Please note: The records of the table “sales”
represent business transactions.

SELECT *
FROM sales

2 / 1 German: Listen Sie alle Einträge über alle Spalten der Tabelle “sales” auf, aufsteigend
sortiert nach der Verkaufsmenge “UnitsSold”.

English: List all records of the table “sales”, sorted by “UnitsSold” in ascending order.

SELECT *
FROM sales
ORDER BY UnitsSold

3 / 4 German: Listen Sie alle Einträge über alle Spalten der Tabelle “sales” auf, jedoch nur für
Umsätze in der Filiale Nr.4 (“StoreNo”).

English: List all records, which refer to sales of store no. 4.

SELECT *
FROM sales
WHERE StoreNo = 4

4 / 9 German: Listen Sie alle Spalten der Tabelle “sales” auf, jedoch nur für Umsätze in der
Region “North” und “South.”

English: List all records, which refer to sales in the regions “North” and “South.”

SELECT *
FROM sales
WHERE SalesRegion = "North" OR SalesRegion = "South"

272 Appendix

Original exer-
cise number /
Altered exer-
cise number

Exercise text (German & English) / Solution

5 / 5 German: Listen Sie alle Spalten der Tabelle “sales” auf, jedoch nur für Geschäftsvorfälle,
wo die Verkaufsmenge (“UnitsSold”) zwischen einschließlich 10 und einschließlich 20
liegt.

English: List all records, which refer to sales with a sales volume between 10 and 20.

SELECT *
FROM sales
WHERE UnitsSold >= 10 AND UnitsSold <= 20
/* or */
WHERE UnitsSold BETWEEN 10 AND 20

6 / 3 German: Listen Sie die Spalten ItemNo, ItemDescription, UnitPrice und UnitsSold der
Tabelle “sales” auf, absteigend sortiert nach dem Stückpreis “UnitPrice“.

English: List all records of the table “sales”, sorted by “UnitPrice” in descending order.
Only the columns ItemNo, ItemDescription, UnitPrice, and UnitsSold should be listed.

SELECT ItemNo, ItemDescription, UnitPrice, UnitsSold
FROM sales
ORDER BY UnitPrice DESC

7 / 7 German: Listen Sie die Spalten ItemNo, ItemDescription, UnitPrice und UnitsSold der
Tabelle “sales” auf. Eine 5. Spalte soll die Positionssumme als Produkt von Preis und
Verkaufsmenge anzeigen. Die 5. Spalte soll “Total” heißen.

English: List the columns ItemNo, ItemDescription, UnitPrice, and UnitsSold of the table
“sales“. A fifth column should calculate the item total as the product of price and sales
volume. The fifth column should be renamed to “Total.”

SELECT ItemNo, ItemDescription, UnitPrice, UnitsSold,
 UnitPrice * UnitsSold AS Total
FROM sales

8 / 13 German: Listen Sie die Spalten ItemNo, ItemDescription, UnitPrice und UnitsSold der
Tabelle "sales" auf. Eine 5. Spalte soll die Positionssumme als Produkt von Preis
(UnitPrice) und Verkaufsmenge (UnitsSold) anzeigen. Die 5. Spalte soll "Total" heißen.
Eine 6. Spalte (genannt "Tax") soll die in der Positionssumme enthaltene Umsatzsteuer
ausweisen (UnitPrice ist Bruttopreis). Der Steuersatz ist immer 19%. Hinweis: Komma-
stellen werden durch einen Punkt gekennzeichnet - bspw. 0.25 – nicht 0,25!

English: List the columns ItemNo, ItemDescription, UnitPrice, and UnitsSold of the table
“sales.“ A fifth column should calculate the item total as the product of price and sales
volume. The fifth column should be renamed as “Total.” A sixth column (named “Tax”)
should show the included valud-added tax (UnitPrice is a gross price). The tax rate is
19%. Note: Decimal places are marked by a point, e.g., 0.25 instead of 0,25.

SELECT ItemNo, ItemDescription, UnitPrice, UnitsSold,
 UnitPrice * UnitsSold AS Total,
 UnitPrice * UnitsSold / 119 * 19 AS Tax
FROM sales

Appendix 273

Original exer-
cise number /
Altered exer-
cise number

Exercise text (German & English) / Solution

9 / 10 German: Listen Sie die Artikelnummer (ItemNo) sowie den entsprechenden Umsatz - als
Produkt aus UnitPrice und UnitsSold benannt als "Turnover" - pro Artikel auf.

English: List the item number as well as the corresponding turnover - as the product of
UnitPrice and UnitsSold renamed as “Turnover” – per item.

SELECT ItemNo, SUM(UnitPrice * UnitsSold) AS Turnover
FROM sales
GROUP BY ItemNo

10 / 12 German: Ermitteln Sie - basierend auf der Tabelle “sales” - die Anzahl an Geschäftsvor-
fällen. Das Ergebnis soll "SalesTransactions" heißen.

English: Determine the number of transactions in the table “sales.” The result should be
renamed as “SalesTransactions”.

SELECT COUNT(*) AS "SalesTransactions"
FROM sales

11 / 8 German: Listen Sie - basierend auf der Tabelle “sales“ - die Region (SalesRegion) sowie
die entsprechende Anzahl an Geschäftsvorfällen pro Region auf (umbenannt zu
"SalesTransactions".

English: Based on the table “sales,” list all regions and the corresponding number of
transactions (renamed as “SalesTransactions”).

SELECT SalesRegion, COUNT(*) AS "SalesTransactions"
FROM sales
GROUP BY SalesRegion

12 / 11 German: Listen Sie - basierend auf der Tabelle “sales“ - die Region (SalesRegion), die
Filiale (StoreNo) sowie den entsprechenden Gesamtumsatz - als Produkt aus UnitPrice
und UnitsSold umbenannt zu "Turnover" - pro Region und Filiale auf. Die Abfrage soll
nur Geschäftsvorfälle berücksichtigen, deren Verkaufsmenge ausschließlich größer 10 ist.

English: Based on the table “sales,” list the region (SalesRegion), the store (StoreNo), as
well as the corresponding turnover per region and store. The query should only consider
transactions that have a sales volume greater than 10.

SELECT SalesRegion, StoreNo,
 SUM(UnitPrice * UnitsSold) AS Turnover
FROM sales
WHERE UnitsSold > 10
GROUP BY SalesRegion, StoreNo

274 Appendix

Original exer-
cise number /
Altered exer-
cise number

Exercise text (German & English) / Solution

13 / 6 German: Listen Sie - basierend auf der Tabelle “items” (!) - alle Produktgruppen
(ItemGroup) auf. Jede Produktgruppe soll nur einmal aufgelistet werden.

English: Based on the table “items” (!), list all product groups. Each product group
should only appear once.

SELECT ItemGroup
FROM items
GROUP BY ItemGroup
/* or */
SELECT DISTINCT ItemGroup
FROM items

14 / 15 German: Listen Sie - zunächst basierend auf der Tabelle “sales” - die Spalten ID, ItemNo,
ItemDescription, UnitPrice und UnitsSold auf. Diese Geschäftsvorfälle sind anhand der
Produktnummer ItemNo mit der Tabelle “items“ zu verbinden, so dass die passende Pro-
duktgruppe ItemGroup als 6. Spalte angezeigt wird. Hinweis: SQL erlaubt keine mehrdeu-
tigen Spalten ("ambiguous columns"). Eindeutigkeit erreicht man durch die Schreibweise
"tabelle.spalte"!

English: List the columns ID, ItemNo, ItemDescription, UnitPrice, and UnitsSold of the
table “sales“. A sixth column should show the corresponding product group (ItemGroup).
Therefore, the transactions must be adequately joined with the table “items”. Note: SQL
does not allow ambiguous columns. To make columns unique, use the notation
“table.column.“

SELECT ID, sales.ItemNo, ItemDescription, UnitPrice,
 UnitsSold, ItemGroup
FROM sales, items
WHERE sales.ItemNo = items.ItemNo

15 / 14 German: Listen Sie - basierend auf den Tabellen “items“ und “sales“ - die Produktgruppe
(ItemGroup) sowie den entsprechenden Gesamtumsatz (umbenannt zu “Turnover“ als
Produkt aus UnitPrice und UnitsSold) pro Produktgruppe auf.

English: Based on the tables “items” and “sales,” list the product group (ItemGroup) and
the corresponding total turnover (renamed as “turnover”) per product group.

SELECT ItemGroup,
 SUM(UnitPrice * UnitsSold) AS "Turnover"
FROM sales, items
WHERE sales.ItemNo = items.ItemNo
GROUP BY ItemGroup

Appendix 275

A.2 Exemplary Extreme Solution Attempt (Exercise 2)

Query Time
select * 24.00
select * from 'sales' (Close to solution) 40.25
select * from 'sales' 18.50
select * from 'sales' 1.00
select * from 'table sales' 14.5
select id, storeno, salesregion, itemno, itemdescription, unitprice, unitsold from 'table sales' 82.00
select id, storeno, salesregion, itemno, itemdescription, unitprice, unitsold from 'sales' 10.75
select id, storeno, salesregion, itemno, itemdescription, unitprice, unitsold from 'sales' 1.50
select * from 'sales' (Returned to previous attempt) 162.00
select * from 'sales' 11.50
select 'sales' 12.75
select 'sales'. id, storeno, salesregion, itemno, itemdescription, unitprice, unitsold 44.50
select 'sales'. 'id, storeno, salesregion, itemno, itemdescription, unitprice, unitsold' 8.00
select 'sales'. 'id', 'storeno', 'salesregion', 'itemno', 'itemdescription', 'unitprice', 'unitsold' 31.50
select 'sales', 'id', 'storeno', 'salesregion', 'itemno', 'itemdescription', 'unitprice', 'unitsold' 6.00
select 'id', 'storeno', 'salesregion', 'itemno', 'itemdescription', 'unitprice', 'unitsold' 11.00
select 'id', 'storeno', 'salesregion', 'itemno', 'itemdescription', 'unitprice', 'unitsold' 11.00
select 'sales'.'id' 57.25
select * from 'sales' 41.75
select 'id', 'storeno' from 'sales' 48.00
select 'id', 'storeno' 29.75
select * from 'sales' 87.00
select * from 'sales'.'id', 'storeno' 58.00
select 'table sales' 114.00
select 'id', 'storeno' 126.75
select * from 'sales' 76.50
select * from ' table sales' 15.00
select * from 'table sales' 12.75
select * from sales (Correct Solution) 10.00

 Total time: 1,167.50

276 Appendix

A.3 Expert Interview Script

The following information was taken at the beginning of each interview:

Personal data

Name, year of birth, age, nationality, years of professional experience, ac-
ademic education

Employer

Name, city, country, turnover per year, number of employees, industry
sector, founding year, typical customers, product/core competence

Employment

Year of employment, number of projects, position, job description

Project Experience

Number of projects, customers, project languages, project durations, pro-
ject volumes, man-days, team sizes, project goals, responsibilities/roles in
projects

The semi-structured expert interviews were based on the following questions divided
into two parts:

Part 1: “Effort Estimation”

 Do you have direct or indirect contact with effort estimation ap-1)
proaches, for example, by being responsible for producing effort
estimates or by getting timeboxes for work packages?

 Which estimation approaches do you know by name, for example, 2)
from your academic education, your job, or from literature?

 How do you or does your employer estimate effort? 3)

 Do you or does your employer systematically record and analyze 4)
estimation data?

 In addition to effort estimation, do you or does your employer try 5)
to determine the project risk?

Appendix 277

 How much do actual project efforts deviate from your estimates on 6)
average?

 Are you or is your employer satisfied with estimation accuracy? 7)

 If not explicitly answered before: Do projects end with effort un-8)
derruns, that is, a project needed less effort than estimated?

 [Open question] What are major problems and challenges of effort 9)
estimation in your opinion?

Part 2: “Capability of developers”

 Do you think there is an observable difference between software 1)
developers in terms of performance and capability?

 Do you or does your employer try to determine the individual ca-2)
pabilities of developers?

 Are individual differences of developers taken into account during 3)
effort estimation?

 By how many percent did your general job performance increase 4)
during your career?

 How much is the general productivity ratio between the worst and 5)
the best developers you have worked with?

 How much does your productivity deviate per day? 6)

 Are there extreme negative deviations? For example, have you ever 7)
get completely stuck while working on a solution?

 Is your job performance below average, on average, or above aver-8)
age?

 If you receive a deadline for a work package and you recognize that 9)
you can complete that package ahead of schedule, will you adjust
your working speed in order to meet the deadline on time?

 Conversely, will you work faster if deadlines have to be met? 10)

278 Appendix

 Do you agree upon the following statements: 1) Incompetent indi-11)
viduals will dramatically overestimate their ability and perfor-
mance. 2) Incompetent individuals have a deficit in recognizing
someone else’s competence. 3) Incompetent individuals have a def-
icit in recognizing their own incompetence.

 [With the help of the following learning curve diagram, the inter-12)
viewee was asked to describe and visualize the development of his
or her job-related capability over time. They started with “today”
and their current capability as 100%. Then, for example, the inter-
viewee added the time of career begin and the corresponding capa-
bility compared to today]

 Is it possible to infinitely increase your job performance? 13)

 Do all developers reach the same level of capability and job per-14)
formance at some point during their professional career?

 [Open question] What are major problems and challenges of effort 15)
estimation when considering individual differences of developers?
[Sub questions] How do developers affect actual project effort?
How would you take individual differences of developers into ac-
count during effort estimation?

C
ap

ab
ili

ty
 (i

n
%

)

Time

Appendix 279

A.4 Further Lessons Learned

The expert interviews were not solely focused on the validation of the theory. One
interview question addressed general problems, challenges, and potential improve-
ments of effort estimation (see above). For the sake of completeness, the responses of
the interviewees are briefly summarized in the following table. Four interviewees
named unclear and incomplete requirements as the major problem of effort estima-
tion, since it partially invalidates effort estimates, made progress, project plans, as
well as the allocation of resources.

Interview Response
#1 (BOB) BOB chose unclear and incomplete requirements as the major driver for effort escala-

tion. Moreover, he named unsteady software quality, communication problems, miss-
ing feedback loops between developers and project lead, as well as the shortage of
resources. He noted that good developers are always missing due to overlapping pro-
jects, holidays, or illness.

#2 (TOM) TOM also named unclear requirements. Other problems come from the unclear vision
of customers as well as new technologies. Another problem is the correlation of opti-
mism and expertise. Good developers tend to give very optimistic estimates.

#3 (VINCE) VINCE asked for a validity of effort estimation. He also noted the problem of opti-
mism. Other noted problems are: the integration of effort estimation and iterative
development, missing systematic reviews of estimates, as well as the inappropriate
mixing of effort, budget, and schedule.

#4 (MARC & PETE) MARC named the people factor between developers and customers, unavailability of
required developers, the integration of effort estimation into iterative development,
missing concept fidelity, requirements changes, as well as the incorporation of switch-
ing costs. He stated that regularly switching between two parallel projects lowers
productivity by 50%. PETE added that customers start to deal with projects too late. He
also named the missing stability of requirements.

#5 (MARCUS) MARCUS named unclear and changing requirements, the assessment of new technolo-
gies, political, and irrational decisions as the major problems of effort estimation.

#6 (HALE) HALE recommended using ranges instead of single-valued estimates. He asked for an
appropriate budgeting of single iterations.

#7 (CHRIS & KAY) KAY named the costs of effort estimation. He noted that experience is worth more than
any method. However, he also asked for a method that replaces experience.

