2 research outputs found

    On the resource allocation for D2D underlaying uplink cellular networks

    Get PDF
    Device-to-Device (D2D) communications has attracted research interests as an emerging technology towards 5G and beyond cellular networks. In this paper, we investigate the power allocation in D2D underlaying cellular networks with uplink channel reuse. We first develop an optimization problem to minimize the total power consumption subject to per- user Quality-of-Service (QoS) constraints. A distributed power allocation algorithm is proposed to allocate the power for both D2D and cellular users by exploiting the property of strictly non-negative inverse of a Z-matrix. It is shown that the power allocated for users can be considerably saved for low QoS requirements, especially with a large number of D2D users. The proposed algorithm is validated through simulation to realize the impacts of noise power, distance between D2D users and the number of D2D pairs in the network

    On the resource allocation for D2D underlaying uplink cellular networks

    Get PDF
    Device-to-Device (D2D) communications has attracted research interests as an emerging technology towards 5G and beyond cellular networks. In this paper, we investigate the power allocation in D2D underlaying cellular networks with uplink channel reuse. We first develop an optimization problem to minimize the total power consumption subject to per- user Quality-of-Service (QoS) constraints. A distributed power allocation algorithm is proposed to allocate the power for both D2D and cellular users by exploiting the property of strictly non-negative inverse of a Z-matrix. It is shown that the power allocated for users can be considerably saved for low QoS requirements, especially with a large number of D2D users. The proposed algorithm is validated through simulation to realize the impacts of noise power, distance between D2D users and the number of D2D pairs in the network
    corecore