18 research outputs found

    Cycles in Random Bipartite Graphs

    Full text link
    In this paper we study cycles in random bipartite graph G(n,n,p)G(n,n,p). We prove that if pn2/3p\gg n^{-2/3}, then G(n,n,p)G(n,n,p) a.a.s. satisfies the following. Every subgraph GG(n,n,p)G'\subset G(n,n,p) with more than (1+o(1))n2p/2(1+o(1))n^2p/2 edges contains a cycle of length tt for all even t[4,(1+o(1))n/30]t\in[4,(1+o(1))n/30]. Our theorem complements a previous result on bipancyclicity, and is closely related to a recent work of Lee and Samotij.Comment: 8 pages, 2 figure

    Local resilience and Hamiltonicity Maker-Breaker games in random-regular graphs

    Full text link
    For an increasing monotone graph property \mP the \emph{local resilience} of a graph GG with respect to \mP is the minimal rr for which there exists of a subgraph HGH\subseteq G with all degrees at most rr such that the removal of the edges of HH from GG creates a graph that does not possesses \mP. This notion, which was implicitly studied for some ad-hoc properties, was recently treated in a more systematic way in a paper by Sudakov and Vu. Most research conducted with respect to this distance notion focused on the Binomial random graph model \GNP and some families of pseudo-random graphs with respect to several graph properties such as containing a perfect matching and being Hamiltonian, to name a few. In this paper we continue to explore the local resilience notion, but turn our attention to random and pseudo-random \emph{regular} graphs of constant degree. We investigate the local resilience of the typical random dd-regular graph with respect to edge and vertex connectivity, containing a perfect matching, and being Hamiltonian. In particular we prove that for every positive ϵ\epsilon and large enough values of dd with high probability the local resilience of the random dd-regular graph, \GND, with respect to being Hamiltonian is at least (1ϵ)d/6(1-\epsilon)d/6. We also prove that for the Binomial random graph model \GNP, for every positive ϵ>0\epsilon>0 and large enough values of KK, if p>Klnnnp>\frac{K\ln n}{n} then with high probability the local resilience of \GNP with respect to being Hamiltonian is at least (1ϵ)np/6(1-\epsilon)np/6. Finally, we apply similar techniques to Positional Games and prove that if dd is large enough then with high probability a typical random dd-regular graph GG is such that in the unbiased Maker-Breaker game played on the edges of GG, Maker has a winning strategy to create a Hamilton cycle.Comment: 34 pages. 1 figur

    Bandwidth theorem for random graphs

    Full text link
    A graph GG is said to have \textit{bandwidth} at most bb, if there exists a labeling of the vertices by 1,2,...,n1,2,..., n, so that ijb|i - j| \leq b whenever {i,j}\{i,j\} is an edge of GG. Recently, B\"{o}ttcher, Schacht, and Taraz verified a conjecture of Bollob\'{a}s and Koml\'{o}s which says that for every positive r,Δ,γr,\Delta,\gamma, there exists β\beta such that if HH is an nn-vertex rr-chromatic graph with maximum degree at most Δ\Delta which has bandwidth at most βn\beta n, then any graph GG on nn vertices with minimum degree at least (11/r+γ)n(1 - 1/r + \gamma)n contains a copy of HH for large enough nn. In this paper, we extend this theorem to dense random graphs. For bipartite HH, this answers an open question of B\"{o}ttcher, Kohayakawa, and Taraz. It appears that for non-bipartite HH the direct extension is not possible, and one needs in addition that some vertices of HH have independent neighborhoods. We also obtain an asymptotically tight bound for the maximum number of vertex disjoint copies of a fixed rr-chromatic graph H0H_0 which one can find in a spanning subgraph of G(n,p)G(n,p) with minimum degree (11/r+γ)np(1-1/r + \gamma)np.Comment: 29 pages, 3 figure
    corecore