464 research outputs found

    Can Terahertz Provide High-Rate Reliable Low Latency Communications for Wireless VR?

    Full text link
    Wireless virtual reality (VR) imposes new visual and haptic requirements that are directly linked to the quality-of-experience (QoE) of VR users. These QoE requirements can only be met by wireless connectivity that offers high-rate and high-reliability low latency communications (HRLLC), unlike the low rates usually considered in vanilla ultra-reliable low latency communication scenarios. The high rates for VR over short distances can only be supported by an enormous bandwidth, which is available in terahertz (THz) frequency bands. Guaranteeing HRLLC requires dealing with the uncertainty that is specific to the THz channel. To explore the potential of THz for meeting HRLLC requirements, a quantification of the risk for an unreliable VR performance is conducted through a novel and rigorous characterization of the tail of the end-to-end (E2E) delay. Then, a thorough analysis of the tail-value-atrisk (TVaR) is performed to concretely characterize the behavior of extreme wireless events crucial to the real-time VR experience. System reliability for scenarios with guaranteed line-of-sight (LoS) is then derived as a function of THz network parameters after deriving a novel expression for the probability distribution function of the THz transmission delay. Numerical results show that abundant bandwidth and low molecular absorption are necessary to improve the reliability. However, their effect remains secondary compared to the availability of LoS, which significantly affects the THz HRLLC performance. In particular, for scenarios with guaranteed LoS, a reliability of 99.999% (with an E2E delay threshold of 20 ms) for a bandwidth of 15 GHz along with data rates of 18.3 Gbps can be achieved by the THz network (operating at a frequency of 1 THz), compared to a reliability of 96% for twice the bandwidth, when blockages are considered.Comment: arXiv admin note: text overlap with arXiv:1905.0765

    Seven Defining Features of Terahertz (THz) Wireless Systems: A Fellowship of Communication and Sensing

    Full text link
    Wireless communication at the terahertz (THz) frequency bands (0.1-10THz) is viewed as one of the cornerstones of tomorrow's 6G wireless systems. Owing to the large amount of available bandwidth, THz frequencies can potentially provide wireless capacity performance gains and enable high-resolution sensing. However, operating a wireless system at the THz-band is limited by a highly uncertain channel. Effectively, these channel limitations lead to unreliable intermittent links as a result of a short communication range, and a high susceptibility to blockage and molecular absorption. Consequently, such impediments could disrupt the THz band's promise of high-rate communications and high-resolution sensing capabilities. In this context, this paper panoramically examines the steps needed to efficiently deploy and operate next-generation THz wireless systems that will synergistically support a fellowship of communication and sensing services. For this purpose, we first set the stage by describing the fundamentals of the THz frequency band. Based on these fundamentals, we characterize seven unique defining features of THz wireless systems: 1) Quasi-opticality of the band, 2) THz-tailored wireless architectures, 3) Synergy with lower frequency bands, 4) Joint sensing and communication systems, 5) PHY-layer procedures, 6) Spectrum access techniques, and 7) Real-time network optimization. These seven defining features allow us to shed light on how to re-engineer wireless systems as we know them today so as to make them ready to support THz bands. Furthermore, these features highlight how THz systems turn every communication challenge into a sensing opportunity. Ultimately, the goal of this article is to chart a forward-looking roadmap that exposes the necessary solutions and milestones for enabling THz frequencies to realize their potential as a game changer for next-generation wireless systems.Comment: 26 pages, 6 figure

    Potential key challenges for terahertz communication systems

    Get PDF
    The vision of 6G communications is an improved performance of the data rate and latency limitations and permit ubiquitous connectivity. In addition, 6G communications will adopt a novel strategy. Terahertz (THz) waves will characterize 6G networks, due to 6G will integrate terrestrial wireless mobile communication, geostationary and medium and low orbit satellite communication and short distance direct communication technologies, as well as integrate communication, computing, and navigation. This study discusses the key challenges of THz waves, including path losses which is considered the main challenge; transceiver architectures and THz signal generators; environment of THz with network architecture and 3D communications; finally, Safety and health issues
    • …
    corecore