69 research outputs found

    On the Relative Strength of Pebbling and Resolution

    Full text link
    The last decade has seen a revival of interest in pebble games in the context of proof complexity. Pebbling has proven a useful tool for studying resolution-based proof systems when comparing the strength of different subsystems, showing bounds on proof space, and establishing size-space trade-offs. The typical approach has been to encode the pebble game played on a graph as a CNF formula and then argue that proofs of this formula must inherit (various aspects of) the pebbling properties of the underlying graph. Unfortunately, the reductions used here are not tight. To simulate resolution proofs by pebblings, the full strength of nondeterministic black-white pebbling is needed, whereas resolution is only known to be able to simulate deterministic black pebbling. To obtain strong results, one therefore needs to find specific graph families which either have essentially the same properties for black and black-white pebbling (not at all true in general) or which admit simulations of black-white pebblings in resolution. This paper contributes to both these approaches. First, we design a restricted form of black-white pebbling that can be simulated in resolution and show that there are graph families for which such restricted pebblings can be asymptotically better than black pebblings. This proves that, perhaps somewhat unexpectedly, resolution can strictly beat black-only pebbling, and in particular that the space lower bounds on pebbling formulas in [Ben-Sasson and Nordstrom 2008] are tight. Second, we present a versatile parametrized graph family with essentially the same properties for black and black-white pebbling, which gives sharp simultaneous trade-offs for black and black-white pebbling for various parameter settings. Both of our contributions have been instrumental in obtaining the time-space trade-off results for resolution-based proof systems in [Ben-Sasson and Nordstrom 2009].Comment: Full-length version of paper to appear in Proceedings of the 25th Annual IEEE Conference on Computational Complexity (CCC '10), June 201

    Understanding Space in Proof Complexity: Separations and Trade-offs via Substitutions

    Full text link
    For current state-of-the-art DPLL SAT-solvers the two main bottlenecks are the amounts of time and memory used. In proof complexity, these resources correspond to the length and space of resolution proofs. There has been a long line of research investigating these proof complexity measures, but while strong results have been established for length, our understanding of space and how it relates to length has remained quite poor. In particular, the question whether resolution proofs can be optimized for length and space simultaneously, or whether there are trade-offs between these two measures, has remained essentially open. In this paper, we remedy this situation by proving a host of length-space trade-off results for resolution. Our collection of trade-offs cover almost the whole range of values for the space complexity of formulas, and most of the trade-offs are superpolynomial or even exponential and essentially tight. Using similar techniques, we show that these trade-offs in fact extend to the exponentially stronger k-DNF resolution proof systems, which operate with formulas in disjunctive normal form with terms of bounded arity k. We also answer the open question whether the k-DNF resolution systems form a strict hierarchy with respect to space in the affirmative. Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formula F can be transformed by simple variable substitution into a new formula F' such that if F has the right properties, F' can be proven in essentially the same length as F, whereas on the other hand the minimal number of lines one needs to keep in memory simultaneously in any proof of F' is lower-bounded by the minimal number of variables needed simultaneously in any proof of F. Applying this theorem to so-called pebbling formulas defined in terms of pebble games on directed acyclic graphs, we obtain our results.Comment: This paper is a merged and updated version of the two ECCC technical reports TR09-034 and TR09-047, and it hence subsumes these two report

    Towards Understanding and Harnessing the Potential of Clause Learning

    Full text link
    Efficient implementations of DPLL with the addition of clause learning are the fastest complete Boolean satisfiability solvers and can handle many significant real-world problems, such as verification, planning and design. Despite its importance, little is known of the ultimate strengths and limitations of the technique. This paper presents the first precise characterization of clause learning as a proof system (CL), and begins the task of understanding its power by relating it to the well-studied resolution proof system. In particular, we show that with a new learning scheme, CL can provide exponentially shorter proofs than many proper refinements of general resolution (RES) satisfying a natural property. These include regular and Davis-Putnam resolution, which are already known to be much stronger than ordinary DPLL. We also show that a slight variant of CL with unlimited restarts is as powerful as RES itself. Translating these analytical results to practice, however, presents a challenge because of the nondeterministic nature of clause learning algorithms. We propose a novel way of exploiting the underlying problem structure, in the form of a high level problem description such as a graph or PDDL specification, to guide clause learning algorithms toward faster solutions. We show that this leads to exponential speed-ups on grid and randomized pebbling problems, as well as substantial improvements on certain ordering formulas

    LIPIcs

    Get PDF
    We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure

    Cumulative Space in Black-White Pebbling and Resolution

    Get PDF

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Full text link
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph GG can be reversibly pebbled in time tt and space ss if and only if there is a Nullstellensatz refutation of the pebbling formula over GG in size t+1t+1 and degree ss (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system

    Campus Report, Vol. 34, No. 8

    Get PDF
    The publication for faculty and staff of the University of Dayton. University master plan preliminary concepts; Wohlleben-Hochwalt research awards; Stander Symposium.https://ecommons.udayton.edu/cmps_rpt/1044/thumbnail.jp

    Campus Report, Vol. 34, No. 8

    Get PDF
    The publication for faculty and staff of the University of Dayton. University master plan preliminary concepts; Wohlleben-Hochwalt research awards; Stander Symposium.https://ecommons.udayton.edu/cmps_rpt/1044/thumbnail.jp

    Lifting with Simple Gadgets and Applications to Circuit and Proof Complexity

    Full text link
    We significantly strengthen and generalize the theorem lifting Nullstellensatz degree to monotone span program size by Pitassi and Robere (2018) so that it works for any gadget with high enough rank, in particular, for useful gadgets such as equality and greater-than. We apply our generalized theorem to solve two open problems: * We present the first result that demonstrates a separation in proof power for cutting planes with unbounded versus polynomially bounded coefficients. Specifically, we exhibit CNF formulas that can be refuted in quadratic length and constant line space in cutting planes with unbounded coefficients, but for which there are no refutations in subexponential length and subpolynomial line space if coefficients are restricted to be of polynomial magnitude. * We give the first explicit separation between monotone Boolean formulas and monotone real formulas. Specifically, we give an explicit family of functions that can be computed with monotone real formulas of nearly linear size but require monotone Boolean formulas of exponential size. Previously only a non-explicit separation was known. An important technical ingredient, which may be of independent interest, is that we show that the Nullstellensatz degree of refuting the pebbling formula over a DAG G over any field coincides exactly with the reversible pebbling price of G. In particular, this implies that the standard decision tree complexity and the parity decision tree complexity of the corresponding falsified clause search problem are equal
    • …
    corecore