3 research outputs found

    On the Relationship between Consistent Query Answering and Constraint Satisfaction Problems

    Get PDF
    Recently, Fontaine has pointed out a connection between consistent query answering (CQA) and constraint satisfaction problems (CSP) [Fontaine, LICS 2013]. We investigate this connection more closely, identifying classes of CQA problems based on denial constraints and GAV constraints that correspond exactly to CSPs in the sense that a complexity classification of the CQA problems in each class is equivalent (up to FO-reductions) to classifying the complexity of all CSPs. We obtain these classes by admitting only monadic relations and only a single variable in denial constraints/GAVs and restricting queries to hypertree UCQs. We also observe that dropping the requirement of UCQs to be hypertrees corresponds to transitioning from CSP to its logical generalization MMSNP and identify a further relaxation that corresponds to transitioning from MMSNP to GMSNP (also know as MMSNP_2). Moreover, we use the CSP connection to carry over decidability of FO-rewritability and Datalog-rewritability to some of the identified classes of CQA problems

    Dichotomies in Constraint Satisfaction: Canonical Functions and Numeric CSPs

    Get PDF
    Constraint satisfaction problems (CSPs) form a large class of decision problems that con- tains numerous classical problems like the satisfiability problem for propositional formulas and the graph colourability problem. Feder and Vardi [52] gave the following logical for- malization of the class of CSPs: every finite relational structure A, the template, gives rise to the decision problem of determining whether there exists a homomorphism from a finite input structure B to A. In their seminal paper, Feder and Vardi recognised that CSPs had a particular status in the landscape of computational complexity: despite the generality of these problems, it seemed impossible to construct NP-intermediate problems `a la Ladner [72] within this class. The authors thus conjectured that the class of CSPs satisfies a complexity dichotomy , i.e., that every CSP is solvable in polynomial time or is NP-complete. The Feder-Vardi dichotomy conjecture was the motivation of an intensive line of research over the last two decades. Some of the landmarks of this research are the confirmation of the conjecture for special classes of templates, e.g., for the class of undi- rected graphs [55], for the class of smooth digraphs [5], and for templates with at most three elements [43, 84]. Finally, after being open for 25 years, Bulatov [44] and Zhuk [87] independently proved that the conjecture of Feder and Vardi indeed holds. The success of the research program on the Feder-Vardi conjecture is based on the con- nection between constraint satisfaction problems and universal algebra. In their seminal paper, Feder and Vardi described polynomial-time algorithms for CSPs whose template satisfies some closure properties. These closure properties are properties of the polymor- phism clone of the template and similar properties were later used to provide tractability or hardness criteria [61, 62]. Shortly thereafter, Bulatov, Jeavons, and Krokhin [46] proved that the complexity of the CSP depends only on the equational properties of the poly- morphism clone of the template. They proved that trivial equational properties imply hardness of the CSP, and conjectured that the CSP is solvable in polynomial time if the polymorphism clone of the template satisfies some nontrivial equation. It is this conjecture that Bulatov and Zhuk finally proved, relying on recent developments in universal algebra. As a by-product of the fact that the delineation between polynomial-time tractability and NP-hardness can be stated algebraically, we also obtain that the meta-problem for finite- domain CSPs is decidable. That is, there exists an algorithm that, given a finite relational structure A as input, decides the complexity of the CSP of A
    corecore