410 research outputs found

    Statistical lossless compression of space imagery and general data in a reconfigurable architecture

    Get PDF

    Fixed-length lossy compression in the finite blocklength regime

    Get PDF
    This paper studies the minimum achievable source coding rate as a function of blocklength nn and probability ϵ\epsilon that the distortion exceeds a given level dd. Tight general achievability and converse bounds are derived that hold at arbitrary fixed blocklength. For stationary memoryless sources with separable distortion, the minimum rate achievable is shown to be closely approximated by R(d)+V(d)nQ−1(ϵ)R(d) + \sqrt{\frac{V(d)}{n}} Q^{-1}(\epsilon), where R(d)R(d) is the rate-distortion function, V(d)V(d) is the rate dispersion, a characteristic of the source which measures its stochastic variability, and Q−1(ϵ)Q^{-1}(\epsilon) is the inverse of the standard Gaussian complementary cdf

    Empirical processes, typical sequences and coordinated actions in standard Borel spaces

    Full text link
    This paper proposes a new notion of typical sequences on a wide class of abstract alphabets (so-called standard Borel spaces), which is based on approximations of memoryless sources by empirical distributions uniformly over a class of measurable "test functions." In the finite-alphabet case, we can take all uniformly bounded functions and recover the usual notion of strong typicality (or typicality under the total variation distance). For a general alphabet, however, this function class turns out to be too large, and must be restricted. With this in mind, we define typicality with respect to any Glivenko-Cantelli function class (i.e., a function class that admits a Uniform Law of Large Numbers) and demonstrate its power by giving simple derivations of the fundamental limits on the achievable rates in several source coding scenarios, in which the relevant operational criteria pertain to reproducing empirical averages of a general-alphabet stationary memoryless source with respect to a suitable function class.Comment: 14 pages, 3 pdf figures; accepted to IEEE Transactions on Information Theor

    Nonasymptotic noisy lossy source coding

    Get PDF
    This paper shows new general nonasymptotic achievability and converse bounds and performs their dispersion analysis for the lossy compression problem in which the compressor observes the source through a noisy channel. While this problem is asymptotically equivalent to a noiseless lossy source coding problem with a modified distortion function, nonasymptotically there is a noticeable gap in how fast their minimum achievable coding rates approach the common rate-distortion function, as evidenced both by the refined asymptotic analysis (dispersion) and the numerical results. The size of the gap between the dispersions of the noisy problem and the asymptotically equivalent noiseless problem depends on the stochastic variability of the channel through which the compressor observes the source.Comment: IEEE Transactions on Information Theory, 201
    • …
    corecore