37 research outputs found

    On the reachability and observability of path and cycle graphs

    Full text link
    In this paper we investigate the reachability and observability properties of a network system, running a Laplacian based average consensus algorithm, when the communication graph is a path or a cycle. More in detail, we provide necessary and sufficient conditions, based on simple algebraic rules from number theory, to characterize all and only the nodes from which the network system is reachable (respectively observable). Interesting immediate corollaries of our results are: (i) a path graph is reachable (observable) from any single node if and only if the number of nodes of the graph is a power of two, n=2i,in=2^i, i\in \natural, and (ii) a cycle is reachable (observable) from any pair of nodes if and only if nn is a prime number. For any set of control (observation) nodes, we provide a closed form expression for the (unreachable) unobservable eigenvalues and for the eigenvectors of the (unreachable) unobservable subsystem

    Zero forcing sets and controllability of dynamical systems defined on graphs

    Full text link
    In this paper, controllability of systems defined on graphs is discussed. We consider the problem of controllability of the network for a family of matrices carrying the structure of an underlying directed graph. A one-to-one correspondence between the set of leaders rendering the network controllable and zero forcing sets is established. To illustrate the proposed results, special cases including path, cycle, and complete graphs are discussed. Moreover, as shown for graphs with a tree structure, the proposed results of the present paper together with the existing results on the zero forcing sets lead to a minimal leader selection scheme in particular cases

    Detecting Topology Variations in Dynamical Networks

    Full text link
    This paper considers the problem of detecting topology variations in dynamical networks. We consider a network whose behavior can be represented via a linear dynamical system. The problem of interest is then that of finding conditions under which it is possible to detect node or link disconnections from prior knowledge of the nominal network behavior and on-line measurements. The considered approach makes use of analysis tools from switching systems theory. A number of results are presented along with examples

    Zero forcing number, constrained matchings and strong structural controllability

    Full text link
    The zero forcing number is a graph invariant introduced to study the minimum rank of the graph. In 2008, Aazami proved the NP-hardness of computing the zero forcing number of a simple undirected graph. We complete this NP-hardness result by showing that the non-equivalent problem of computing the zero forcing number of a directed graph allowing loops is also NP-hard. The rest of the paper is devoted to the strong controllability of a networked system. This kind of controllability takes into account only the structure of the interconnection graph, but not the interconnection strengths along the edges. We provide a necessary and sufficient condition in terms of zero forcing sets for the strong controllability of a system whose underlying graph is a directed graph allowing loops. Moreover, we explain how our result differs from a recent related result discovered by Monshizadeh et al. Finally, we show how to solve the problem of finding efficiently a minimum-size input set for the strong controllability of a self-damped system with a tree-structure.Comment: Submitted as a journal paper in May 201
    corecore