68 research outputs found

    On the quantum chromatic number of a graph

    Get PDF
    We investigate the notion of quantum chromatic number of a graph, which is the minimal number of colours necessary in a protocol in which two separated provers can convince an interrogator with certainty that they have a colouring of the graph. After discussing this notion from first principles, we go on to establish relations with the clique number and orthogonal representations of the graph. We also prove several general facts about this graph parameter and find large separations between the clique number and the quantum chromatic number by looking at random graphs. Finally, we show that there can be no separation between classical and quantum chromatic number if the latter is 2, nor if it is 3 in a restricted quantum model; on the other hand, we exhibit a graph on 18 vertices and 44 edges with chromatic number 5 and quantum chromatic number 4.Comment: 7 pages, 1 eps figure; revtex4. v2 has some new references; v3 furthe small improvement

    Quantum state-independent contextuality requires 13 rays

    Get PDF
    We show that, regardless of the dimension of the Hilbert space, there exists no set of rays revealing state-independent contextuality with less than 13 rays. This implies that the set proposed by Yu and Oh in dimension three [Phys. Rev. Lett. 108, 030402 (2012)] is actually the minimal set in quantum theory. This contrasts with the case of Kochen-Specker sets, where the smallest set occurs in dimension four.Comment: 8 pages, 2 tables, 1 figure, v2: minor change

    Graph-theoretical Bounds on the Entangled Value of Non-local Games

    Get PDF
    We introduce a novel technique to give bounds to the entangled value of non-local games. The technique is based on a class of graphs used by Cabello, Severini and Winter in 2010. The upper bound uses the famous Lov\'asz theta number and is efficiently computable; the lower one is based on the quantum independence number, which is a quantity used in the study of entanglement-assisted channel capacities and graph homomorphism games.Comment: 10 pages, submission to the 9th Conference on the Theory of Quantum Computation, Communication, and Cryptography (TQC 2014

    On the orthogonal rank of Cayley graphs and impossibility of quantum round elimination

    Get PDF
    After Bob sends Alice a bit, she responds with a lengthy reply. At the cost of a factor of two in the total communication, Alice could just as well have given the two possible replies without listening and have Bob select which applies to him. Motivated by a conjecture stating that this form of "round elimination" is impossible in exact quantum communication complexity, we study the orthogonal rank and a symmetric variant thereof for a certain family of Cayley graphs. The orthogonal rank of a graph is the smallest number dd for which one can label each vertex with a nonzero dd-dimensional complex vector such that adjacent vertices receive orthogonal vectors. We show an exp(n)(n) lower bound on the orthogonal rank of the graph on {0,1}n\{0,1\}^n in which two strings are adjacent if they have Hamming distance at least n/2n/2. In combination with previous work, this implies an affirmative answer to the above conjecture.Comment: 13 page

    Characterization of Binary Constraint System Games

    Full text link
    We consider a class of nonlocal games that are related to binary constraint systems (BCSs) in a manner similar to the games implicit in the work of Mermin [N.D. Mermin, "Simple unified form for the major no-hidden-variables theorems," Phys. Rev. Lett., 65(27):3373-3376, 1990], but generalized to n binary variables and m constraints. We show that, whenever there is a perfect entangled protocol for such a game, there exists a set of binary observables with commutations and products similar to those exhibited by Mermin. We also show how to derive upper bounds strictly below 1 for the the maximum entangled success probability of some BCS games. These results are partial progress towards a larger project to determine the computational complexity of deciding whether a given instance of a BCS game admits a perfect entangled strategy or not.Comment: Revised version corrects an error in the previous version of the proof of Theorem 1 that arises in the case of POVM measurement

    Kochen-Specker Sets and the Rank-1 Quantum Chromatic Number

    Full text link
    The quantum chromatic number of a graph GG is sandwiched between its chromatic number and its clique number, which are well known NP-hard quantities. We restrict our attention to the rank-1 quantum chromatic number χq(1)(G)\chi_q^{(1)}(G), which upper bounds the quantum chromatic number, but is defined under stronger constraints. We study its relation with the chromatic number χ(G)\chi(G) and the minimum dimension of orthogonal representations ξ(G)\xi(G). It is known that ξ(G)≤χq(1)(G)≤χ(G)\xi(G) \leq \chi_q^{(1)}(G) \leq \chi(G). We answer three open questions about these relations: we give a necessary and sufficient condition to have ξ(G)=χq(1)(G)\xi(G) = \chi_q^{(1)}(G), we exhibit a class of graphs such that ξ(G)<χq(1)(G)\xi(G) < \chi_q^{(1)}(G), and we give a necessary and sufficient condition to have χq(1)(G)<χ(G)\chi_q^{(1)}(G) < \chi(G). Our main tools are Kochen-Specker sets, collections of vectors with a traditionally important role in the study of noncontextuality of physical theories, and more recently in the quantification of quantum zero-error capacities. Finally, as a corollary of our results and a result by Avis, Hasegawa, Kikuchi, and Sasaki on the quantum chromatic number, we give a family of Kochen-Specker sets of growing dimension.Comment: 12 page
    • …
    corecore