1,239 research outputs found

    Turing jumps through provability

    Full text link
    Fixing some computably enumerable theory TT, the Friedman-Goldfarb-Harrington (FGH) theorem says that over elementary arithmetic, each Σ1\Sigma_1 formula is equivalent to some formula of the form □Tφ\Box_T \varphi provided that TT is consistent. In this paper we give various generalizations of the FGH theorem. In particular, for n>1n>1 we relate Σn\Sigma_{n} formulas to provability statements [n]TTrueφ[n]_T^{\sf True}\varphi which are a formalization of "provable in TT together with all true Σn+1\Sigma_{n+1} sentences". As a corollary we conclude that each [n]TTrue[n]_T^{\sf True} is Σn+1\Sigma_{n+1}-complete. This observation yields us to consider a recursively defined hierarchy of provability predicates [n+1]T□[n+1]^\Box_T which look a lot like [n+1]TTrue[n+1]_T^{\sf True} except that where [n+1]TTrue[n+1]_T^{\sf True} calls upon the oracle of all true Σn+2\Sigma_{n+2} sentences, the [n+1]T□[n+1]^\Box_T recursively calls upon the oracle of all true sentences of the form ⟨n⟩T□ϕ\langle n \rangle_T^\Box\phi. As such we obtain a `syntax-light' characterization of Σn+1\Sigma_{n+1} definability whence of Turing jumps which is readily extended beyond the finite. Moreover, we observe that the corresponding provability predicates [n+1]T□[n+1]_T^\Box are well behaved in that together they provide a sound interpretation of the polymodal provability logic GLPω{\sf GLP}_\omega

    Consistency of circuit lower bounds with bounded theories

    Get PDF
    Proving that there are problems in PNP\mathsf{P}^\mathsf{NP} that require boolean circuits of super-linear size is a major frontier in complexity theory. While such lower bounds are known for larger complexity classes, existing results only show that the corresponding problems are hard on infinitely many input lengths. For instance, proving almost-everywhere circuit lower bounds is open even for problems in MAEXP\mathsf{MAEXP}. Giving the notorious difficulty of proving lower bounds that hold for all large input lengths, we ask the following question: Can we show that a large set of techniques cannot prove that NP\mathsf{NP} is easy infinitely often? Motivated by this and related questions about the interaction between mathematical proofs and computations, we investigate circuit complexity from the perspective of logic. Among other results, we prove that for any parameter k≥1k \geq 1 it is consistent with theory TT that computational class C⊈i.o.SIZE(nk){\mathcal C} \not \subseteq \textit{i.o.}\mathrm{SIZE}(n^k), where (T,C)(T, \mathcal{C}) is one of the pairs: T=T21T = \mathsf{T}^1_2 and C=PNP{\mathcal C} = \mathsf{P}^\mathsf{NP}, T=S21T = \mathsf{S}^1_2 and C=NP{\mathcal C} = \mathsf{NP}, T=PVT = \mathsf{PV} and C=P{\mathcal C} = \mathsf{P}. In other words, these theories cannot establish infinitely often circuit upper bounds for the corresponding problems. This is of interest because the weaker theory PV\mathsf{PV} already formalizes sophisticated arguments, such as a proof of the PCP Theorem. These consistency statements are unconditional and improve on earlier theorems of [KO17] and [BM18] on the consistency of lower bounds with PV\mathsf{PV}

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    Herbrand Consistency of Some Arithmetical Theories

    Full text link
    G\"odel's second incompleteness theorem is proved for Herbrand consistency of some arithmetical theories with bounded induction, by using a technique of logarithmic shrinking the witnesses of bounded formulas, due to Z. Adamowicz [Herbrand consistency and bounded arithmetic, \textit{Fundamenta Mathematicae} 171 (2002) 279--292]. In that paper, it was shown that one cannot always shrink the witness of a bounded formula logarithmically, but in the presence of Herbrand consistency, for theories IΔ0+Ωm{\rm I\Delta_0+\Omega_m} with m⩾2m\geqslant 2, any witness for any bounded formula can be shortened logarithmically. This immediately implies the unprovability of Herbrand consistency of a theory T⊇IΔ0+Ω2T\supseteq {\rm I\Delta_0+\Omega_2} in TT itself. In this paper, the above results are generalized for IΔ0+Ω1{\rm I\Delta_0+\Omega_1}. Also after tailoring the definition of Herbrand consistency for IΔ0{\rm I\Delta_0} we prove the corresponding theorems for IΔ0{\rm I\Delta_0}. Thus the Herbrand version of G\"odel's second incompleteness theorem follows for the theories IΔ0+Ω1{\rm I\Delta_0+\Omega_1} and IΔ0{\rm I\Delta_0}
    • …
    corecore