6 research outputs found

    On the probabilistic approach to the random satisfiability problem

    Full text link
    In this note I will review some of the recent results that have been obtained in the probabilistic approach to the random satisfiability problem. At the present moment the results are only heuristic. In the case of the random 3-satisfiability problem a phase transition from the satisfiable to the unsatisfiable phase is found at α=4.267\alpha=4.267. There are other values of α\alpha that separates different regimes and they will be described in details. In this context the properties of the survey decimation algorithm will also be discussed.Comment: 11 pages, proceedings of SAT 200

    Statistical mechanics of optimization problems

    Full text link
    Here I will present an introduction to the results that have been recently obtained in constraint optimization of random problems using statistical mechanics techniques. After presenting the general results, in order to simplify the presentation I will describe in details the problems related to the coloring of a random graph.Comment: proceedings of the conference SigmaPhi di Crete 2005, 10 pages, one figur

    Periodic attractors of random truncator maps

    Full text link
    This paper introduces the \textit{truncator} map as a dynamical system on the space of configurations of an interacting particle system. We represent the symbolic dynamics generated by this system as a non-commutative algebra and classify its periodic orbits using properties of endomorphisms of the resulting algebraic structure. A stochastic model is constructed on these endomorphisms, which leads to the classification of the distribution of periodic orbits for random truncator maps. This framework is applied to investigate the periodic transitions of Bornholdt's spin market model.Comment: 8 pages, presented at APFA

    Comparing Beliefs, Surveys and Random Walks

    Full text link
    Survey propagation is a powerful technique from statistical physics that has been applied to solve the 3-SAT problem both in principle and in practice. We give, using only probability arguments, a common derivation of survey propagation, belief propagation and several interesting hybrid methods. We then present numerical experiments which use WSAT (a widely used random-walk based SAT solver) to quantify the complexity of the 3-SAT formulae as a function of their parameters, both as randomly generated and after simplification, guided by survey propagation. Some properties of WSAT which have not previously been reported make it an ideal tool for this purpose -- its mean cost is proportional to the number of variables in the formula (at a fixed ratio of clauses to variables) in the easy-SAT regime and slightly beyond, and its behavior in the hard-SAT regime appears to reflect the underlying structure of the solution space that has been predicted by replica symmetry-breaking arguments. An analysis of the tradeoffs between the various methods of search for satisfying assignments shows WSAT to be far more powerful that has been appreciated, and suggests some interesting new directions for practical algorithm development.Comment: 8 pages, 5 figure

    Learning from Survey Propagation: a Neural Network for MAX-E-33-SAT

    Get PDF
    Many natural optimization problems are NP-hard, which implies that they are probably hard to solve exactly in the worst-case. However, it suffices to get reasonably good solutions for all (or even most) instances in practice. This paper presents a new algorithm for computing approximate solutions in Θ(N){\Theta(N}) for the Maximum Exact 3-Satisfiability (MAX-E-33-SAT) problem by using deep learning methodology. This methodology allows us to create a learning algorithm able to fix Boolean variables by using local information obtained by the Survey Propagation algorithm. By performing an accurate analysis, on random CNF instances of the MAX-E-33-SAT with several Boolean variables, we show that this new algorithm, avoiding any decimation strategy, can build assignments better than a random one, even if the convergence of the messages is not found. Although this algorithm is not competitive with state-of-the-art Maximum Satisfiability (MAX-SAT) solvers, it can solve substantially larger and more complicated problems than it ever saw during training

    On Sparse Discretization for Graphical Games

    Full text link
    This short paper concerns discretization schemes for representing and computing approximate Nash equilibria, with emphasis on graphical games, but briefly touching on normal-form and poly-matrix games. The main technical contribution is a representation theorem that informally states that to account for every exact Nash equilibrium using a nearby approximate Nash equilibrium on a grid over mixed strategies, a uniform discretization size linear on the inverse of the approximation quality and natural game-representation parameters suffices. For graphical games, under natural conditions, the discretization is logarithmic in the game-representation size, a substantial improvement over the linear dependency previously required. The paper has five other objectives: (1) given the venue, to highlight the important, but often ignored, role that work on constraint networks in AI has in simplifying the derivation and analysis of algorithms for computing approximate Nash equilibria; (2) to summarize the state-of-the-art on computing approximate Nash equilibria, with emphasis on relevance to graphical games; (3) to help clarify the distinction between sparse-discretization and sparse-support techniques; (4) to illustrate and advocate for the deliberate mathematical simplicity of the formal proof of the representation theorem; and (5) to list and discuss important open problems, emphasizing graphical-game generalizations, which the AI community is most suitable to solve.Comment: 30 pages. Original research note drafted in Dec. 2002 and posted online Spring'03 (http://www.cis.upenn. edu/~mkearns/teaching/cgt/revised_approx_bnd.pdf) as part of a course on computational game theory taught by Prof. Michael Kearns at the University of Pennsylvania; First major revision sent to WINE'10; Current version sent to JAIR on April 25, 201
    corecore