144 research outputs found

    Towards Practical Access Control and Usage Control on the Cloud using Trusted Hardware

    Get PDF
    Cloud-based platforms have become the principle way to store, share, and synchronize files online. For individuals and organizations alike, cloud storage not only provides resource scalability and on-demand access at a low cost, but also eliminates the necessity of provisioning and maintaining complex hardware installations. Unfortunately, because cloud-based platforms are frequent victims of data breaches and unauthorized disclosures, data protection obliges both access control and usage control to manage user authorization and regulate future data use. Encryption can ensure data security against unauthorized parties, but complicates file sharing which now requires distributing keys to authorized users, and a mechanism that prevents revoked users from accessing or modifying sensitive content. Further, as user data is stored and processed on remote ma- chines, usage control in a distributed setting requires incorporating the local environmental context at policy evaluation, as well as tamper-proof and non-bypassable enforcement. Existing cryptographic solutions either require server-side coordination, offer limited flexibility in data sharing, or incur significant re-encryption overheads on user revocation. This combination of issues are ill-suited within large-scale distributed environments where there are a large number of users, dynamic changes in user membership and access privileges, and resources are shared across organizational domains. Thus, developing a robust security and privacy solution for the cloud requires: fine-grained access control to associate the largest set of users and resources with variable granularity, scalable administration costs when managing policies and access rights, and cross-domain policy enforcement. To address the above challenges, this dissertation proposes a practical security solution that relies solely on commodity trusted hardware to ensure confidentiality and integrity throughout the data lifecycle. The aim is to maintain complete user ownership against external hackers and malicious service providers, without losing the scalability or availability benefits of cloud storage. Furthermore, we develop a principled approach that is: (i) portable across storage platforms without requiring any server-side support or modifications, (ii) flexible in allowing users to selectively share their data using fine-grained access control, and (iii) performant by imposing modest overheads on standard user workloads. Essentially, our system must be client-side, provide end-to-end data protection and secure sharing, without significant degradation in performance or user experience. We introduce NeXUS, a privacy-preserving filesystem that enables cryptographic protection and secure file sharing on existing network-based storage services. NeXUS protects the confidentiality and integrity of file content, as well as file and directory names, while mitigating against rollback attacks of the filesystem hierarchy. We also introduce Joplin, a secure access control and usage control system that provides practical attribute-based sharing with decentralized policy administration, including efficient revocation, multi-domain policies, secure user delegation, and mandatory audit logging. Both systems leverage trusted hardware to prevent the leakage of sensitive material such as encryption keys and access control policies; they are completely client-side, easy to install and use, and can be readily deployed across remote storage platforms without requiring any server-side changes or trusted intermediary. We developed prototypes for NeXUS and Joplin, and evaluated their respective overheads in isolation and within a real-world environment. Results show that both prototypes introduce modest overheads on interactive workloads, and achieve portability across storage platforms, including Dropbox and AFS. Together, NeXUS and Joplin demonstrate that a client-side solution employing trusted hardware such as Intel SGX can effectively protect remotely stored data on existing file sharing services

    Droplet: Decentralized Authorization for IoT Data Streams

    Full text link
    This paper presents Droplet, a decentralized data access control service, which operates without intermediate trust entities. Droplet enables data owners to securely and selectively share their encrypted data while guaranteeing data confidentiality against unauthorized parties. Droplet's contribution lies in coupling two key ideas: (i) a new cryptographically-enforced access control scheme for encrypted data streams that enables users to define fine-grained stream-specific access policies, and (ii) a decentralized authorization service that handles user-defined access policies. In this paper, we present Droplet's design, the reference implementation of Droplet, and experimental results of three case-study apps atop of Droplet: Fitbit activity tracker, Ava health tracker, and ECOviz smart meter dashboard

    ShareABEL: Secure Sharing of mHealth Data through Cryptographically-Enforced Access Control

    Get PDF
    Owners of mobile-health apps and devices often want to share their mHealth data with others, such as physicians, therapists, coaches, and caregivers. For privacy reasons, however, they typically want to share a limited subset of their information with each recipient according to their preferences. In this paper, we introduce ShareABEL, a scalable, usable, and practical system that allows mHealth-data owners to specify access-control policies and to cryptographically enforce those policies so that only parties with the proper corresponding permissions are able to decrypt data. The design (and prototype implementation) of this system makes three contributions: (1) it applies cryptographically-enforced access-control measures to wearable healthcare data, which pose different challenges than Electronic Medical Records (EMRs), (2) it recognizes the temporal nature of mHealth data streams and supports revocation of access to part or all of a data stream, and (3) it departs from the vendor- and device-specific silos of mHealth data by implementing a secure end-to-end system that can be applied to data collected from a variety of mHealth apps and devices

    Cryptographically Secure Information Flow Control on Key-Value Stores

    Full text link
    We present Clio, an information flow control (IFC) system that transparently incorporates cryptography to enforce confidentiality and integrity policies on untrusted storage. Clio insulates developers from explicitly manipulating keys and cryptographic primitives by leveraging the policy language of the IFC system to automatically use the appropriate keys and correct cryptographic operations. We prove that Clio is secure with a novel proof technique that is based on a proof style from cryptography together with standard programming languages results. We present a prototype Clio implementation and a case study that demonstrates Clio's practicality.Comment: Full version of conference paper appearing in CCS 201

    Hang With Your Buddies to Resist Intersection Attacks

    Full text link
    Some anonymity schemes might in principle protect users from pervasive network surveillance - but only if all messages are independent and unlinkable. Users in practice often need pseudonymity - sending messages intentionally linkable to each other but not to the sender - but pseudonymity in dynamic networks exposes users to intersection attacks. We present Buddies, the first systematic design for intersection attack resistance in practical anonymity systems. Buddies groups users dynamically into buddy sets, controlling message transmission to make buddies within a set behaviorally indistinguishable under traffic analysis. To manage the inevitable tradeoffs between anonymity guarantees and communication responsiveness, Buddies enables users to select independent attack mitigation policies for each pseudonym. Using trace-based simulations and a working prototype, we find that Buddies can guarantee non-trivial anonymity set sizes in realistic chat/microblogging scenarios, for both short-lived and long-lived pseudonyms.Comment: 15 pages, 8 figure
    corecore