
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Undergraduate Theses Theses and Dissertations 

7-1-2017 

ShareABEL: Secure Sharing of mHealth Data through ShareABEL: Secure Sharing of mHealth Data through 

Cryptographically-Enforced Access Control Cryptographically-Enforced Access Control 

Emily Greene 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Greene, Emily, "ShareABEL: Secure Sharing of mHealth Data through Cryptographically-Enforced Access 
Control" (2017). Dartmouth College Undergraduate Theses. 124. 
https://digitalcommons.dartmouth.edu/senior_theses/124 

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at 
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an 
authorized administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337600962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/124?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


ShareABEL: Secure Sharing of mHealth Data through
Cryptographically-Enforced Access Control

Thesis by Emily Greene
Advisor: David Kotz

Dartmouth Computer Science Technical Report TR2017-827
ABSTRACT
Owners of mobile-health apps and devices often want to share their
mHealth data with others, such as physicians, therapists, coaches,
and caregivers. For privacy reasons, however, they typically want
to share a limited subset of their information with each recipient ac-
cording to their preferences. In this paper, we introduce ShareABEL,
a scalable, usable, and practical system that allows mHealth-data
owners to specify access-control policies and to cryptographically
enforce those policies so that only parties with the proper corre-
sponding permissions are able to decrypt data. The design (and pro-
totype implementation) of this system makes three contributions:
(1) it applies cryptographically-enforced access-control measures
to wearable healthcare data, which pose different challenges than
Electronic Medical Records (EMRs), (2) it recognizes the temporal
nature of mHealth data streams and supports revocation of access
to part or all of a data stream, and (3) it departs from the vendor-
and device-specific silos of mHealth data by implementing a secure
end-to-end system that can be applied to data collected from a
variety of mHealth apps and devices.

CCS CONCEPTS
• Security and privacy → Access control; Mobile and wireless
security; Privacy protections;

KEYWORDS
mHealth, mobile health, access control, data sharing

1 INTRODUCTION
Mobile health (mHealth) apps and devices like smartwatches, smart
scales, and insulin pumps generate a large amount of data. This
data may be helpful for patient care, enabling healthcare providers
to monitor patients more effectively and tailor their treatments
accordingly. Unlike Electronic Medical Records (EMRs), where data
is primarily collected during in-person appointments, mHealth
devices collect data continuously and throughout normal life ac-
tivities, giving providers a more complete picture of the patient’s
health. Researchers can also use mHealth technologies to measure
subjects’ physiology, behavior, and activities in natural free-living
conditions, deepening their understanding of how behavior and
environment affect health or exploring the efficacy of experimental
health-related interventions. By combining data from multiple de-
vices into one easily accessible repository, with strong controls in
the hands of the health subject, we can facilitate these data-sharing
use cases and more.

Many systems deployed today incorporate security as an after-
thought. With security breaches and data leaks becoming more
frequent, it is imperative that sensitive medical data is securely

stored and shared. Medical data systems are especially attractive
to cyber-criminals and those with criminal intent: a wealth of sen-
sitive personal health information can be exfiltrated to sell on the
underground market or used to extort ransoms [13]. While many
security solutions currently exist to encrypt and protect data, a
more granular approach is necessary in this situation. An mHealth-
device owner may not want to share all of her mHealth data with
each of her providers. There are data that are applicable and nec-
essary to be viewed by her cardiologist, but she may not want her
physical therapist to see the same information. Studies have shown
that patients want granular privacy control over which health in-
formation their doctors can access [4]. mHealth data owners need
to not only protect their data from outsiders, but also share only
pertinent data with each of their specified data consumers.

Therefore, device owners need a solution that is both secure and
flexible. Owner-driven access control [3, 19] allows owners to option-
ally share subsets of their mHealth-device data with others, and
these access-control policies may change over time. Patients may
change providers and revoke access to the data, or they may reeval-
uate which data they would like to share with which providers. This
thesis describes a system that delivers a high level of data security
and flexibility to the data owner in determining who has access to
which data from his apps and devices. Our system, ShareABEL, will
help healthcare professionals treat patients without sacrificing the
security of patient data.

With ShareABEL, we focus solely on individuals’ mHealth data.
We envision that each mHealth app or device produces data on a
regular basis, resulting in an ongoing data stream of a specific type
of data. Such data streams may include heart rate, blood-glucose
levels, or data associated with specific exercises (e.g., force pro-
duced on a gym weight). We assume that data flows from one or
more mHealth apps or devices, through ShareApp (the data owner’s
smartphone app for ShareABEL), and into ShareBase (a cloud stor-
age system). There it can be accessed by various data consumers,
with ShareView, according to policies set by the data owner.

In our model, we think of access control on two axes: (1) whether
access has been granted to a data type (such as heart rate), and
(2) whether access has been granted for the time the data was col-
lected. To provide access control by type and by time period, we
use a combination of two different approaches: cryptographically-
enforced access control (to limit access to only deserving recipients)
and a pseudo-random indexing scheme (to constrain the time pe-
riods for which recipients can access the data stream). These two
methods complement each other.

Our contributions. In this paper, we develop a system that seeks to
accomplish three goals. First, we apply cryptographically-enforced
access control measures to mHealth data. Much of the health-data

1



Dartmouth Computer Science Technical Report TR2017-827

literature related to access control has concentrated on EMRs, where
fine-grain access control consists of restrictions on discrete re-
sources within individual patient records (e.g., images and appoint-
ment notes). Most mHealth data, on the other hand, are collected
outside the clinical context and are structured as ongoing data
streams, collected and uploaded over time. Therefore, access con-
trol of this data must address the temporal nature of data streams,
especially at the frequency and rate that mHealth data is produced.

Thus, our second contribution is temporal access control, a
means to temporally segment each data stream using a pseudo-
random indexing scheme, enabling owners to share the entire data
stream or only time-specific subsets of the stream (e.g., data col-
lected prior to a specific date).

Finally, we seek to depart from the vendor- and device-specific
silos of mHealth data by implementing a scalable, usable, and se-
cure end-to-end system that can be applied to data collected from
a variety of mHealth apps and devices. In the current mHealth
space, each app or device has its own vertical ecosystem, which can
be inefficient for people with multiple devices, and which misses
opportunities for aggregation of data across devices to provide a
more-complete picture of an individual’s health. We are able to
break down the barriers between silos by having a system that
compiles data from multiple devices on an individual’s smartphone
before sharing the data with others through a common cloud data-
base.

1.1 Organization
We begin by giving necessary background information and per-
tinent definitions in Section 2. We continue with a discussion of
related work in Section 3. We describe use cases for our system in
Section 4 and the security model on which our system is based in
Section 5. We then present our solution, especially centered around
the access control and revocation support, in Section 6. We detail
our implementation in Section 7. We follow with an evaluation
of the system in Section 8. We discuss limitations to our system
and interesting extensions in Section 9, and finally conclude with
Section 10.

2 BACKGROUND
Cryptography has long been used to protect sensitive data from
adversaries. In this system, we seek to not only use cryptography
as a safeguard against data exfiltration, but also as a means to
provide access control. There has been significant work on the use
of cryptography as an access-control mechanism, enforcing access
to content by encrypting that content and sharing keys only with
permitted users [12, for example].

2.1 Definitions
For clarity we define the key terms we use in this paper. There
are two types of human actors that use our system: data owners
and data consumers. A data owner is the person who produces the
mHealth data measured by the app or device. Even if the collection
device itself is owned by a third party, such as a doctor or employer,
our focus here is on the data. In some related literature, this person
is referred to as a patient, but we envision a broader range of use
cases such as a subject in a research study sharing the data with the

researcher, a professional athlete with a trainer, an elderly parent
with an adult child, and so forth.

A data consumer is an individual or entity with whom the data
owner would like to share information (e.g., doctor, physical thera-
pist, coach, family, researcher, laboratory, insurance company). We
assume that the owner knows the consumer personally (and in the
case that the consumer is an organization, a personal knowledge
of a representative of the organization), and that there is an oppor-
tunity for secure exchange between data owner and data consumer
(Section 6.3).

These two parties intend to share mHealth data. We consider a
data point as one individual measurement (e.g., one weight reading,
one heart-rate measurement computed over a 15-second interval,
or the step-count for a 5-minute interval), and a data stream is a
sequence of data points from a single data source, measured on a
periodic basis and sent from the source as they occur, or in batches.
These data streams vary in frequency and their data points vary in
size. Some streams produce new data points frequently (e.g., step
counts, measured from 100Hz accelerometer data) and others rarely
(e.g., weight, typically measured a few times a week). Some records
are small (e.g., a single blood-pressure measurement) and some are
large (e.g., photos of changes in wound healing). Therefore, our
solution must support fine-grained access control regardless of the
size, type, or frequency of data.

Each data stream has one source – an mHealth app or mHealth
device; but a source that produces multiple types of data (e.g., heart
rate and step count) would produce multiple data streams. Each of
these streams has only one data type, which is used for the most
granular level of access control within the system (e.g., heart-rate
data collected by two different devices or two different applications
on the same device are all controlled under the “heart-rate” data
type). We group data types into data categories based on similar-
ities (e.g., heart-rate and blood-pressure data both fall within the
“cardiology” category). Default categories are set by a data configu-
ration file (see figure in Section 7), and data owners can set custom
categories if desired.

For data owners to share data with various consumers, that
data must be stored in a database, an external, untrusted (honest
but curious) server that hosts data from a variety of owners. We
refer to each entry in the database as a record. We assume each
record corresponds to one or more data points in the stream, and is
encrypted separately. In the case of particularly small or frequent
data points, one record may hold multiple data points, grouped
into temporally contiguous batches for efficiency. In the case of
particularly large data points, they may either be fragmented into
multiple records, or stored with a layer of indirection (the record
would be equivalent to a pointer to a larger encrypted blob), for
efficiency. Records are immutable – once produced, they are never
changed or deleted. To retrieve a record from the database, a data
consumer must provide the index, or unique code, corresponding
to that record.

Our goal is to enable data owners to specify consumers’ access,
the permission granted by a data owner to a data consumer to view
the plaintext of a specified record (read-only). An access-control pol-
icy is a set of permissions authored by the data owner that specifies
which records each data consumer is able to read. Revocation of

2



Dartmouth Computer Science Technical Report TR2017-827

access occurs when there is an access-policy change that narrows
or restricts a consumer’s access to a specific data stream (i.e., there
exists at least one record in the data stream (past or future) to which
the consumer used to be allowed access and now is denied access).
Therefore, revocation can be as narrow as a change in the access
to one record, and can be as broad as the revocation to the entire
data category. Our system design and underlying implementation
thus support tremendous flexibility and granularity – recognizing
that the design of an interface suitable for human data owners to
author these policies remains an important HCI challenge worthy
of future work [19, 20].

2.2 Attribute-Based Encryption
To address the “all or nothing” problem of traditional encryption
systems, Sahai andWaters introduced the concept of attribute-based
encryption (ABE) [21]. ABE allows ciphertexts and keys to be cre-
ated with specific attributes and policies attached. In an ABE system,
any string or numeric value can serve as an attribute. Attributes
serve as tags or descriptors of the underlying data. Policies are
Boolean formulas over these attributes that specify access to data
tagged with these attributes. Policies can be expressed with AND,
OR, threshold gates (e.g., m-of-n), and relational operators (less-
than, greater-than, etc.) [1]. There are two different types of ABE
that depend on the access control desired: Key-Policy ABE provides
content-based access control, and Ciphertext-Policy ABE provides
role-based access control. In ShareABEL, we use Key-Policy ABE.

In Key-Policy ABE (KP-ABE), ciphertexts are labeled with sets of
descriptive attributes, and a user’s key can only decrypt a ciphertext
if the key’s policy matches the attributes of the ciphertext [11]. KP-
ABE provides content-based access control, as the attributes are tied
to the content (the ciphertext) and the user’s private key is associ-
ated with a policy over these attributes [26]. For example, consider
an athlete who desires to share with her coach some subset of exer-
cise data. The attributes on data obtained while working out could
include: type:heart-rate, location:gym, exercise-intensity:high,
and the coach could be issued the following key:
(type:heart-rate AND (exercise-intensity:high

OR (exercise-intensity:medium AND location:gym)))

With this key, the coach can only decrypt heart-rate data collected
during exercise (any high-intensity activity or medium-intensity
activity that happened at the gym). (The specifics of the syntax
vary by implementation, but have similar capabilities.)

On the other hand, in Ciphertext-Policy ABE (CP-ABE), the ci-
phertext (for each individual record) has an attached policy that
dictates the attributes that a user must possess to decrypt that doc-
ument. CP-ABE provides role-based access control, as the policies
reference a list of attributes that describe the user (and his role) and
are embedded into the user’s secret key. In the example above, the
attribute on a coach’s key would be role:coach and all applicable
heart-rate data would need to have an associated policy allowing
the coach’s key to decrypt the ciphertext.

In ShareABEL, we elected to use Key-Policy Attribute-Based En-
cryption for several reasons: (1) because the attributes are content-
based, different data consumers with similar roles could still have
different access, (2) we assume ShareABEL will store a large quan-
tity of data, but share it with relatively few data consumers (a data
owner will probably have a short explicit list of people with whom

he would like to share his data), so it would be more efficient to
have one policy per consumer, instead of one policy per record,
(3) KP-ABE supports temporary and limited access requirements
more efficiently than CP-ABE, and is generally more computa-
tionally efficient than CP-ABE in key generation, encryption, and
decryption [28], and (4) KP-ABE is more flexible than CP-ABE with
regards to revocation and changes in access-control policy, so re-
encryption costs will be minimized [1]. Because policy is tied to
a data consumer’s key, each consumer receives one key with the
associated formula specifying which ciphertexts he will be able
to decrypt. A consumer’s device uses this one key to decrypt all
permitted records. Multiple consumers can decrypt the same record
with different keys as long as each key satisfies the attributes tied
to the record.

When considering a content-based access-control policy that
is cryptographically-enforced by KP-ABE, we can conceptualize
the policy in two parts: the attribute-tagging scheme and the key-
policy generation. The attribute-tagging scheme encompasses the
definition of the attribute universe (the selection of which attributes
will be used to describe the data) and the tagging of each record
with these attributes. The key-policy generation part encompasses
the construction of ABE private keys for each consumer, defined as
a Boolean expression over attributes.

3 RELATEDWORK
Other approaches have sought to provide access control for medical
record systems. Rizvi et al. developed an open-source library that
uses relationship-based access control, where the policy grants
access based on how the access requester is related to the resource
owner [25]. This method of access control works best in defined
networks, such as social networks, where the relationship between
two individuals or entities adheres to one of a set of identifiers.
For example, in Facebook there are four built-in relationship types:
‘me’, ‘friend’, ‘friend-of-friend’, and ‘everyone’. In our case, access
policies may not fit well within this paradigm of different levels of
access for different relationships. For example, if an athlete wanted
to share all of his training data but only a subset of his vitals with
his coach, and all of his vitals but only a subset of his training data
with his doctor, this relationship-based model would not support
the granular control of these content restrictions. Furthermore,
relationship-based schemes require an owner to explicitly manage
those relationships, adding, renaming, and deleting edges in the
graph as policies change. Content-based access control gives the
data owner more flexibility in defining which content is seen by
which requesters and lessens the administrative burden.

Benaloh et al. provide content-based access control through hier-
archical identity-based encryption (HIBE). Their system leverages
HIBE by using a data category hierarchy to define different access
levels. Therefore, it requires that a patient’s record is organized
into a hierarchical data structure, allowing patients to grant access
to a category without knowing the contents of that category. This
system also allows doctors to define subcategories within the cate-
gories that they have permission to access [3]. Our system seeks to
provide content-based access control regardless of the relational
structure of the different types of mHealth data collected from the
patient. We want to allow data owners to have the flexibility to

3



Dartmouth Computer Science Technical Report TR2017-827

define their access-control structure in different ways and not be re-
stricted to a default hierarchy structure. For this reason, we decided
to use a close relative to identity-based encryption – attribute-based
encryption – to provide flexible content-based access control.

Attribute-based encryption was created in 2005 by Sahai and
Waters as a form of public-key cryptography that allows for more
verbose and flexible policy definitions [21]. In ABE, the secret key
and the ciphertext are dependent on attributes, and a private key
can only decrypt the ciphertext if there is a match between the set of
attributes linked to both the ciphertext and the key. By allowing for
policies that are Boolean expressions across attributes, ABE allows
fine-grained access control. Fine-grained access-control systems fa-
cilitate granting differential access rights to a set of users and allow
flexibility in determining these access rights. Goyal et al. developed
Key-Policy Attribute-Based Encryption (KP-ABE) [11]. Because the
private keys in KP-ABE allow users to be associated with differ-
ent access structures, it provides a large degree of flexibility in
specifying content-based access control of data.

Akinyele et al. propose a core scheme for applying ABE to
EMRs [1]. Their approach does not support the revocation of long-
term keys when a provider leaves, nor changes in access-control
policies or decisions. Their system uses a rigid pre-determined pol-
icy engine that does not allow for patient discretion. Akinyele et al.
focus on hospital systems that struggle to manage many different
patient records, whereas ShareABEL allows patients to manage
providers across different networks and outside the hospital ecosys-
tem.

Li et al. leverage attribute-based encryption in combination with
a security domain scheme to ensure scalability in multi-owner
personal health record (PHR) systems [16]. Their scheme fragments
the system intomultiple security domains, with each responsible for
a subset of the users. The framework proposed relies on auxiliary
attribute authorities to govern a disjoint subset of attributes. While
dividing the responsibilities within the system increases scalability,
it also depends on third-party authorities to manage users and
attributes. In our system, we seek to decentralize further, by moving
the attribute and user management to the data owner’s smartphone
device.

Ambrosin et al. demonstrated the feasibility of ABE on smart-
phone devices by creating the AndrABEn library, a C-based library
that uses the Java Native Interface, and evaluating its performance
on Android devices. While they concluded that using ABE on An-
droid smartphones and similar devices is feasible, they did not
apply this finding to any data-management or secure-sharing prob-
lems [2]. Zhang et al. developed a Java-based implementation of
Key-Policy ABE and applied it to a specific personally-controlled
health record mobile platform, Indivo X.1 We extended their work
by using their KP-ABE implementation and applying it to a more
general and flexible system, focusing on different challenges posed
by mHealth data.

4 USE CASES AND APPLICATIONS
We present four use cases to illustrate the value of a system that
allows data owners to share specific subsets of mHealth data with

1https://sites.google.com/a/ualr.edu/reu-project-by-liang-zhang/home

various parties. These examples demonstrate applications of a se-
cure remote-monitoring system, and the importance and desire for
flexible and fine-grained access control by data owners. In each
case, our system could balance patients’ privacy with providers’
ability to deliver effective healthcare.

Case 1: Remote patient monitoring. Individuals living in rural
areas may have difficulty accessing a provider in person, due to
the time or expense required to travel to visit a doctor or clinic.
Telemedicine systems allow for remote consultation, including bidi-
rectional audio/video conversations, but are not themselves suffi-
cient for management of chronic conditions like high blood pres-
sure. These visits may be complemented by ongoing monitoring
of patient activity (such as sleep patterns and medication compli-
ance) and vital signs (such as weight and blood pressure). Although
remote patient-monitoring systems are emerging, they are often
disease-specific or hospital-specific, and rarely give patients con-
trol over the collection and sharing of data. Through ShareABEL,
data collected by mHealth apps and devices can be shared with the
clinical team.

Case 2: Research. ShareABEL also allows for the remote moni-
toring of volunteer subjects by researchers. Because many health
conditions are related to behavior, it is valuable to collect data about
behavior and physiological parameters from subjects, over weeks
or months, in free-living conditions. Examples include studies of
smoking-cessation interventions, eating behavior, or student stress
and its links to depression. A larger example is the US Precision
Medicine Initiative, which aims to recruit one million subjects to
participate in a comprehensive, long-term mHealth-based study
of health, health behavior, and health environments [15]. Our sys-
tem allows research subjects to selectively contribute data from
their existing apps and devices, and any others given to them by
the researchers, without granting researchers full or permanent
access and without necessitating the construction of a separate
data-collection pipeline. Confidence in their privacy and control
over their data would encourage more potential subjects to agree
to participate. Additionally, our system lessens the interference of
the study on the subjects’ lives, as they would have to carry less
extra equipment and interact with the researchers less frequently.

Case 3: Preventative medicine. One increasingly common appli-
cation of mHealth devices is data collection for preventative care;
individuals are investing in apps and devices that monitor every-
thing from physical activity to sleep, weight, and blood pressure.
mHealth apps and devices not only help individuals self-regulate
through immediate data-driven feedback, but also allow doctors to
monitor their patients and detect issues earlier. Doctors, therapists,
and coaches desire to monitor patients for different health issues,
but they all care about temporal trends in the data. By allowing
patients to provide access to mHealth data on a temporal basis,
patients are able to retroactively grant access to a past temporal
segment of the data stream. For example, this capability would
be valuable if a patient wants to give a new doctor insight about
her asthma and exposure to various allergens over the past sev-
eral months. The new doctor can use the ongoing data stream to
monitor the patient’s response to a new treatment regimen.

4

https://sites.google.com/a/ualr.edu/reu-project-by-liang-zhang/home


Dartmouth Computer Science Technical Report TR2017-827

Case 4: Sensitive medical data. There are wearable healthcare
data that can either imply or directly indicate a highly sensitive and
private disorder. Knowledge of such data can be used to unfairly
discriminate against a person or deny him opportunities that he
otherwise deserves. For example, if someone uses a wearable device
to track his blood-glucose levels, this indicates that he is probably a
diabetic. Knowledge that he is a diabetic might adversely affect his
employment opportunities, professional growth, personal relation-
ships, and insurance costs. Therefore, while a patient may want to
share some of his mHealth data, there may be some data that he
wants to restrict. This demonstrates that bulk encryption of data is
not sufficient [1].

For example, somewomen use wearables to track their menstrual
cycles to facilitate conception.2 An elite athlete would not want
her coach to know that she’s trying to get pregnant because she
may be worried about losing sponsors due to an inevitable future
break from the sport. If she’s newly pregnant, she may also want
to restrict telling data from her coach because she may be worried
that he would not let her enter a tournament.

Additionally, in the case of the treatment of minors, there can be
some data that minors are not willing to share with their parents
or personal representatives (but should share with their doctors).
Under US law, there are situations in which a minor can exercise his
rights as an individual without parental knowledge or approval [7].
These legal protections are intended to ensure that minors will seek
needed health care if they can receive it confidentially. There are
some especially sensitive data types that a minor might not want
to share with his parents (but should share with his doctors). One
examplewould be apps that use EcologicalMomentary Assessments
(EMAs) to track substance use [22]. A teenager seeking help for
substance abuse from his doctor may use these apps, but he does not
want his parents to know that he uses drugs. ShareABEL provides
a flexible technology foundation that allows the son to control the
release of this sensitive mHealth data.

5 SECURITY MODEL
As a foundation for the presentation of our approach, and for later
analysis of its security properties, we next present our adversary
model, threat model, and trust model. Our system’s security and
privacy goals are to maintain the confidentiality, integrity, and
authenticity of the data produced and consumed by the players in
our system, in the face of threats from adversaries with capabilities
described below, building on the trust assumptions described below.

5.1 Adversary model
We consider an adversary who is a curious family member, friend, or
colleague of either the data owner or a data consumer, a malicious
individual with physical access to the data owner’s smartphone
or the data consumer’s device, or an attacker with access to the
network communications among the parties. The adversary could
also be an authorized data consumer who desires access to more
data than she is permitted. The adversary may also be the database
itself, honest but curious. When considering the adversary, we
assume that the adversary has a variety of capabilities that she
can employ to compromise our system. We assume the adversary
2avawomen.com

can intercept all network traffic from the data owner’s smartphone
to the cloud database (for data upload), from the cloud database
to the data consumer’s device (for data download), and between
the data owner’s smartphone and the data consumer’s device (for
key/seed sharing). Adversaries can capture, insert, modify, and
remove messages among the three entities.

If the adversary is a set of data consumers, we assume that those
adversaries would attempt to collude to access a wider set of data
than they collectively have permission to access. For example, if
Alice and Bob collude, and Alice’s key policy allows her to view
data tagged with the heart-rate attribute and Bob’s key has the
exercise attribute in his key policy, they may try to combine their
keys in some way to decrypt a record with both the heart-rate and
exercise attributes.

Although the adversary may intercept all network messages
among the system components, we leave traffic-analysis attacks for
future work. We also assume that the adversary cannot compromise
the data owner’s smartphone or the secure key and seed storage
location in the consumer’s device. Finally, we assume that all of
the cryptographic primitives (SHA-256, Pairing-Based Cryptogra-
phy, Decisional BDH) are computationally hard and the adversary
cannot break those cryptosystems.

5.2 Threat model
Given the capabilities of the adversary, we focus on the following
threats.

Threat to privacy: The adversary wants to learn sensitive infor-
mation about the owner, such as medical conditions (e.g., disease or
treatment type), mHealth usage (e.g., types or number of apps/de-
vices), or other personal information deemed private (e.g., location
or activity). For this threat, the adversary tries to eavesdrop on
the system, including all communications between data owners,
data consumers, and the database, to discover sensitive information
from the messages. The adversary may also try to compromise
the database to determine this sensitive information. Indeed, the
database itself may be adversarial regarding this threat.

Threat to data integrity and authenticity: The adversary wants
to cause the database or the data consumer to accept incorrect,
invalid, or duplicate data by either forging an entry that looks
legitimate to the database, tampering with a legitimate entry from
the smartphone, or replaying a previously submitted entry. The
adversary also wants to insert himself into the key and/or seed
sharing process between the data owner and the data consumer, and
either cause the data consumer to accept the wrong seeds or keys
or cause the data owner to believe that she is sharing keys/seeds
with the data consumer but is really sharing these secrets with the
adversary.

5.3 Trust model
We make certain trust assumptions about each system component.

Data owner’s smartphone: We assume that all players in the
system can trust the integrity of the smartphone, its operating
system, and our ShareApp smartphone application. We assume
the smartphone application is preconfigured with the public key
of the cloud database and they are able to use standard protocols

5

avawomen.com


Dartmouth Computer Science Technical Report TR2017-827

(such as TLS) to establish a secure channel. We further assume
that the smartphone may connect to the database server via an
anonymizing network such as Tor, if IP-level anonymity is desired.
Finally, we assume the smartphone can effectively authenticate its
user before use.

Cloud database: We assume that the data server is “honest-but-
curious”, meaning that the server may seek to obtain plaintext
mHealth data, or link data to the data owner or data consumer, but
will honestly execute its role as a data-storage server: to store a
given data record under a given index, and to return that record
when later asked for the record corresponding to that index. Share-
Base (our cloud database) can be trusted to never delete data, nor
mis-index data, nor overwrite data at a given index if presented
with an incoming message providing new data for an existing in-
dex. The server need not otherwise be trusted with the integrity or
confidentiality of the data.

Data consumer’s computer: We assume that all data owners and
data consumers can trust the integrity of the computer used by
the data consumer, its operating system, and our ShareView con-
sumer application. Specifically, we trust its filesystem to secure the
consumer’s keys and seeds, and to protect ShareView from inspec-
tion or tampering by other applications. We assume that ShareApp
and ShareView have previously completed a secure key exchange,
likely during an in-person meeting of the respective data owner and
consumer and leveraging one of many common mechanisms for
key exchange (Section 6.3). We assume ShareView can effectively
authenticate its user leveraging one of many common authenti-
cation mechanisms. We assume ShareView is preconfigured with
the public key of ShareBase and that they are able to use standard
protocols (such as TLS) to establish a secure channel. We further
assume that the portal may connect to the database server via an
anonymizing network such as Tor, if IP-level anonymity is desired.

6 OUR APPROACH
ShareABEL consists of three components: ShareApp (the data owner’s
smartphone application), ShareBase (the cloud database), and Share-
View (the data consumer’s desktop application). All the owner’s
data is encrypted on the owner’s smartphone and stored in Share-
Base on an untrusted cloud server.

ShareABEL allows owners to specify access-control policies and
cryptographically enforce those policies, so that only parties with
the proper corresponding attributes are able to decrypt desired data.
To enforce access control with an untrusted (honest but curious)
data server, we use two different methods: (1) content-based access
control, enforced through the encryption of the data, and (2) tempo-
ral access control, enforced through the database’s indexing scheme.
The combination of these two methods makes our system unique:
it allows for more granular access control based not only on the
attributes of the data, but also on the time that data was produced.

Encrypting the records serves three purposes: (1) to provide
data confidentiality, both in transit and while at rest; (2) to protect
information about the contents, source, and associations of the data
from exposure to the untrusted database; and (3) to enforce the
access-control policies set by the data owner. Issues with traditional
encryption schemes arise when the data owner wants to define

more granularly whom gets access to which pieces of information.
For example, if an athlete wants to share only a subset of her heart-
rate data with her coach (e.g., only those readings taken when she
was exercising), she would have to either manually sort through
the heart-rate data and encrypt exercise readings separately or just
give her coach the decryption key for all heart-rate data and trust
that her coach will only look at the desired data.

Key-Policy Attribute-Based Encryption (KP-ABE) allows Share-
ABEL to support the desired granularity. ABE cryptography en-
forces data access and requires no trustedmediator [24]. Each record
is tagged with pertinent attributes, defined by an attribute-tagging
scheme and dependent on the data in the record. ShareABEL can
support a variety of attribute assignment schemes, such as tagging
each data type with a different attribute (e.g., data collected by a
heart-rate application has heart-rate as an attribute), including
additional attributes to differentiate records within a stream (e.g.,
heart-rate data collected while exercising would have heart-rate

and exercise as attributes), or having attributes that encompass
data categories (e.g., heart-rate, blood pressure, and ECG readings
all have the cardiology attribute). Regardless of attribute-tagging
scheme, data consumers can only decrypt a record if their key policy
matches the record’s attributes.

While data encryption using KP-ABE protects the confidentiality
of the data and enforces access control, a message authentication
code (MAC) ensures data integrity. By applying a keyed MAC to the
plaintext and then encrypting the concatenation of the plaintext
and MAC with ABE, all parties are able to authenticate the message
after decryption to ensure there have not been modifications to
the record [8]. Although each data consumer has a different ABE
decryption key but can decrypt the same ciphertext record, only
one MAC key is necessary for each data owner; it is created by
ShareApp and shared with all ShareViews that receive streams from
that owner.

6.1 Hash-chain indexing scheme
ShareABEL also enforces access control through a specialized data-
base indexing scheme that allows for temporal access control. To
access a record in the database, the data consumer must query the
database using a specific index that corresponds with that record.
ShareBase uses pseudo-random hashes, produced by randomly-
seeded hash-chains, as the sequence of indices for logging sequen-
tial records. These hash chains are built from a cryptographically
secure one-way hash function like SHA-256. With large hash val-
ues, the resulting index space is very sparse and indices into the
database are effectively secret and collision-free. Furthermore, each
owner salts each iteration of the hash function with a hash key, so
an adversary with access to one hash value (including the untrusted
database) cannot generate the next hash value without knowledge
of this key. All consumers with some temporal access to a data
stream are provided its unique hash key. (Each data owner creates
a unique hash key for each data type – see Section 6.3).

A consumer can only gain access to a specific temporal segment
of the data stream if her ShareView received the key from that
owner and the seed for that time period. Once a data consumer’s
device stores one hash in the chain, it can easily generate future
hashes using the keyed hash function until a new random seed

6



Dartmouth Computer Science Technical Report TR2017-827

is generated. New seeds are generated by the owner’s ShareApp
regularly, over a system-defined seed refresh interval (SRI). For
each data owner, every data type has a unique set of seeds.

For example, if seeds refresh weekly, the heart-rate data type
has one seed per week, initialized on a Sunday. In this case, the
first record (the first data point collected after the midnight when
Sunday begins) uses this seed as the index into the database. The
seed is then shared with all consumers that have been granted
access to the stream during this time period. The owner’s ShareApp
uses a hash function (and hash key) to generate the next hash in
the chain, which will be the index for the subsequent record. The
consumer’s ShareView uses the same hash function and key to
generate hashes in the chain to query future records. When the
new week begins, ShareApp generates a new seed and shares it
with those consumers that deserve access to ongoing records in
that data stream.

Access can be granted beginning at any time (by sharing the
current hash in the chain) and can expire at the end of any SRI-
defined time period. Therefore, the temporal granularity depends
on the chosen SRI (in our examples, we use an SRI of one week).
The temporal controls have three purposes: (1) to allow data owners
to grant access to specific temporal segments of the data stream,
(2) to provide a form of key freshness by requiring explicit sharing
of each new seed, and (3) to limit damage from loss (or unautho-
rized sharing) of the seed or any of the hashes of the sequence
(indices), since knowledge of any such hash is useless without the
corresponding hash key.

New seeds can also be generated at any time by the data owner
to support revocation. If the data owner decides in the middle of
a seed-refresh period to change the access-control policies, a new
random seed is generated for each affected data type. ShareApp
then distributes the new random seeds to those who now have
access to the corresponding streams.

We also use hash chains as an indexing scheme to ensure no
information is leaked to the untrusted database. Hashes as indices
allow a consumer to access encrypted records of a specific data type
for a specific individual without ShareBase knowing the person or
data type to which the hash refers. Because we use a keyed hash
function to generate each hash in the chain, and the key is not
shared with the database, the database is unable to generate the
chain. Although ShareBase has access to past hashes in the chain,
it cannot determine which hashes are related nor associate hashes
with their owner. We assume the hash function is collision-resistant,
so if the database ever receives a request to add another record with
the same index, it assumes that the message may be a replay attack
and ignores the message.

6.2 Access control and revocation model
In this paper, access is defined as the permission granted by a data
owner to a data consumer to view the plaintext of a specified record
(read-only). To access plaintext for a record, the consumer must
possess both the hash (and hash key) that corresponds to that record
(to query the database and receive the proper encrypted record) and
a cryptographic key with attribute tags allowing it to successfully
decrypt that record. Therefore, each consumer must possess two
different secrets to access any singular record.

For example, to access a patient’s heart-rate data from Septem-
ber 1, 2016, the doctor must have the random seed for the week of
September 1st, and the patient’s hash key. For each desired record,
the doctor’s ShareView computes the corresponding hash-chain
index to query ShareBase for the encrypted version of that record.
His ShareView then uses his KP-ABE key to decrypt the record.

We support owner-driven access control – the data owner is the
party setting all access-control policies. An access-control policy
is a set of permissions authored by the data owner that specifies
which records each data consumer is able to read. We use a default-
deny system (i.e., explicit permission must be given to allow access
to the record, and if permission has not been specified in the ac-
cess policy, a “deny” is assumed). In this model, access control is
enforced on a record-by-record basis (i.e., each consumer must be
explicitly granted access to each record). Although access control is
record-specific, ShareApp’s UI allows the owner to grant access to a
temporal segment of the data stream (multiple contiguous records)
in one policy, due to the combination of the hash-chain indexing
scheme and attribute-based encryption.

Because all access-control policies are set in ShareApp, it is re-
sponsible for all key and seed generation. When an access-control
policy is first defined by the owner, the determined attribute set
is used to generate the public key that will be used by the owner
to encrypt all records. Private keys for each of the data consumers
are then generated from a master secret key possessed only by the
data owner based on the access granted to them by the policy. This
approach is different than the external key authority used by other
KP-ABE systems to generate and disseminate private keys.

For each data type and each data consumer, an access-control
policy can begin at any record (by sharing the current hash value),
and can end at the end of any SRI. Generally, access policies can be
divided into two groups: those that provide restrictions on future
data (data that has yet to be generated and/or inserted into the
database) and those that provide restrictions on past data (data that
has already been inserted into the database).

Access to future data can be granted to begin immediately, or at
a specific future time, and ends on a defined expiration date. In all
cases, this temporal access is determined by the sharing of seeds.
From the beginning of the period where access to future records is
permitted, the consumer receives the ABE key with the new policy
attached and the seed for the next temporal segment (e.g., next
week) only. Every time the seeds are refreshed, the owner sends
the consumer the new seed for that data type if the consumer has
access for some or all of the next period. Once the explicit future
segment has ended or once a consumer’s access has expired or been
revoked, she will no longer receive fresh seeds (and will no longer
receive fresh keys if her access is revoked across all of the owner’s
records). For policies specifying ongoing future access, the data
owner will be asked to review and renew the consumer’s access
after the policy’s expiration date, so that the data consumer can
continue to receive new seeds.

Access to past data can either be granted for a range of time or
for specific existing records. For a continuous range of time, data
consumers are granted the temporal seeds that correspond to that
period of time, as well as a key that satisfies the attributes of the
encrypted records. The data consumer will initially be granted a

7



Dartmouth Computer Science Technical Report TR2017-827

subset (e.g., four seeds for onemonth of past data), and the consumer
can request more seeds if access to older data is required. This
enhancement is for both security and performance reasons. If fewer
seeds are shared with the data consumer, fewer records would need
to be re-indexed in the event of a revocation, and less strain is
placed on the system for sending a large number of seeds at one
time.

To restrict access to specific record(s), as opposed to a range of
records, the data owner must include an attribute in the consumer’s
key so that the consumer can only decrypt records with a combi-
nation of attributes. For example, if a data owner only wanted to
share with his coach the heart-rate data that had been collected
while he was at the gym (and no other heart-rate data), an addi-
tional attribute location:gym would be added to those heart-rate
entries. The coach would then be given a key with the policy of
(type:heart-rate AND location:gym), meaning the key could only
decrypt records with both of those attribute tags, and the coach
could only see heart-rate data collected at the gym.

Another example of granular control is a “summary” attribute.
To allow data consumers to see the trend of data over time without
granting them access to all records, a subset of records in the stream
can have a mode:summary attribute. Consumers with the policy of
(type:step-count AND mode:summary) would only see these sum-
mary records (e.g., the mean number of steps over the past week).
If a consumer wants more detailed data, she must request broader
access from the data owner.

Revocation. Individuals should be able to change their minds
about data sharing and express those new changes in policy. An
owner may decide to add new data consumers, expand a consumer’s
access to his data, or narrow the scope of a consumer’s access. Share-
ABEL supports several forms of revocation, all by narrowing the
scope of access: changing an access policy to a narrower set of
attributes, reducing the temporal range accessible, or removing all
access by a given consumer. The effect is to prevent the affected con-
sumer(s) from retrieving and decrypting data from the database.3 In
our system, revocationmeans that an access-policy change narrows
or restricts a consumer’s access to a data type (i.e., there exists at
least one record (past or future) of that type to which the consumer
used to be allowed access and now is denied access). Revocation
can be as narrow as a change in the access to one record, and can
be as broad as the revocation to the entire data category (all data
tagged with the same attribute). We can break all revocation down
into two categories: revocation of past data (data that was added
to the database prior to the owner’s decision to change the access
policy) and revocation of future data (data that has not yet been
added to the database). Revocation to an entire data stream can be
considered a union of these two categories.

To revoke data that has already been added to the database, the
data owner can leverage the database indexing scheme to remove
access to records. By starting at the first affected record and gener-
ating a new seed, the data owner can re-index each of the records
with the freshly-seeded hash chain. The new seed for the hash chain
is then shared with those consumers who, according to the new

3Of course, if a data consumer had cached the plaintext of data downloaded and
decrypted earlier, or cached both the ciphertext and the associated key, we cannot
prevent that consumer from continued local access to the cached data.

policy, should still have access to the record(s). (As above, the owner
may take a “lazy” approach by sharing only a subset of the seeds,
depending on the consumers to request seeds as-needed if/when
they desire to download the old data.) When the revoked consumer
attempts to query the database for the revoked record(s), using
the old hash chain, she will not be able to find records at those
indices. Attribute-based encryption is expensive, so re-indexing
the records is more efficient than re-encrypting the data [9]. It also
obviates the need for the owner to cache (or download) all the data
for re-encryption; the owner need only archive the sequence of
prior seeds for each data type.

Consider a data owner who wants to revoke access to some or
all previously granted future records; e.g., Bob gave month-long
access to the data to Alice, and partway through the month decides
that he no longer wants Alice to have access to the remainder of
the month. If the stream is currently in the middle of an SRI (e.g.,
mid-week), he generates a new seed and starts a new hash chain to
use for indexing future records (and shares that new seed with all
consumers that still deserve access). Alice would be able to generate
future hashes from the old hash chain, but the database would not
return anything to her when queried with those hashes.

6.3 Key management
To meet our security goals, key management is paramount. By key
management we mean the storing and sharing of attribute-based
encryption keys, MAC keys, hash-chain seeds, and hash-chain keys.
As keys and hash-chain seeds are generated on the data owner’s
smartphone, the data owner must have a mechanism to securely
store and send these keys and seeds to the permitted consumers.
Due to the structure of ABE, each data consumer possesses one
key that expresses a Boolean policy over the attributes of the data.
Regardless of the number and variety of data records that the con-
sumer can access, she only receives one ABE key from each owner,
with the entire access-control policy incorporated into the key. If
the data owner changes the policy, that key may be replaced with a
new policy across old or new attributes. Similarly, each consumer
receives one MAC key from each data owner; this key is the same
for all consumers of a given owner’s data, but are unknown to the
database and other possible adversaries.

Regardless of the attribute-based tagging of data, each data type
determined by the owner’s data configuration file (see figure in
Section 7) has its own set of temporal seeds and its own hash-
chain key. ShareApp must share a new seed at the beginning of
each SRI to each data consumer for each data type she can access.
While the seed for the hash chain changes at the beginning of each
SRI, the hash-chain key remains unchanged. Therefore, any data
consumer that has access to some temporal segment(s) of that data
type will be granted the hash-chain key for that data type in order
to generate future hashes. If the data owner changes the policy and
a data consumer gains access to a new data type, the respective
hash-chain key is shared with that consumer.

To share all of the keys and seeds with each consumer, initially
and for these periodic updates, ShareApp must send a secure mes-
sage to each data consumer (e.g., an encrypted and signed email
message). To establish the cryptographic keys to send this secure
message, an initial secure key exchange between the data owner

8



Dartmouth Computer Science Technical Report TR2017-827

and consumer is necessary. In our approach we expect that the
owner (a patient or research subject) has a personal relationship
with the consumer (a doctor, coach, family member, researcher, etc.).
Ultimately, the root of trust between the data owner and consumer
is this interpersonal relationship. The owner can visually verify
the identity of the consumer during an in-person meeting, then
exchange secret(s) as the foundation for future secure messaging.
Many approaches are possible; here is one example inspired by
McCune et al. [17]. The owner specifies the consumer by email
address or phone number through the smartphone application.
The ShareApp uses this address to contact the consumer’s Share-
View, which, with her assent, displays a QR code containing a
one-time symmetric key. The consumer can then show the code
to the owner, who scans it with ShareApp on his smartphone. The
owner’s ShareApp is then able to use this shared secret to establish
an immediate (but short-lived) secure network connection to the
consumer’s ShareView for the exchange of other address and key
material needed for future secure messaging.

Once the key exchange is complete, the data owner’s ShareApp
and the consumer’s ShareView can use this shared key material
to securely send messages. Key and seed sharing can happen via
push or pull, depending on the context: the ShareApp will push
new ABE private keys due to access policy changes and new seeds
at the beginning of each SRI; the ShareView may pull any missing
hash-chain seeds necessary to obtain historical records; the latter
sends a request to the owner’s ShareApp, which may check with
the owner if the access-control policy does not already allow that
consumer access to the requested data.

7 IMPLEMENTATION
To create a working prototype, we implemented all three major
components of ShareABEL: ShareApp, the data owner’s smartphone
app; ShareBase, the cloud database; and ShareView, the data con-
sumer’s desktop app.

7.1 ShareApp: data owner’s smartphone app
We implemented ShareApp by writing an application for Android
5.0 (Lollipop).4 This smartphone application is the main driver of
our system, as it enables the data owner to set policy preferences
and applies those preferences to cryptographically-enforce access
to data. Through our app’s interface the data owner is able to add,
modify, and delete data consumers with whom the owner wants
to share his mHealth data. For each consumer, the data owner is
required to input the consumer’s name, title (e.g., cardiologist),
and an email address that can be used for the initial introduction
between owner and consumer devices. Within the system, each
consumer is differentiated using UUIDs assigned to each consumer
upon creation, so that even if fields change, there is a defined ID
for each individual consumer.

ShareApp plays the role of the intermediary between themHealth
apps/devices and the back-end database, by receiving data from
those apps and devices, encrypting that data based on the access
policy set by the owner, and uploading the encrypted records to
the database. The smartphone is responsible for all seed and key

4We wrote and tested the app on a Nexus 9 tablet and Nexus 6 smartphones.

Listing 1: Example Data Configuration
Hea r t r a t e : Ca rd i o l ogy
B l ood_p r e s su r e : Ca rd i o l ogy
ECG : Ca rd i o l ogy
R−R_ I n t e r v a l : Ca rd i o l ogy
S l e ep : A c t i v i t y
Lo c a t i on : A c t i v i t y
B lood_Glucose : D i a b e t e s
I n s u l i n : D i a b e t e s
Weight : We l lnes s
Ea t i ng : We l lnes s
Smoking : We l lnes s
GSR_S t re s s : We l lnes s
S t ep_coun t : F i t n e s s
Theraband : F i t n e s s
Weights : F i t n e s s
Cyc l ing : F i t n e s s

management, and is the data owner’s means of contact with data
consumers.

In our current implementation, we connected ShareApp to the
Amulet, a wearable healthcare device that collects a variety of data
about physical activity, stress, and use of exercise equipment [14].
We envision other devices being connected to ShareApp in a similar
way. The Amulet interfaces with its own Android application, the
Amulet companion app, which receives data from the Amulet device
and forwards it to ShareApp through secure intents. Intents are the
preferred mechanism for asynchronous inter-process communica-
tion in Android, and explicit intents between the two applications
guarantees that no other application can eavesdrop on the commu-
nication, because only the specified application has the permission
to receive the intent [10]. (We rest here on our assumption that
the smartphone and its operating system have not been compro-
mised, as noted in the security model. Securing Android or other
smartphone operating systems is outside the scope of this paper.)

In addition to forwarding data through intents, the only other
requirement that we ask of mHealth developers is to format the
data in JSON with a data_type tag that can be cross-referenced
with a data configuration file (Listing 1) that includes all data types
supported by ShareApp. Once ShareApp receives data, it encrypts
the data with Key-Policy Attribute-Based Encryption under the
current access-control policy, which specifies an attribute-tagging
scheme that matches the data with its respective attribute(s) for
encryption. Once the data is encrypted, it computes an index for
this new record using the appropriate hash chain and uploads the
(index, ciphertext) pair to the cloud database as a new entry. If the
device is not currently connected to Internet service, the entries
will be queued for later upload; a feature we plan to add in future
iterations of the implementation (Section 7.4).

Key-Policy ABE incorporation. While there are many ABE li-
braries written in C, Java, and Python, there are few KP-ABE
libraries supported on Android [29]. Because CP-ABE has been
explored more thoroughly in the literature, many of the available
libraries only support CP-ABE. We found two previous implementa-
tions of KP-ABE for an Android platform. AndrABEn is a C-based li-
brary with GMP, Pairing-Based Cryptography (PBC), and OpenSSL

9



Dartmouth Computer Science Technical Report TR2017-827

as dependencies [2]. AndrABEn then uses Java Native Interface
(JNI) to link the C implementation of KP-ABE with Java classes in
Android. JNI is known to be a faster solution for computationally
expensive operations on Android due to its native implementation.
However, AndrABEn is not tested or supported on recent versions
of Android. The kpabe toolkit, implemented entirely in Java, offers a
slightly less efficient solution [27]. It depends on Java Pairing-Based
Cryptography (JPBC) [6].

We leveraged the kpabe toolkit to generate the KP-ABE master
secret key for the data owner to generate the KP-ABE private keys
for each consumer, and to encrypt each record with the KP-ABE
public key and the attributes defined by the owner’s access-control
policy. These keys are stored in Android’s internal storage, in a
directory hierarchy that can only be accessed by the application
(according to Linux file permissions). As noted in our security
model, we assume that no entity has root access on the device and
thus no entity has access to these keys.

Defining policies. For the purposes of this prototype, ShareApp
provides a simple graphical interface to allow the data owner to
define an access-control policy (Figures ??–??). (The development
of a rich interface for defining such policies – and a proper study
of that interface’s usability – is an important HCI challenge worthy
of future work and a paper in its own right [19, 20].) Owners add
consumers and select which data to share with which consumers,
and ShareApp translates these selections into an access-control
policy composed of an attribute-tagging scheme (through which
the data is tagged with attributes) and a key-policy generation
step (through which key-policy ABE keys are developed for each
consumer and seed sharing is determined for each consumer).

The data types supported by ShareABEL can be configured using
a configuration file. For each data type, the configuration defines
a unique name for that data type, and a default category in which
that data type belongs (Listing 1). This configuration file allows
our system to simplify policy definitions for the data owner by
providing two preset attribute-tagging schemes: a granular and a
general scheme. The granular scheme keeps each data type sepa-
rate by having an attribute for each data type (e.g., for heart-rate
and blood-pressure data, heart-rate data would have a heart-rate

attribute and blood-pressure data would have a blood-pressure at-
tribute), allowing for each consumer’s key-policy to include any
combination of data types.

The other preset scheme is a general scheme. This scheme relies
on the categories defined in the configuration file. Each attribute is
equivalent to a category (e.g., both heart-rate and blood pressure
fall within the cardiology category, so both types of data would be
tagged with the cardiology attribute), allowing for grouping similar
data without putting the onus on the data owner to devise his own
groupings. Using the general scheme, access-control policies for
each consumer would refer to data categories, instead of individual
data types. While this scheme is less granular, it makes the defini-
tion of access policies less complicated for the data owner. Due to
these two preset scheme options, our prototype interface currently
only supports disjunctions (“or”) in key-policy expressions over the
attributes, although our underlying ABE and system support more
complex expressions.

Figure 1: Defining the attribute universe and attribute-
tagging scheme

For advanced data owners or those with specific needs, we also
offer a custom scheme setting that allows data owners to create
their own categories and place data types into these categories as
they see fit. The categories created by the data owner then become
the attributes used in tagging the data types within each category.
In this custom setting, data types can belong to multiple categories,
giving their respective records multiple attributes, and resulting in
more complicated key-policy expressions. For example, if the data
owner is an elite athlete, a lot of her training is data-driven. Based
on how she specifies her attribute-tagging scheme, her head coach
could have a key with the policy:
(category:cardiology AND location:gym) OR (category:fitness)

OR (type:weight AND (mode:pre-race OR mode:weekly-weigh-in))

but her cardiologist could have a key with the policy:
(category:cardiology) OR (type:respiratory-rate)

OR (category:fitness AND effort:high)

Once the attribute-tagging scheme has been defined, the data
owner selects which consumers can access which attributes (and
therefore the data tagged with those attributes), thus creating a
bipartite mapping from data consumers to the attributes to which
they have access (Figure 3). This mapping is then used to generate
each consumer’s private KP-ABE key. For example, based on the
edges in the graph in Figure 3, the cardiologist Dr. Nero’s key
policy would be category:cardiology OR category:fitness. As the
data owner selects which consumer can access which data, he also

10



Dartmouth Computer Science Technical Report TR2017-827

Figure 2: Defining the key-policy generation and seeds for
each consumer

Data Consumers Attributes

Tom Nero 
(Cardiologist)

Jonathan 
(Physical therapist)

Lauren 
(Coach)

Andrea
(Psychologist)

Carolyn
(Mother)

Cardiology
(Heart rate)

Fitness
(Step count, 
Cycling data)

Activity
(Sleep)

Figure 3: Translation of UI Access Control Decisions to Bi-
partite Access Graph

provides temporal access-control restrictions by selecting the time
range that each consumer can access each data type within possibly
broader data categories.

This selection determines which of the temporal seeds will be
shared with which consumers.

Local persistent and secure storage. To generate the seed of each
hash chain, we used Java’s built-in KeyGenerator to generate an
HmacSHA-256 key, which functions as the seed. We then used SHA-
256 to generate each subsequent hash in the hash chain. Although
our system design uses a keyed hash function, so the database
cannot determine which hashes are related, for simplicity of the
prototype we used an unkeyed approach. We chose a weekly SRI,
leveraging Java’s Calendar class with the built-in WEEK_OF_YEAR
property.5 We similarly used the KeyGenerator HmacSHA-256 to
generate the HMAC for the plaintext prior to encrypting.

To send the right seeds to the right ShareViews and to support
policies that allow the sharing of past data, seed storage on the
data owner’s smartphone is especially important. We used Shared-
Preferences, a built-in Android tool that allows for saving state
variables between runs of an application. We store seeds in the
SharedPreferences map, indexed by data type, SRI number (in our
case, the week of the year), and year. The result is an efficient way
to store all seeds from all hash-chain periods for each data type.
The map also stores the most recently generated hash, to enable
fast generation of the subsequent hash in the chain.

To enforce KP-ABE, ShareApp also needs to store the attribute-
tagging scheme, the access-control policy, and the KP-ABE private
keys of each of the data consumers (as the smartphone generates
these keys, it must store them for distribution to their respective
consumers). The final set of secrets that ShareApp must store is
the set of public keys (e.g., RSA) for each of the data consumers so
ShareApp can securely communicate with each consumer’s Share-
View. All of these secrets are stored in different sections of Shared-
Preferences. SharedPreferences are stored as files in the filesystem
on the Android device, and are secured by filesystem permissions.
The permissions state that only applications with the UID of the
creating application can access the file [23]. While anyone with
root access to the phone would be able to access SharedPreferences,
as stated in the trust model, we assume that the smartphone has
not been compromised.

7.2 ShareBase: cloud database
The purpose of the database is to store data from multiple owners
without revealing the contents of the data, the owner of the data,
or which records belong to the same owner. This database is not
trusted with the confidentiality or integrity of the data, but the
database is trusted with the integrity of indices (that is, the data
owner can insert a record at a given index and trust the database to
later return that record (albeit with the contents possibly modified)
when queried with the same index).

In our prototype implementation, the database server is an Ex-
press Node.js server and the storage is a Linux filesystem. The
database supports three operations: Add (add a new record at a
specific index), Query (given an index, return the corresponding
record), and Re-index (given a current index and a new index, re-
index the corresponding record at the current index to be at the new
index). To add a new record to ShareBase, the data owner provides
the hash for that record and the encrypted record itself. The hash
is used as the name of the file, and the encrypted record is the body

5The WEEK_OF_YEAR variable is initialized to 1 on January 1st, and increments every
Sunday at midnight.

11



Dartmouth Computer Science Technical Report TR2017-827

of the file. Querying the database requires providing the database
with the hash associated with the desired data record; that hash
is used to find the filename in the filesystem, and the body of the
file is returned. Re-indexing the record just requires providing the
current hash and the new hash; the file with the name of the current
hash is renamed to the new hash. While in our prototype all files
live in the same directory, this organization could be optimized
into a directory tree, or the content could be stored in a different
database structure. All communications between ShareBase and
the client applications (both ShareApp and ShareView) occur over
secure HTTPS connections, and the clients can verify the identity
of the database server.

7.3 ShareView: data consumer application
There are twomajor functions of ShareView,whichwe implemented
as a command-line application for laptop or desktop computers.
Although one could also imagine ShareView as a mobile or web-
based app (as long as the keys are stored securely), we selected a
computer-based application as a typical use case for providers and
researchers. First, ShareView can send and receive secure messages
from each data owner’s ShareApp to obtain the respective seeds and
keys from that data owner. Second, ShareView provides an interface
by which the data consumer can query ShareBase. Because one data
consumer could havemany patients or subjects who use ShareABEL,
ShareView maintains a separate data-configuration file and seed-
storage file for each data owner sharing with this consumer.

When Bob, a data owner, first decides to share his mHealth data
with Alice, a data consumer, his ShareApp sends her ShareView
his data-configuration file. This file includes all of the data types
provided by his mobile apps and devices and the attributes that are
linked to those data types. Alice’s computer caches this file locally.
Every time Bob’s ShareApp sends Alice’s ShareView new hash-
chain seeds to access his data, Alice’s ShareView saves them in Bob’s
seed-storage file. Alice’s ShareView maintains a user configuration
file mapping each owner’s name/identity to the names of the data-
configuration and seed-storage files.

To query ShareBase, Alice selects the data owner then selects the
the type and time period of the desired data. ShareView examines
its cached copy of that owner’s data-configuration file to obtain
the list of available attributes and data types, and the seed-storage
file to retrieve the seeds for the relevant time period. ShareView
computes the necessary hash indices, connects to the database, and
asks the database for the records corresponding to the given indices.
It decrypts the response, and displays the plaintext to Alice.

Although our prototype implementation has a simple command-
line user interface where the data consumer must explicitly type
in the names and values that she desires (Listing 2), we envision
future iterations of the portal with a robust graphical user interface.

7.4 Future Implementation Goals
Due to the technical breadth of this thesis, some features have
been relegated to future work. Some features, such as the inclu-
sion of MACs, secure communication, and key and seed sharing
were not implemented because these problems have been investi-
gated thoroughly by prior research. We were confident that their

Listing 2: Example Data Query
Welcome to ShareABEL . Connect ing to the d a t a b a s e

now .
You a re now connec ted to ShareBase . P l e a s e en t e r

the person whose da t a you want to query :
Bob Smith
Now en t e r what type o f da t a you want to query .
H e a r t r a t e
Do you want c u r r e n t or p a s t da t a ? Type " c " f o r

c u r r e n t and " p " f o r p a s t
c
Bob Smith , H e a r t r a t e da t a f o r May 17 , 2017 a t

1 2 : 3 0pm : 102
Do you want to con t i nue query ing c u r r e n t He a r t r a t e

da t a ? Type " y " f o r yes and " n " f o r no
y
Bob Smith , H e a r t r a t e da t a f o r May 17 , 2017 a t

1 2 : 3 3pm : 96
Do you want to con t i nue query ing c u r r e n t He a r t r a t e

da t a ? Type " y " f o r yes and " n " f o r no
y
There a r e no f u r t h e r e n t r i e s in t h i s da t a s t ream .

I f t h i s i s a c u r r e n t stream , t h e r e may be
more l a t e r .

implementation would be routine, and that our energy was bet-
ter spent on innovating new solutions to our research questions.
Others, such as secure introductions and HCI questions of how
best to support owner-defined access policies, were not considered
within the scope of this research and were considered full research
papers in their own right. A few components of the design would
be beneficial additions to future iterations of the implementation,
detailed below.

Re-indexing as revocation. While the server-side component of
re-indexing is trivial, simply renaming a file from one hash to an-
other, the smartphone-side component is more complicated due
to the user interface. Currently, the UI only supports setting new
access-control policies, as opposed to making minor changes to
existing policies (e.g., if a data owner only wants to revoke one time
segment of a data type from one data consumer, the owner would
have to define an entirely new policy embodying that change).
Therefore, the smartphone is unable to determine which small com-
ponents of the policy have been changed, and instead behaves as if
there is an entirely new policy by generating new seeds and keys.
While this behavior is adequate for revocation of new data (data
that has not been stored in the database), it does not support revo-
cation of past data through re-indexing, because the system cannot
recognize which past access has changed. Future implementations
must have UI inputs that allow the smartphone to recognize when
minor changes to the policy are made and determine which records
must be re-indexed. Once the list of records for re-index has been
established, issuing the re-index command to the database is trivial.

Handling data offline. When ShareApp receives data frommHealth
apps or devices, it must have a mechanism to store and queue that
data in the event that it cannot connect to ShareBase immediately.

12



Dartmouth Computer Science Technical Report TR2017-827

Because ShareApp is housed on a smartphone, which does not neces-
sarily have a reliable Internet connection all of the time, this offline
feature is especially important. Future implementations should in-
clude a queue that will receive incoming data, store it, and send it
to the database upon a successful connection to the server.

8 EVALUATION
In this section we analyze the security properties of our approach,
then describe the results of some performance experiments.

8.1 Security analysis
Given the assumptions of the security model outlined in Section 5,
and the design of our system, we address how we mitigate the
threats of a capable adversary.

Scenario 1: Cloud database compromise. We assume that the cloud
database is not trusted with respect to the confidentiality, integrity,
or correctness of the data. A passive attacker (i.e., with read-only
access to all database data and inbound/outbound messages) would
be unable to view the plaintext data for two reasons: (1) at no time
does the cloud database have access to any plaintext or to any
key/seed material, and (2) during content adding and query pro-
cessing the data (and metadata) remains encrypted. By observing
a deposit to (or query of) the database, the attacker cannot dis-
cern the ownership of the corresponding data record (because no
owner-identifying information is shared with the database, even in
encrypted form), cannot link records deposited by the same owner
(because record indices are hashes produced by a keyed hash func-
tion for which neither the adversary nor the server has the key), and
cannot view the data or which attributes the data possess (because
the records are encrypted).

An active attacker that has read and write access to the database
server would be able to modify the indices as well as the records
themselves. If the attacker modifies the index of a record, it is akin
to deleting that record, because the data consumers would no longer
be able to retrieve the record. The data consumers would quickly
become aware of this change as the hash-chain would have gaps or
end prematurely. The adversary cannot insert false data, because
(without access to the hash-chain seed and key) the adversary has
no way to generate an index value any consumer would likely
query. If an attacker modifies an existing record’s ciphertext, the
MAC on the plaintext would fail to verify.

Although an active attacker cannot modify the ciphertext in a
way that will decrypt to valid plaintext, the attacker might instead
attempt to replay previous entries or entries from another data
owner. The database server would reject a replay attack in which
the adversary attempts to add a fresh record with a previously-seen
index value, because it never allows a record to be deposited over
an existing record at a given index. If the adversary has the ability
to write into the underlying database, it could replace the contents
of the entry at a specific index with another entry (from either
the same or a different data owner). Upon decryption, the data
consumers would discover one of two outcomes. If the record is
from another owner, or from the same owner but not a record the
consumer deserves (according to the policy), the decryption would
fail (the MAC verification will fail). If the decryption and MAC hap-
pen to succeed, because this record is indeed one deserved by this

consumer, the JSON fields (timestamp, data type) would not align
with the other entries in the hash-chain. Because indices are created
by a randomly-seeded keyed-hash chain, the attacker could not
modify multiple entries in the data stream to fool data consumers.
Therefore, data confidentiality and integrity at the database are
maintained.

Scenario 2a: Data consumer computer compromise. ShareView (a
desktop app) is responsible for the request and decryption of the
data that the consumer has been granted access to view. Because
of this role, the consumer has secret keys and seeds stored on
the computer. Attacks on this device, its operating system, or the
ShareView software itself, could result in data exposure or data
integrity concerns. In our securitymodel we trust these components
to behave correctly and to remain un-compromised (securing the
underlying platform is outside the scope of this work and, indeed,
a compromised OS or device would expose any and all data viewed
in the desktop app regardless of our system). If an adversary gains
physical access to the consumer’s device, after the data consumer
had authenticated (logged in) to ShareView, the attacker would
be able to expose the sensitive data to which the data consumer
has access. Physical security, user authentication, and defenses like
screensaver locks are standard practice and outside the scope of
this paper. The data consumer can also notify the data owner that
her ShareView was compromised, and he can re-index all records
that the consumer had been able to access.

Scenario 2b: Consumer(s) as attacker(s). If the data consumer
misuses the decrypted data – saving the plaintext on an insecure
medium or sharing the plaintext with an unauthorized party, the
data is no longer protected by ShareABEL and is thus disclosed or
vulnerable to disclosure. We have to trust the data consumer not to
be malicious or careless, and should engineer ShareView to make it
difficult to export the plaintext.

If data consumers decide to collude, none of them would be able
to discover the random seeds for the hash chains for data types to
which they do not collectively have access. Suppose one of them has
the seeds and hash keys to enable him to retrieve some records, but
does not have an ABE key with the policy to allow him to decrypt
those records. Even if they all share their secret keys to decrypt
entries to which none of the consumers individually have access,
they will not be able to successfully decrypt any other entries.
ABE systems are collusion resistant (individuals cannot combine
attributes on their secret keys to satisfy a given policy); because
each secret key is generated with a random seed, combining keys
cannot create a new meaningful key [1].

Scenario 3: Data owner smartphone compromise. If the attacker
physically obtains the data owner’s smartphone, she is unable to
gather information if the device is locked. If the device is unlocked,
the attacker would be able to open ShareApp. We anticipate that
strong implementations of our app would require the entry of a
password, fingerprint, or other second-factor authentication before
allowing the user to modify the access-control policies or consumer
list, and to view recent data points. The attacker would never be
able to access the stored keys and seeds, because those are not
exposed to the phone user (and as we assume a secure smartphone
platform, he cannot access them through other means).

13



Dartmouth Computer Science Technical Report TR2017-827

Figure 4: Execution time of encryption and upload

8.2 Performance analysis
Regarding the performance of the system, the data owner’s smart-
phone is the most resource-constrained device in the system, so we
focus on the execution time of the data encryption and upload. It
is reasonable to presume that the computation on the consumer’s
computer will take equal or less time than the comparable opera-
tions on the owner’s smartphone. We tested the SHA-256 indexing
scheme relative to a simple counter indexing scheme and the KP-
ABE encryption relative to plaintext (for different text lengths and
attribute quantities) for both the upload and query processes. Each
SHA-256 hash generation in the chain took approximately 0.103
milliseconds (0.0001 seconds). Re-indexing records is similarly effi-
cient, as the process comprises hash generation and a trivial call to
mv on the server.

KP-ABE uses ABE to encrypt an AES symmetric key and AES
to encrypt the plaintext message. KP-ABE encryption time is inde-
pendent of plaintext length (as AES runs approximately 1000 times
faster than ABE, the ABE encryption of the AES key is the limiting
factor of the encryption algorithm’s runtime). Therefore, KP-ABE
runtime only depends on the number of attributes. Figure 4 demon-
strates the average time per run (in seconds) of KP-ABE encryption
(solid blue) and overall data upload (dashed red) relative to the num-
ber of attributes. Plaintext data upload takes approximately 0.05
seconds, with no significant correlation to message length (over a
message size range of 10B to 10MB). KP-ABE runtime is linearly
related to the number of attributes.

It is important to note that no data encryption occurs while the
smartphone is in interactive mode. All encryption happens in the
background, and is done without impacting the user experience
on the smartphone. If need be, ShareApp’s background task could
also run as a low-priority task so as to not affect the runtime of
foreground apps.

9 DISCUSSION AND FUTUREWORK
Although our performance evaluation has established that the exe-
cution time of KP-ABE is not restrictive, pairing-based cryptogra-
phy (the cryptographic root of KP-ABE) is an order of magnitude
slower than traditional public-key encryption [9]. Because Share-
ABEL hinges on KP-ABE, the computationally-intensive nature
of pairing-based cryptography will remain a limitation (although
newer smartphones continue to be more powerful). We anticipate

that ShareABEL’s encryption time (about 0.1–1.5 seconds per record,
for policies with 1–15 attributes) would be acceptable for data
streams that produce new data points less frequently than once
per minute – which we expect is true for most interesting mHealth
data streams. Data streams with higher data rates can batch data
points – for example, by batching a minute’s worth of data into
every record – and easily maintain acceptable throughput.

Our securitymodel excludes traffic-analysis and denial-of-service
attacks, and it would be worth investigating extensions to Share-
ABEL that could allow relaxation of those assumptions. Further-
more, our securitymodel assumes that the data owner’s smartphone
and data consumer’s computer are not compromised.

It would be worth exploring mechanisms to secure sensitive
key material even in the event of operating-system compromise.
For example, emerging trusted hardware mechanisms establish
secure containers for computation and storage [18]; our system
could use these mechanisms to store and manipulate the secret
keys and seeds, and the mHealth data itself. Such hardware exists
and is becoming more common; modern smartphones have trusted-
hardware capabilities and currently use these containers to secure
sensitive information such as credit-card information for Apple or
Google Pay. Similarly, computers with Intel SGX technology could
protect keys and data in the ShareView [5].

10 CONCLUSION
The development and use of mHealth apps and devices are a grow-
ing trend that promises great opportunities to improve health and
wellness, increase access to healthcare, and reduce the cost of health
services. We need systems to leverage mHealth data without com-
promising the privacy of the data owners or the integrity of the
data. The design of a secure and privacy-preserving system that is
practical for deployment remains a research challenge.

In this thesis, we proposed ShareABEL, a novel framework that
supports owner-driven cryptographically-enforced access control
of mHealth data. This system leverages hash chains and attribute-
based encryption to cryptographically-enforce access to an owner’s
data by a variety of data consumers, with little trust required on
a shared database server. By creating an end-to-end system from
a data owner’s smartphone to a data consumer’s device, we are
able to support a wide variety of applications from preventative
medicine to remote monitoring of research subjects. Our evalua-
tion of a preliminary prototype shows that this approach can be
implemented efficiently on current common hardware platforms.

11 ACKNOWLEDGEMENTS
This research results from a research program at the Institute for
Security, Technology, and Society, supported by the National Sci-
ence Foundation under award numbers CNS-1314281, CNS-1314342,
CNS-1619970, and CNS-1619950. Emily Greene’s research has also
benefited from the following Dartmouth awards and programs:
Women in Science Project, Sophomore Science Scholars, Presiden-
tial Scholars, and the James O. Freedman Research Assistant grant
for full-time work during Winter 2016. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

14



Dartmouth Computer Science Technical Report TR2017-827

Emily would also like to thank her thesis advisor, Professor
David Kotz, for his help and guidance throughout the many parts
of this process, from solidifying the initial research questions to
reviewing draft papers and presentations. She is also grateful for
his support as her research advisor in the Kotzgroup over the past
three years. Emily would also like to thank the two other members
of her thesis committee, Professors Sean Smith and Charles Palmer,
for their time and evaluation of her thesis. Emily thanks all of the
members of the Kotzgroup and Amulet team for their advice and
support, especially David Harmon, whose thesis is closely related
to hers and helped to define the interface between ShareABEL and
mHealth devices. Professor Matt Green (Johns Hopkins University)
also contributed guidance, based on his expertise in Attribute-Based
Encryption. Finally, Emily thanks her family and friends for their
support throughout this process.

REFERENCES
[1] Joseph A. Akinyele, Christoph U. Lehmann, Matthew D. Green, Matthew W.

Pagano, Zachary N. J. Peterson, and Aviel D. Rubin. 2010. Self-Protecting Electronic
Medical Records Using Attribute-Based Encryption. Technical Report 2010/565.
Cryptology ePrint Archive. http://eprint.iacr.org/2010/565

[2] Moreno Ambrosin, Mauro Conti, and Tooska Dargahi. 2015. On the Feasibility
of Attribute-Based Encryption on Smartphone Devices. In Proceedings of the
Workshop on IoT Challenges in Mobile and Industrial Systems (IoT-Sys). ACM,
49–54. https://doi.org/10.1145/2753476.2753482

[3] Josh Benaloh, Melissa Chase, Eric Horvitz, and Kristin Lauter. 2009. Patient
controlled encryption: ensuring privacy of electronic medical records. In Proceed-
ings of the ACM Workshop on Cloud Computing Security (CCSW). ACM, 103–114.
https://doi.org/10.1145/1655008.1655024

[4] Kelly Caine and Rima Hanania. 2013. Patients want granular privacy control
over health information in electronic medical records. Journal of the American
Medical Informatics Association 20, 1 (01 Jan. 2013), 7–15. https://doi.org/10.1136/
amiajnl-2012-001023

[5] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086. (Jan. 2016). http://eprint.iacr.org/2016/086

[6] Angelo De Caro and Vincenzo Iovino. 2011. jPBC: Java pairing based cryptogra-
phy. In Proceedings of the IEEE Symposium on Computers and Communications
(ISCC). IEEE, 850–855. http://gas.dia.unisa.it/projects/jpbc/

[7] Abigail English and Carol A. Ford. 2004. The HIPAA privacy rule and adolescents:
legal questions and clinical challenges. Perspectives on sexual and reproductive
health 36, 2 (2004), 80–86. http://view.ncbi.nlm.nih.gov/pubmed/15136211

[8] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. 2010. Cryptography
Engineering: Design Principles and Practical Applications (1st ed.). Wiley. http:
//www.worldcat.org/isbn/0470474246

[9] William C. Garrison, Adam Shull, Steven Myers, and Adam J. Lee. 2016. On the
Practicality of Cryptographically Enforcing Dynamic Access Control Policies in
the Cloud (Extended Version). (26 April 2016). arXiv:1602.09069 http://arxiv.org/
abs/1602.09069

[10] Google. 2017. Security Tips. Android Developers. (May 2017). https://developer.
android.com/training/articles/security-tips.html

[11] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-
based Encryption for Fine-grained Access Control of Encrypted Data. In Pro-
ceedings of the ACM Conference on Computer and Communications Security (CCS).
ACM, 89–98. https://doi.org/10.1145/1180405.1180418

[12] E. Gudes. 1980. The Design of a Cryptography Based Secure File System. IEEE
Transactions on Software Engineering SE-6, 5 (Sept. 1980), 411–420. https://doi.
org/10.1109/tse.1980.230489

[13] Cheng Guo, Ruhan Zhuang, Yingmo Jie, Yizhi Ren, Ting Wu, and Kim-Kwang R.
Choo. 2016. Fine-grained Database Field Search Using Attribute-Based Encryp-
tion for E-Healthcare Clouds. Journal of Medical Systems 40, 11 (Nov. 2016), 1–8.
https://doi.org/10.1007/s10916-016-0588-0

[14] Josiah Hester, Travis Peters, Tianlong Yun, Ronald Peterson, Joseph Skinner,
Bhargav Golla, Kevin Storer, Steven Hearndon, Kevin Freeman, Sarah Lord,
Ryan Halter, David Kotz, and Jacob Sorber. 2016. Amulet: An Energy-Efficient,
Multi-Application Wearable Platform. In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (SenSys). ACM, 216–229. https://doi.org/10.
1145/2994551.2994554

[15] Stephen Intille. 2016. The Precision Medicine Initiative and Pervasive Health
Research. IEEE Pervasive Computing 15, 1 (Jan. 2016), 88–91. https://doi.org/10.
1109/mprv.2016.2

[16] Ming Li, Shucheng Yu, Kui Ren, andWenjing Lou. 2010. Securing Personal Health
Records in Cloud Computing: Patient-Centric and Fine-Grained Data Access
Control in Multi-owner Settings. In Security and Privacy in Communication
Networks, Ozgur Akan, Paolo Bellavista, Jiannong Cao, Falko Dressler, Domenico
Ferrari, Mario Gerla, Hisashi Kobayashi, Sergio Palazzo, Sartaj Sahni, Xuemin S.
Shen, Mircea Stan, Jia Xiaohua, Albert Zomaya, Geoffrey Coulson, Sushil Jajodia,
and Jianying Zhou (Eds.). Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, Vol. 50. Springer Berlin
Heidelberg, Chapter 6, 89–106. https://doi.org/10.1007/978-3-642-16161-2_6

[17] Jonathan M. McCune, Adrian Perrig, and Michael K. Reiter. 2005. Seeing-is-
believing: using camera phones for human-verifiable authentication. In Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE Computer Society,
110–124. https://doi.org/10.1109/sp.2005.19

[18] Travis Peters. 2017. A Survey of Trustworthy Computing on Mobile & Wearable
Systems. Technical Report TR2017-823. Dartmouth College. http://www.cs.
dartmouth.edu/reports/abstracts/TR2017-823/

[19] Robert Reeder, Clare-Marie Karat, John Karat, and Carolyn Brodie. 2007. Us-
ability Challenges in Security and Privacy Policy-Authoring Interfaces. In
Human-Computer Interaction âĂŞ INTERACT 2007, Cécilia Baranauskas, Philippe
Palanque, Julio Abascal, and Simone Barbosa (Eds.). Lecture Notes in Com-
puter Science, Vol. 4663. Springer Berlin / Heidelberg, Chapter 11, 141–155.
https://doi.org/10.1007/978-3-540-74800-7_11

[20] Robert W. Reeder, Lujo Bauer, Lorrie F. Cranor, Michael K. Reiter, Kelli Bacon,
Keisha How, and Heather Strong. 2008. Expandable grids for visualizing and
authoring computer security policies. In Proceedings of the Conference on Human
Factors in Computing Systems (SIGCHI). ACM, 1473–1482. https://doi.org/10.
1145/1357054.1357285

[21] Amit Sahai and Brent Waters. 2005. Fuzzy Identity-Based Encryption. In Pro-
ceedings of Advances in Cryptology (EUROCRYPT). Lecture Notes in Computer
Science, Vol. 3494. Springer-Verlag, 457–473. https://doi.org/10.1007/11426639_27

[22] Saul Shiffman. 2009. Ecological momentary assessment (EMA) in studies of
substance use. Psychological Assessment 21, 4 (2009), 486–497. https://doi.org/10.
1037/a0017074

[23] Jeff Six. 2011. Application Security for the Android Platform. O’Reilly Media.
http://shop.oreilly.com/product/0636920022596.do

[24] Changji Wang and Jianfa Luo. 2013. An Efficient Key-Policy Attribute-Based
Encryption Scheme with Constant Ciphertext Length. Mathematical Problems in
Engineering 2013 (2013), 1–7. https://doi.org/10.1155/2013/810969

[25] Syed Zain, Philip W. L. Fong, Jason Crampton, and James Sellwood. 2015.
Relationship-Based Access Control for an Open-Source Medical Records System.
In Proceedings of the ACM Symposium on Access Control Models and Technologies
(SACMAT). ACM, 113–124. https://doi.org/10.1145/2752952.2752962

[26] Zeutro LLC. 2016. An Introduction to Attribute-Based Encryption. White paper.
(May 2016). http://www.zeutro.com/docs/zeutro_abe_whitepaper.pdf

[27] Liang Zhang, Josiah Brann, Michael Peyton, and Shucheng Yu. 2014. Enhancing
Data Security in Cloud Computing: Build an Encrypted Personally Controlled
Health Records Platform on Indivo X. Online poster. (June 2014). https://sites.
google.com/a/ualr.edu/reu-project-by-liang-zhang/home

[28] Yao Zheng. 2011. Privacy-Preserving Personal Health Record System Using
Attribute-Based Encryption. Master’s thesis. Worcester Polytechnic Institute.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.3312

[29] Sebastian Zickau, Dirk Thatmann, Artjom Butyrtschik, Iwailo Denisow, and
Axel Küpper. 2016. Applied Attribute-based Encryption Schemes. In Proceedings
of the International Conference on Innovations in Clouds, Internet and Networks
(ICIN). IFIP Open Digital Library, 88–95. http://dl.ifip.org/db/conf/icin/icin2016/
1570228068.pdf

15

http://eprint.iacr.org/2010/565
https://doi.org/10.1145/2753476.2753482
https://doi.org/10.1145/1655008.1655024
https://doi.org/10.1136/amiajnl-2012-001023
https://doi.org/10.1136/amiajnl-2012-001023
http://eprint.iacr.org/2016/086
http://gas.dia.unisa.it/projects/jpbc/
http://view.ncbi.nlm.nih.gov/pubmed/15136211
http://www.worldcat.org/isbn/0470474246
http://www.worldcat.org/isbn/0470474246
http://arxiv.org/abs/1602.09069
http://arxiv.org/abs/1602.09069
http://arxiv.org/abs/1602.09069
https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/training/articles/security-tips.html
https://doi.org/10.1145/1180405.1180418
https://doi.org/10.1109/tse.1980.230489
https://doi.org/10.1109/tse.1980.230489
https://doi.org/10.1007/s10916-016-0588-0
https://doi.org/10.1145/2994551.2994554
https://doi.org/10.1145/2994551.2994554
https://doi.org/10.1109/mprv.2016.2
https://doi.org/10.1109/mprv.2016.2
https://doi.org/10.1007/978-3-642-16161-2_6
https://doi.org/10.1109/sp.2005.19
http://www.cs.dartmouth.edu/reports/abstracts/TR2017-823/
http://www.cs.dartmouth.edu/reports/abstracts/TR2017-823/
https://doi.org/10.1007/978-3-540-74800-7_11
https://doi.org/10.1145/1357054.1357285
https://doi.org/10.1145/1357054.1357285
https://doi.org/10.1007/11426639_27
https://doi.org/10.1037/a0017074
https://doi.org/10.1037/a0017074
http://shop.oreilly.com/product/0636920022596.do
https://doi.org/10.1155/2013/810969
https://doi.org/10.1145/2752952.2752962
http://www.zeutro.com/docs/zeutro_abe_whitepaper.pdf
https://sites.google.com/a/ualr.edu/reu-project-by-liang-zhang/home
https://sites.google.com/a/ualr.edu/reu-project-by-liang-zhang/home
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.3312
http://dl.ifip.org/db/conf/icin/icin2016/1570228068.pdf
http://dl.ifip.org/db/conf/icin/icin2016/1570228068.pdf

	ShareABEL: Secure Sharing of mHealth Data through Cryptographically-Enforced Access Control
	Recommended Citation

	Abstract
	1 Introduction
	1.1 Organization

	2 Background
	2.1 Definitions
	2.2 Attribute-Based Encryption

	3 Related work
	4 Use cases and applications
	5 Security model
	5.1 Adversary model
	5.2 Threat model
	5.3 Trust model

	6 Our approach
	6.1 Hash-chain indexing scheme
	6.2 Access control and revocation model
	6.3 Key management

	7 Implementation
	7.1 ShareApp: data owner's smartphone app
	7.2 ShareBase: cloud database
	7.3 ShareView: data consumer application
	7.4 Future Implementation Goals

	8 Evaluation
	8.1 Security analysis
	8.2 Performance analysis

	9 Discussion and future work
	10 Conclusion
	11 Acknowledgements
	References

