5 research outputs found

    Understanding deep neural networks from the perspective of piecewise linear property

    Get PDF
    In recent years, deep learning models have been widely used and are behind major breakthroughs across many fields. Deep learning models are usually considered to be black boxes due to their large model structures and complicated hierarchical nonlinear transformations. As deep learning technology continues to develop, the understanding of deep learning models is raising concerns, such as the understanding of the training and prediction behaviors and the internal mechanism of models. In this thesis, we study the model understanding problem of deep neural networks from the perspective of piecewise linear property. First, we introduce the piecewise linear property. Next, we review the role and progress of deep learning understanding from the perspective of the piecewise linear property. The piecewise linear property reveals that deep neural networks with piecewise linear activation functions can generally divide the input space into a number of small disjointed regions that correspond to a local linear function within each region. Next, we investigate two typical understanding problems, namely model interpretation, and model complexity. In particular, we provide a series of derivations and analyses of the piecewise linear property of deep neural networks with piecewise linear activation functions. We propose an approach for interpreting the predictions given by such models based on the piecewise linear property. Next, we propose a method to provide local interpretation to a black box deep model by mimicking a piecewise linear approximation from the deep model. Then, we study deep neural networks with curve activation functions with the aim of providing piecewise linear approximations for these networks that would let them benefit from the piecewise linear property. After proposing a piecewise linear approximation framework, we investigate model complexity and model interpretation using the approximation. The thesis concludes by discussing future directions for understanding deep neural networks from the perspective of the piecewise linear property

    Reinforcement Learning for StarCraft II

    Get PDF
    Trabajo Fin de Grado en Desarrollo de Videojuegos, Facultad de Informática UCM, Departamento de Ingeniería del Software e Inteligencia Artificial, Curso 2020/2021En este Trabajo Fin de Grado se estudian distintas técnicas de aprendizaje por refuerzo, una rama del aprendizaje automatico que ha demostrado en los últimos años ser una de las opciones mas populares dentro de este ámbito. DeepMind ha aplicado algoritmos de aprendizaje por refuerzo en distintos videojuegos, poniendo de relieve la utilidad de estas aplicaciones para contribuir al avance de la investigación en el campo del aprendizaje automático. En este marco, la finalidad de este trabajo es la aplicación de técnicas de aprendizaje por refuerzo en distintos entornos del videojuego StarCraft II. Las características de este videojuego, en concreto el hecho de que incluye tomas de decisiones a distintos niveles con información parcial del estado del entorno, suponen grandes ventajas a la hora de aplicar técnicas de aprendizaje automático respecto a otros videojuegos. Tras profundizar en el estudio de los algoritmos de aprendizaje por refuerzo QLearning y Deep Q-Learning con objeto de entender su funcionamiento correctamente, ambos algoritmos se han implementado en minijuegos de StarCraft II. Esta aplicación ha consistido en el desarrollo de jugadores automáticos que aprenden varios objetivos enfocados a la toma de decisiones a distintos niveles en videojuegos RTS. Para ello,se ha realizado un estudio sobre las estrategias habituales en estos videojuegos y se ha implementado una arquitectura reutilizable que permite intercambiar los distintos agentes y entornos de manera sencilla. Finalmente, se analizan los resultados obtenidos en los diferentes experimentos realizados y se presentan las conclusiones extraídas a partir de dichos resultados.In this Bachelor’s Degree Final Proyect, different reinforcement learning techniques are studied, a branch of machine learning that has proven in recent years to be one of the most popular options in this field. DeepMind has applied reinforcement learning algorithms in different videogames, highlighting the usefulness of these applications to contribute to the advancement of research in the field of machine learning. In this framework, the purpose of this work is the application of reinforcement learning techniques in different environments of the StarCraft II videogame. The characteristics of this video game, specifically the fact that it includes decision-making at different levels with partial information about the state of the environment, represent great advantages when applying machine learning techniques compared to other videogames. After delving into the study of Q-Learning and Deep Q-Learning reinforcement learning algorithms in order to correctly understand how they work, both algorithms have been implemented in StarCraft II minigames. This application has consisted of the development of automatic players that learn various objectives focused on decision-making at different levels in RTS video games. To do this, a study has been carried out on the usual strategies in these video games and a reusable architecture has been implemented that allows the different agents and environments to be exchanged easily. Finally, the results obtained in the different experiments carried out are analyzed and the conclusions drawn from these results are presented.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu
    corecore