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Abstract

In recent years, deep learning models have been widely used and are behind major break-
throughs across many fields. Deep learning models are usually considered to be black boxes
due to their large model structures and complicated hierarchical nonlinear transformations.
As deep learning technology continues to develop, the understanding of deep learning mod-
els is raising concerns, such as the understanding of the training and prediction behaviors
and the internal mechanism of models.

In this thesis, we study the model understanding problem of deep neural networks from the
perspective of piecewise linear property. First, we introduce the piecewise linear property.
Next, we review the role and progress of deep learning understanding from the perspective
of the piecewise linear property. The piecewise linear property reveals that deep neural net-
works with piecewise linear activation functions can generally divide the input space into
a number of small disjointed regions that correspond to a local linear function within each
region. Next, we investigate two typical understanding problems, namely model interpreta-
tion, and model complexity. In particular, we provide a series of derivations and analyses of
the piecewise linear property of deep neural networks with piecewise linear activation func-
tions. We propose an approach for interpreting the predictions given by such models based
on the piecewise linear property. Next, we propose a method to provide local interpretation
to a black box deep model by mimicking a piecewise linear approximation from the deep
model. Then, we study deep neural networks with curve activation functions with the aim
of providing piecewise linear approximations for these networks that would let them benefit
from the piecewise linear property. After proposing a piecewise linear approximation frame-
work, we investigate model complexity and model interpretation using the approximation.
The thesis concludes by discussing future directions for understanding deep neural networks
from the perspective of the piecewise linear property.

Keywords: deep learning, deep neural network, piecewise linear property, model interpre-
tation, model complexity, linear regions
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“Reading and learning is to build up their own ideas and knowledge with the
help of other people’s ideas and knowledge.”

— Pushkin
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Chapter 1

Introduction

Deep learning models are widely used and promote strong improvements in many applica-
tions. However, because of their large model structures and complex hierarchical nonlinear
transformations, deep learning models are generally regarded as black boxes. Understanding
deep learning models is becoming more and more important, particularly understanding the
training and prediction behaviors and internal mechanisms.

A series of works explores how to understand deep neural networks starting from piece-
wise linear activation functions or based on the piecewise linear property. The piecewise
linear property describes how a deep neural network with piecewise linear activation func-
tions divides the input space into multiple disjoint linear regions and corresponds to a local
linear function in each linear region. The finite number of linear regions divided by such
deep neural networks and the computable local linear functions benefit our understanding
of deep neural networks.

Taking the effectiveness of the piecewise linear property as the starting point, in this
thesis, we study two typical deep learning understanding problems from the perspective of
piecewise linear property. First, we study the local interpretation of deep neural networks.
The local interpretation attempts to interpret and attribute the prediction results given
by deep learning models. The study of interpretability has significant practical utility and
is conducive to a wide application of deep learning models. Second, we study the model
complexity problem, which investigates the measure of model complexity for deep neural
networks with fixed parameters. That is, it reviews how complex the functions represented
by deep neural networks are. The model complexity problem is a cornerstone to studying
many important theoretical problems, including optimization, generalization, and more.

1



1.1 Motivation

Due to its excellent performance, deep learning has been widely used in many practical
applications, such as computer vision [56], natural language processing [72], and computa-
tional finance [106]. At the same time, the lack of understanding of deep learning models is
raising increasing concerns. Deep learning models are regarded as black boxes because their
behaviors and internal mechanisms are not fully understood. Despite extensive research so
far, we still cannot explain the behaviors and effectiveness of deep learning models. For ex-
ample, we cannot explain why a deep learning model predicts a given instance to a specific
result [107]. We are unable to say why a deep learning model is effective and can generalize
well [96, 97]. We are also not sure how complex a deep learning model should be selected
for a certain application task [88, 94].

Understanding deep learning models is important for both theoretical study and prac-
tical applications. On one hand, understanding deep learning models involves addressing a
series of fundamental problems such as interpretability, learnability, complexity, and gen-
eralization. Solving these problems is necessary to help establish a theoretical foundation
for deep learning and to develop improvements in deep learning. On the other hand, wider
applications in practical scenarios call for deep learning models to be more trustworthy and
easy to understand. In particular, some governments and lawmakers have imposed strict
requirements on the privacy and interpretability rights of models and data.

In recent years, many works explore to understand deep learning models. In particular,
a group of studies attempts to understand deep neural networks from the perspective of
piecewise linear property [4, 91, 104]. Deep neural networks with piecewise linear activation
functions (e.g., ReLU, Hard Tanh) divide the input space into a large number of disjoint
local regions. In each region, the deep neural network corresponds to a linear function. We
call this characteristic the piecewise linear property.

Considering the piecewise linear property assists with investigating the understanding of
deep neural networks in several ways. For example, Arora et al. [4] investigate the expressive
power of deep neural networks by showing that deep neural networks with ReLU activation
can represent all piecewise linear functions. Montufar et al. [91], Hanin and Rolnick [51],
and Raghu et al. [104] investigate the complexity and learnability of deep neural networks
by studying the number of linear regions of piecewise linear neural networks. Meanwhile,
Che et al. [19] suggest adopting the Gradient Boosting Tree approximation to interpret
the prediction behaviors of deep neural networks, which is essentially a piecewise linear
approximation of the function of a deep neural network. Ribeiro et al. [107], Simonyan et

2



al. [114], and Smilkov et al. [115] propose to interpret specific prediction behaviors of a deep
neural network in the local region by using a local linear approximation of the network.

The piecewise linear property is a good starting point for exploring the understanding
of deep learning models for several reasons. First, the application of piecewise linear activa-
tion functions is becoming more and more common. The practical success of the piecewise
linear activation functions, especially the Rectified Linear Unit (ReLU) [43, 95], drives the
exploration and understanding of piecewise linear neural networks. Second, there are a fi-
nite number of linear regions divided by a neural network with piecewise linear activation
functions. . The number of linear regions sheds light on analyzing the complexity [91], sen-
sitivity [97], and loss surface of the network. In addition, the neural network within each
linear region corresponds to a simple linear function with strong regional stability and easy
to interpret.

In this thesis, we propose a systematic overview of the piecewise linear property of
deep neural networks and their applications. We investigate two important problems in
understanding deep neural networks. First, we study the local interpretation problem, which
attempts to interpret the predictions made by a deep neural network on an arbitrary input.
Next, we study the effective model complexity problem, which measures the effective model
complexity of a deep neural network with fixed parameters. We adopt the model complexity
measure to analyze the optimization process.

1.2 Overview of Contributions

In this thesis, we study the problem of understanding deep neural networks from the perspec-
tive of piecewise linear property. We mainly focus on two model understanding problems:
the model interpretation and the model complexity. In particular, we make the following
contributions:

• Interpreting Deep Neural Networks with Piecewise Linear Activation
Functions. Another approach explores more precise and efficient interpretations of
deep neural networks by taking into consideration the hierarchical structures of deep
neural networks. We propose an approach to provide interpretations for deep neural
networks with piecewise linear activation functions by analyzing the network struc-
tures. First, we prove that a piecewise linear neural network is mathematically equiv-
alent to a set of local linear models, each of which corresponds to a convex polytope
in the input space and acts on the group of instances within this convex polytope.
Next, we propose a method called OpenBox to provide interpretations to piecewise
linear neural networks by computing the equivalent set of local linear models in closed
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form. We interpret the prediction results of a given arbitrary input instance using the
decision features provided by the corresponding local linear model. In this way, we
demonstrate the consistency of our provided interpretation within each convex poly-
tope.

• Interpreting Deep Neural Networks via Oblique Model Tree. One typical
approach to exploring the interpretation of deep neural networks is to mimic a sim-
pler, interpretable student model from the deep neural network, ignoring the complex
hierarchical transformations of the deep model. We propose using the oblique model
tree structure to mimic the given deep neural network for model interpretation. The
oblique model tree is a simple, easily-interpretable model that has sufficient expressive
capacity to mimic a deep neural network. That is, the oblique model tree can always
represent the function previously learned by an over-complicated deep neural network.
In this thesis, we design an algorithm to efficiently train an oblique model tree to the
required approximation degree. We also provide interpretations for predictions made
by the given deep model through the learned oblique model tree. We demonstrate that
the oblique model tree has good interpretability due to its tree structure. An oblique
model tree acts as a piecewise linear approximation for a given “black-box" model and
makes the prediction behaviors easily traceable.

• Piecewise Linear Approximation of Deep Curve Neural Networks for
Model Complexity. The above two studies both focus on the understanding (es-
pecially the model interpretability) of deep neural networks from the perspective of
the piecewise linear property. However, a noticeable problem is that not all deep neu-
ral networks are piecewise linear functions. The above exploration of piecewise linear
neural networks cannot be directly applied to deep models with smooth curve acti-
vation functions. Motivated by these unexplored problems, we propose to investigate
the understanding of deep neural networks with smooth curve activation functions,
such as the Sigmoid and Tanh functions. To do this, we propose using the linear ap-
proximation neural network, which is a piecewise linear approximation to deep neural
networks with smooth curve activation functions. This makes the understanding of
these network structures also benefit from the piecewise linear property. Thus, under-
standing these network structures can also benefit from the piecewise linear property.
Next, we design an algorithm to efficiently learn the piecewise linear approximation to
the required approximation degree. Based on the piecewise linear approximation, we
investigate the model complexity and model interpretability of deep neural networks
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with smooth curve activation functions. Specifically, we provide a complexity measure
and use this measure to investigate the model training process.

Our first two works devote to investigate the model interpretation study, based on the
piecewise linear property. The third work proposes to investigate the model complexity
problem, which is another fundamental problem to understand deep neural networks, based
on the piecewise linear property. Furthermore, our proposed piecewise linear approximation
bridges the gap between piecewise linear neural networks and non-piecewise linear neural
networks. The approaches we proposed in our first two works and other state-of-the-art
approaches based on the piecewise linear property can be easily applied to provide inter-
pretations to the non-piecewise linear neural networks.

Parts of this thesis have already been published as conference papers or will be published
soon. In particular, the main results in Chapter 3 have been published in [22], and the main
results in Chapter 5 have been published in [63]. Part of the contents of Chapter 2 will be
released as a survey paper soon.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• In Chapter 2, we introduce the piecewise linear property of deep neural networks,
which is the most important background knowledge underpinning our research. We
review the most current studies related to our research and review several decision
tree structures that are typical example models having the piecewise linear property.
Then, we review the latest studies on two typical deep neural network understanding
problems: model interpretation and model complexity.

• In Chapter 3, we investigate the local interpretation problem of deep neural networks
with piecewise linear activation functions. We study the piecewise linear property of
deep piecewise linear neural networks. Based on the piecewise linear property, we
devise an exact and consistent interpretation approach for predictions made by such
networks.

• In Chapter 4, we propose a model-agnostic interpretation approach. We design a
simple, interpretable model to mimic the deep model and provide interpretations
using this simple model. We propose the oblique model tree structure to perform a
piecewise linear approximation of the deep model and adopt the tree structure to
interpret the predictions made by the deep neural network.
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• In Chapter 5, we focus on deep neural networks with smooth curve activation func-
tions. We propose a piecewise linear approximation approach to deep neural networks
with smooth curve activation functions. We adopt this piecewise linear approxima-
tion to provide interpretations and model complexity measures for these non-piecewise
linear neural networks.

• In Chapter 6, we conclude the thesis and propose several future directions that are
worth exploring to understand deep neural networks by taking into consideration the
piecewise linear property.
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Chapter 2

Piecewise Linear Property and
Related Works

In this chapter, we provide a brief introduction to the piecewise linear property of deep
neural networks, which is the most important background knowledge of our research. We
mainly introduce the concepts and newest results of the piecewise linear property. Then we
review state-of-the-art studies of three directions, which are mostly related to our research.
That is, the tree-structured model, interpretation of deep learning models, and complexity
of deep learning models, respectively.

2.1 Piecewise Linear Property of Deep Neural Networks

To understand deep neural networks from the perspective of piecewise linear property,
we first need to introduce and discuss the piecewise linear property. In general, when the
activation function of a deep neural network is piecewise linear, the function represented by
the network is also piecewise linear. In this section, we first provide a formal definition of
deep neural networks, then introduce the piecewise linear property of deep neural networks.

2.1.1 Deep Neural Networks

Let N represent a deep neural network, f denote the function represented by network N ,
short for fN : Rd → Rc. d is the dimensionality of input features, and c the dimensionality of
output. Given an arbitrary input instance x, the deep neural network generates prediction
result f(x). In particular, in classification tasks, the prediction result f(x) ∈ Rc is a vector
which usually representing the probability score of x belonging to each class label.

There are multiple types of deep neural network architectures, including the deep feed-
forward neural network, deep convolutional neural network, deep recurrent neural network,
and others. The deep feed-forward neural network is a typical network architecture, which
is the basis of a series of complex network architectures.

7



A deep feed-forward neural network consists of a series of fully connected layers. Each
layer contains an affine transformation and a nonlinear activation function. Given an input
instance x ∈ Rd, a feed-forward neural network f can be written in the form of

f(x) = ho ◦ hL ◦ hL−1 ◦ . . . ◦ h1(x) (2.1)

where f(x) ∈ Rc is the output vector corresponding to c class labels, ho is the output layer
in the form of ho(z) = Voz + bo where Vo and bo are the weight matrix and the bias vector
of the output layer, respectively.1 L is the number of hidden layers, hi is i-th hidden layer
in the form of

hi(z) = φ(Viz + bi), i = 1, . . . , L (2.2)

where Vi and bi are the weight matrix and the bias vector of the i-th hidden layer, respec-
tively. φ(·) represent the activation function.

Deep neural networks are always highly nonlinear. One of the main reasons for the
nonlinearity of deep networks is the nonlinear activation functions in hidden layers. The
commonly used activation functions can be divided into two groups according to their alge-
braic properties, that is, piecewise linear activation functions and curve activation functions.

A piecewise linear activation function is composed of a finite number of pieces
of affine functions. Some commonly used piecewise linear activation functions include
ReLU [95], Leaky ReLU, hard Tanh [98], and others. ReLU activation function is short
for Rectified Linear Unit and with the form of

φ(z) =

0 if z < 0

z if z ≥ 0
(2.3)

There are multiple variants of ReLU function, PReLU [55] is a typical one which is with
the form of

φ(z) =

az if z < 0

z if z ≥ 0
(2.4)

1Please note that we ignore the softmax function here. The analysis of the piecewise linear property is
based on the function before the softmax function of the output layer.
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(a) ReLU (b) PReLU

(c) Hard Tanh

Figure 2.1: Three typical piecewise linear activation functions.

The hard Tanh activation function is with the form of

φ(z) =


−1 if z < −1

z if − 1 ≤ z ≤ 1

1 if z ≥ 1

(2.5)

With piecewise linear activation functions, the deep neural network model f represents a
continuous piecewise linear function.

A curve activation function is a continuous, differentiable nonlinear function whose
geometric shape is a smooth curved line. Some commonly used curve activation functions
include Sigmoid [43, 67], Tanh [66], and others. The Sigmoid activation function is with the
form of

φ(z) = 1
1 + e−z

(2.6)

The Tanh activation function is with the form of

φ(z) = ez − e−z

ez + e−z
. (2.7)
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(a) Sigmoid (b) Tanh

Figure 2.2: Two typical smooth curve activation functions.

With smooth curve activation functions, the deep neural network model f represents a
smooth curve function.

2.1.2 Piecewise Linear Property

A composition of multiple piecewise linear functions is still a piecewise linear function. The
idea of piecewise linear function has been widely used in machine learning for decades of
years, such as decision tree [11], adaptive logic network [3], etc. From this starting point,
it is easy to conclude that given a deep neural network with piecewise linear activation
functions (e.g., ReLU), the function represented by this deep neural network is piecewise
linear [91, 104]. Each linear segment of such a piecewise linear neural network is called a
linear region. The notion of “linear region” is introduced by Mantufar et al. [91] with the
following formal definition:

Definition 1 (Linear region). A linear region of a piecewise linear function f : Rd → Rc

is a maximal connected subset of the input space Rd on which f is linear.

Raghu et al. [104] prove the following Theorem for linear regions generated by deep
neural networks with piecewise linear activation functions.

Theorem 1. Given the function of a neural network N with piecewise linear activation
functions, the input space is partitioned into convex polytopes, with N corresponding to a
different linear function on each linear region.

Please see our Theorem 2 for proof of the convex polytope.

This theorem explains that a deep neural network with piecewise linear activation func-
tions divides the input space into a series of linear regions [63, 91, 104], each of which is a
convex polytope. Within each linear region, the deep neural network corresponds to a linear
function. The property that a deep neural network with piecewise linear activation functions
partitions the input space into linear regions is referred to as piecewise linear property.
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The piecewise linear property is applicable to deep neural networks with any type of piece-
wise linear activation function. In other words, when the activation functions are piecewise
linear, the neural network models have the piecewise linear property. Some widely used
piecewise linear activation functions include ReLU [95], Leaky ReLU [84], PReLU [123],
MaxOut [46], and others. Other piecewise linear activation functions such as the Heaviside
function [65] can also keep the neural network piecewise linear property.

We propose the following conjecture of piecewise linear property:

Conjecture 1. If the activation function φ is continuous piecewise linear, then the function
of a neural network N with the continuous piecewise linear activation function φ is also
continuous piecewise linear.

This conjecture will not be discussed in detail in this thesis. We plan to investigate this
in our future works.

The piecewise linear property provides novel opportunities for understanding deep learn-
ing models.

One typical deep learning understanding problem, model complexity, can be explored
using the piecewise linear property. Model complexity explores how complex the function
represented by a deep learning model is. It is a significant fundamental problem for under-
standing deep learning. A series of studies exploring the model complexity of deep neural
networks start from piecewise linear activation functions or are based on the piecewise linear
property [49, 83, 91, 104]. Montufar et al. [91] propose that the number of linear regions
that have been generated by piecewise linear neural networks in the input space is a rep-
resentation of model complexity. The authors then prove the theoretical upper and lower
bounds of the maximal number of linear regions. Gühring et al. [49] connect piecewise linear
neural networks to the family of functions in the Sobolev space, for the purpose of investi-
gating the model complexity of piecewise linear neural networks. Raghu et al. [104] define
the trajectory between two points in the input space and use the length of such a trajectory
as a representation of model complexity. Then the authors prove the theoretical bounds to
such a trajectory length, and empirically show the complexity measured by their proposed
trajectory length. The piecewise linear property provides a good starting point for studying
the model complexity of deep neural networks. We will review state-of-the-art studies of
model complexity in detail in Section 2.2.3.

Another deep learning understanding problem, model robustness, can also be explored
starting from the piecewise linear property. Model robustness explores the sensitivity of
predictions to credible changes in input samples. Novak et al. [97] investigate the robustness
of piecewise linear neural networks and propose two robustness estimations based on the
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piecewise linear property. First, they suggest that when an instance is perturbed but still
located within the same linear region in the input space, the robustness can be measured
by the Jacobian norm. Second, they suggest that when an instance is perturbed to another
linear region, the number of linear regions between the original region and the newly located
linear region can be used to estimate model robustness. Their robustness measures make
good use of the piecewise linear property of deep neural networks with piecewise linear
activation functions.

The piecewise linear property also offers benefits for the study of model interpretation.
Interpretation of deep neural networks is another important deep learning understanding
problem that has raised significant concerns in recent years. Model interpretation explains
the behaviors of a deep neural network, especially the prediction behavior when given an
arbitrary input sample. One line of approach to model interpretation [107, 114, 115] is to
propose a linear approximation to the deep model in a small region of the input space. The
main idea is that when the region is small enough, it is able to use a linear function to
approximate a nonlinear one to a close degree of approximation. Such a local linear approx-
imation can be used to provide interpretations for the prediction behaviors in this small
region. We will review several advanced studies on model interpretation in Section 2.2.2.

The piecewise linear property provides two major advantages for understanding deep
neural networks. First, there are a finite number of linear regions partitioned by neural
networks with piecewise linear activation functions. Although there is no closed-form method
to calculate the number of linear regions, the number or density of linear regions can shed
light on the properties of the loss surface [104] and how complex the function of the network
is [63]. Second, within each linear region, the network corresponds to a linear function. Its
simple form and linear characteristics make the linear function regionally stable and easy
to interpret [22].

2.2 Related Works

In this section, we review several types of research works that are related to our work. In
our work, we propose to understand deep neural networks from the perspective of piece-
wise linear property. We mainly focus on two types of understanding problems, the model
interpretation of deep neural networks, and the model complexity of deep neural networks.
Thus, in this section, we first review several tree structures. The decision tree structure
is a typical kind of model that always has the piecewise linear property. Then, we review
state-of-the-art studies on model interpretation of deep neural networks. Finally, we review
state-of-the-art studies on the model complexity of deep neural networks.
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2.2.1 Tree Structure

The decision tree is a typical type of machine learning models, which has been widely used
and applied in many applications and problems. In general, the decision tree structure is
defined by recursively dividing the input space, and building a local model in each resulting
region of input space [92]. The typical decision tree structure for classification tasks uses
axis-parallel hyperplanes for the input space division, and generates a certain class label
for each resulting regions. In this case, decision tree structures generally have the piecewise
linear property.

In this section, we introduce two decision tree structures that are related to our research.
That is, the oblique decision tree [93] and the logistic model tree [73].

Oblique Decision Tree

Murthy et al. [93] proposed a tree structure named oblique decision tree in 1994. An oblique
decision tree is a decision tree with an oblique split at each internal non-leaf node. Each
inner node tests a linear combination of the features. The path from the root node to a leaf
node forms the classification rule. Each leaf node represents a specific class label.

More formally, let x = {x1, x2, . . . , xd} denote the input sample with d features, an
oblique split can be expressed as a linear combination of features, in the form of

a0 +
d∑
i=1

aixi ≤ 0 (2.8)

where {a0, a1, . . . , ad} are the coefficients, xi is the i-th feature of x.
Comparing with the general decision trees which are axis-parallel, the oblique decision

tree generates a splitting hyperplane at an oblique orientation to the axes, thus it is called
the oblique decision tree. The oblique decision tree is obviously a more general form of
axis-parallel trees. Murthy et al. [93] suggested that oblique decision trees produce polyg-
onal divisions of the input space, while axis-parallel trees produce divisions in the form of
hyper-rectangles that are parallel to the feature axes. In this case, when the underlying
concept is defined by a polygonal space division, it is preferable to use oblique decision
trees for classification. For example, there exist many domains in which one or two oblique
hyperplanes will be the best model for classification.

Logistic Model Tree

Landwehr et al. [73] proposed the logistic model tree in 2005. A logistic model tree is a
classification tree model that combines the logistic regression models with the tree induc-
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tion [103]. Each inner node of a logistic model tree is associated with one of the features,
and each leaf node corresponds to a logistic regression function. The segmentation of tree
nodes is based on the increase of information gain. The LogitBoost algorithm [73] is used
to fit the logistic regression function on each node in the tree.

More formally, a logistic model tree is made up of a set of inner nodes N and a set of
leaf nodes T . Let S denote the whole input space spanned by all features of the data. The
logistic model tree provides a disjoint partition of the input space S into regions St, written
as

S =
⋃
t∈T

St, St ∩ St′ = ∅ for t 6= t′ (2.9)

where each region St is represented by a leaf node in the tree, and has an associated logistic
regression function. Let x ∈ Rd be an arbitrary input sample, d be the feature dimension of
input data, let C be the number of class labels and Cj the j-th class label. The LogitBoost
algorithm [30, 39] is proposed to build leaf-wise logistic regression functions by least-squares
fits for each class label Cj , with the form of

Lj(x) = β0 +
d∑
i=1

βixi (2.10)

where β = {β0, β1, . . . , βd} denote the coefficient parameters and xi the i-th value of x.
Then the posterior probability can be computed by linear logistic regression in the form of

p(Cj |x) = eLj(x)∑C
i=1 e

Li(x)
(2.11)

where ∑C
j=1 Lj(x) = 1.

Due to the good interpretability of tree structures, decision trees are widely used for
interpreting deep neural networks at the early stage of model interpretation study. For
instance, Zhang et al. [126] propose to learn a decision tree to explain predictions made
by CNNs. The decision tree is used to decompose feature representations in Conv layers
and provide semantic level interpretations to predictions. Schaaf et al. [109] introduce L1-
orthogonal regularization. Using the L1-orthogonal regularization during training a deep
model preserves the model accuracy and makes the model maintain low complexity. The
authors show this regularization enhances the decision tree-based interpretations of deep
neural networks. Liu et al. [81] propose a tree structure, called Linear Model U-trees, to
interpret deep reinforcement learning models. They introduce a Linear Model U-tree based
mimic learning framework for interpreting the Reinforcement Learning Environment.
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2.2.2 Model Interpretation of Deep Neural Networks

The interpretability of deep learning is a widely concerned problem in recent years. A large
number of works study the interpretability problem from multiple perspectives. A series
of survey papers [16, 17, 50, 89, 127] summarizes these studies on the interpretability of
deep learning models, We refer you to these survey works, such as Chakraborty et al. [17],
Guidotti et al. [50], Carvalho et al. [16], for comprehensive and detailed studies of the
interpretability of deep learning.

In this section, we briefly review state-of-the-art researches on the model interpretability
of deep neural networks, which are related to our research. In particular, we review the
interpretability studies on deep models that are well-trained already. The interpretability
of pre-trained deep neural networks is a challenging problem and has attracted widespread
attention in recent years.

Hidden Neuron Analysis

The hidden neuron analysis methods [31, 86, 124] interpret a pre-trained deep neural net-
work by visualizing, revert-mapping, or labeling the features that are learned by the hidden
neurons.

Yosinski et al. [124] visualized the live activations of the hidden neurons of a ConvNet,
and proposed a regularized optimization to produce a qualitatively better visualization.
Erhan et al. [34] proposed an activation maximization method and a unit sampling method
to visualize the features learned by hidden neurons. Cao et al. [14] visualized a neural
network’s attention on its target objects by a feedback loop that infers the activation status
of the hidden neurons. Li et al. [78] visualized the compositionality of clauses by analyzing
the outputs of hidden neurons in a neural model for Natural Language Processing.

To understand the features learned by the hidden neurons, Mahendran et al. [86] pro-
posed a general framework that revert-maps the features learned from an image to recon-
struct the image. Dosovitskiy et al. [31] performed the same task as Mahendran et al. [86]
did by training an up-convolutional neural network. Zhou et al. [128] interpreted a CNN by
labeling each hidden neuron with a best aligned human-understandable semantic concept.
However, it is hard to get a golden dataset with accurate and complete labels of all human
semantic concepts.

The hidden neuron analysis methods provide useful qualitative insights into the proper-
ties of each hidden neuron. However, qualitatively analyzing every neuron does not provide
much actionable and quantitative interpretation about the overall mechanism of the entire
neural network [40].
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Mimic Learning

By imitating the classification function of a neural network, the mimicking methods [5, 7,
18, 60] build a transparent model that is easy to interpret and achieves a high classification
accuracy.

Ba et al. [5] proposed a model compression method to train a shallow mimic network
using the training instances labeled by one or more deep neural networks. Hinton et al. [60]
proposed a distillation method that distills the knowledge of a large neural network by
training a relatively smaller network to mimic the prediction probabilities of the original
large network. To improve the interpretability of distilled knowledge, Frosst and Hinton [40]
extended the distillation method [60] by training a soft decision tree to mimic the prediction
probabilities of a deep neural network. Che et al. [18] proposed a mimic learning method
to learn interpretable phenotype features. Wu et al. [121] proposed a tree regularization
method that uses a binary decision tree to mimic and regularize the classification function
of a deep time-series model. Zhu et al. [130] built a forest model on top of a deep feature
embedding network, however it is still difficult to interpret the deep feature embedding
network.

The mimic models built by model mimicking methods are much simpler to interpret than
deep neural networks. However, due to the reduced model complexity of a mimic model,
there is no guarantee that a deep neural network with high expressive power and over-
parameterization can be successfully imitated by a simpler shallow model. Thus, there is
always a gap between the interpretation of a mimic model and the actual overall mechanism
of the target deep neural network.

Local Interpretation

The local interpretation methods [36, 111, 115, 117] compute and visualize the important
features for an input instance by analyzing the predictions of its local perturbations.

Simonyan et al. [114] generated a class-representative image and a class-saliency map for
each class of images by computing the gradient of the class score with respect to an input
image. Ribeiro et al. [107] proposed LIME to interpret the predictions of any classifier
by learning an interpretable model in the local region around the input instance. Zhou et
al. [129] proposed CAM to identify discriminative image regions for each class of images
using the global average pooling in CNNs. Selvaraju et al. [110] generalized CAM [129] by
Grad-CAM, which identifies important regions of an image by flowing class-specific gradients
into the final convolutional layer of a CNN. Koh et al. [69] used influence functions to trace
a model’s prediction and identify the training instances that are the most responsible for
the prediction.
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The local interpretation methods generate an insightful individual interpretation for each
input instance. However, the interpretations for perspectively indistinguishable instances
may not be consistent [42] and can be manipulated by a simple transformation of the input
instance without affecting the prediction result [68].

2.2.3 Model Complexity of Deep Neural Networks

Model complexity is a fundamental and theoretical problem that benefits the explorations of
a lot of other problems, such as the generalization, and the model selection. The model com-
plexity of classical machine learning models (e.g., decision tree, logistic regression) has been
sufficiently explored and studies [12, 13, 79, 116] during the past decades years. However,
the model complexity of deep neural networks is still in the exploratory stage so far.

In this section, we review the state-of-the-art studies on the model complexity of deep
neural networks. We roughly summarize the model complexity studies into two categories,
that is, the expressive capacity and the effective model complexity. We review the model
complexity studies from these two categories.

Expressive Capacity

The expressive capacity of deep neural networks, also known as the expressive power of deep
neural networks [8, 61, 104], devotes to study how complex functions can be represented
by deep neural networks with certain model structures and certain sizes. In particular, how
the model structure factors (i.e., layer width, network depth) affect expressive capacity is
widely concerned.

The power of layer width of shallow neural networks is investigated [6, 26, 61, 85].
Hornik et al. [61] propose the universal approximation theorem, which proves that a single
layer feedforward network with a finite number of neurons can approximate continuous func-
tions under some mild assumptions. Later studies [6, 26, 85] advance this theorem. However,
although with the universal approximation theorem, the layer width can be exponentially
large.

Lu et al. [83] extend the universal approximation theorem to deep neural networks with
bounded layer width. That is, a deep neural network that has bounded layer width and a
finite number of layers (i.e., depth of the network) can still be a universal approximator.
Recently, deep models are empirically discovered to be more effective than shallow ones.
Subsequently, a series of studies focus on exploring the advantages of deep architecture in
a theoretical view, which is called depth efficiency [8, 23, 33, 102]. Those studies show that
the complexity of the function of a deep network can only be matched by a shallow network
with exponentially more nodes. In other words, the function of deep architecture achieves
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exponential complexity from layer to layer while incurs only polynomial complexity through
layer width.

Some studies bound the complexity of models with respect to certain structures or ac-
tivation functions [9, 27, 32, 91, 102]. Delalleau et al. [27] study the sum-product networks
and use the number of monomials to reflect model complexity. Pascanu et al. [100] and
Montufar et al. [91] investigate fully connected neural networks with piecewise linear acti-
vation functions (e.g. ReLU, Maxout), and use the number of linear regions generated by
these models in the input space as a representation of model complexity. They theoretically
bound the number of linear regions that a deep neural network with piecewise linear acti-
vation functions can generate. However, the study on model complexity in the view of the
structure is not able to distinguish differences between two models with similar structures,
which is needed for problems such as understanding the model training process.

Effective Complexity

The effective complexity of deep neural networks studies the effective, practical complex-
ity of networks. That is, how nonlinear, how complex the function represented by a deep
neural network is. Especially, the effective model complexity considers the values of model
parameters and thus is expected to be sensitive to the different values of parameters.

Raghu et al. [104] propose a complexity measure for DNNs with piecewise linear ac-
tivation functions. They follow previous studies on DNNs with piecewise linear activation
functions and use the number of linear regions as a reflection of model complexity [91, 100].
To measure how many linear regions a data manifold is split, Raghu et al. [104] build a
trajectory path from one input instance to another, then measure the number of linear
region transitions through the trajectory path as an estimation of model complexity. Their
trajectory length measure not only reflects the influences of model structures on model
complexity, but also is sensitive to model parameters. They further study Batch Norm [64]
using the complexity measure. Later, Novak et al. [97] generalize the trajectory measure to
investigate the relationship between complexity and generalization of DNNs with piecewise
linear activation functions.

However, the complexity measure using trajectory [104] cannot be directly generalized
to smooth curve activation functions, such as Sigmoid, Tanh. In order to bridge this gap
and investigate the effective complexity of models with smooth curve activation functions,
in Chapter 4, we propose a complexity measure to deep neural networks with smooth curve
activation functions. We propose a piecewise linear approximation to such neural networks.
Following the idea of [91, 97, 100, 104], we use the number of linear regions of the piecewise
linear approximation model as a representation of model complexity. There are two reasons.
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First, since the number of linear regions reflects the nonlinearity, or complexity of a piecewise
linear model [91, 104]. Similarly, the number of linear regions used to approximate a smooth
curve function is a reflection of the complexity of the smooth curve function. Second, linear
regions are finite in number and are detectable with the status of piecewise linear activation
functions. This makes it a useful metric.
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Chapter 3

Interpreting Deep Neural
Networks with Piecewise Linear
Activation Functions

Strong intelligent machines powered by deep neural networks are increasingly deployed
as black boxes to make decisions in risk-sensitive domains, such as finance and medical.
To reduce potential risk and build trust with users, it is critical to interpreting how such
machines make their decisions. Existing works interpret a pretrained neural network by
analyzing hidden neurons, mimicking pre-trained models, or approximating local predic-
tions. However, these methods do not provide a guarantee of the exactness and consistency
of their interpretations. In this chapter, we propose an elegant closed-form solution named
OpenBox to compute exact and consistent interpretations for the family of Piecewise Linear
Neural Networks. The major idea is to first transform a piecewise linear neural network into
a mathematically equivalent set of linear classifiers, then interpret each linear classifier by
the features that dominate its prediction. We further apply OpenBox to demonstrate the
effectiveness of non-negative and sparse constraints on improving the interpretability world
data sets demonstrate the exactness of consistency of our interpretation.

3.1 Introduction

More and more machine learning systems are making significant decisions routinely in im-
portant domains, such as medical practice, autonomous driving, criminal justice, and mili-
tary decision making [45]. As the impact of machine-made decisions increases, the demand
on clear interpretations of machine learning systems is growing ever stronger against the
blind deployments of decision machines [47]. Accurately and reliably interpreting a machine
learning model is the key to many significant tasks, such as identifying failure models [1],
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building trust with human users [107], discovering new knowledge [105], and avoiding un-
fairness issues [125].

The interpretation problem of machine learning models has been studied for decades.
Conventional models, such as Logistic Regression and Support Vector Machine, have all been
well interpreted from both practical and theoretical perspectives [10]. Powerful non-negative
and sparse constraints are also developed to enhance the interpretability of conventional
models by sparse feature selection [62, 77]. However, due to the complex network structure of
a deep neural network, the interpretation problem of modern deep models is yet a challenging
field that awaits further exploration.

As reviewed in Chapter 2, the existing studies interpret a deep neural network in three
major ways. The hidden neuron analysis methods [31, 86, 124] analyze and visualize the
features learned by the hidden neurons of a neural network; the model mimicking methods [5,
7, 18, 60] build a transparent model to imitate the classification function of a deep neural
network; the local explanation methods [36, 111, 115, 117] study the predictions on local
perturbations of an input instance, so as to provide decision features for interpretation. All
these methods gain useful insights into the mechanism of deep models. However, there is
no guarantee that what they compute as an interpretation is truthfully the exact behavior
of a deep neural network. As demonstrated by Ghorbani [42], most existing interpretation
methods are inconsistent and fragile, because two perceptively indistinguishable instances
with the same prediction result can be easily manipulated to have dramatically different
interpretations.

Can we compute an exact and consistent interpretation for a trained deep neural net-
work? In this chapter, we provide an affirmative answer, as well as an elegant closed form
solution for the family of piecewise linear neural networks. Here, a piecewise linear neural
network (PLNN) [52] is a neural network that adopts a piecewise linear activation func-
tion, such as MaxOut [46] and the family of ReLU [44, 55, 95]. The wide applications [74]
and great practical successes [71] of PLNNs call for exact and consistent interpretations
on the overall behaviour of this type of neural networks. We make the following technical
contributions.

First, we prove that a PLNN is mathematically equivalent to a set of local linear clas-
sifiers, each of which being a linear classifier that classifies a group of instances within a
convex polytope in the input space. Second, we propose a method named OpenBox to
provide an exact interpretation of a PLNN by computing its equivalent set of local linear
classifiers in closed form. Third, we interpret the classification result of each instance by the
decision features of its local linear classifier. Since all instances in the same convex polytope
share the same local linear classifier, our interpretations are consistent per convex polytope.
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Fourth, we also apply OpenBox to study the effect of non-negative and sparse constraints
on the interpretability of PLNNs. We find that a PLNN trained with these constraints se-
lects meaningful features that dramatically improve the interpretability. Last, we conduct
extensive experiments on both synthetic and real-world data sets to verify the effectiveness
of our method.

The rest of this chapter is organized as follows. We formulate the problem in Section 4.2
and present OpenBox in Section 4.3. We report the experimental results in Section 4.4, and
conclude the chapter in Section 4.5.

3.2 Problem Definition

A Piecewise Linear Neural Network, denoted by N , is a neural network whose neurons in
hidden layers adopt piecewise linear activation functions.

Given a piecewise linear neural network N with depth L, N contains L − 1 hidden
layers, we write the l-th hidden layer of N as hl and the output layer as hL. Let ml

represent the number of neurons in layer hl; the total number of hidden neurons in network
N is m = ∑L−1

l=1 ml. Let u(l)
i denote the i-th neuron in hl. Let a(l) denote the output of hl,

z(l) denote the weighted sum of the inputs to neurons in hl. Let φ denote the activation
function of hidden layers and φ(l)

i specifically denote the activation function of i-th neuron
in hl. Let W (l) denote the weight matrix of hl, b(l) the bias vector of hl. For l ∈ {1, . . . , L},
we compute z(l) by

z(l) = W (l)a(l−1) + b(l) (3.1)

and compute a(l) for l ∈ {1, . . . , L− 1} by

a(l) = φ(z(l)) (3.2)

An input instance of N is denoted by x ∈ X , where X ⊆ Rd is a d-dimensional input
space. The i-th dimension of x is denoted by xi. The output of N is a(L) ∈ Y, where Y ⊆ Rc

is an c-dimensional output space. The activation function of the output layer hL is the
softmax function, written as

a(L) = softmax(z(L)) (3.3)

Deep neural networks are black boxes. The function of a deep neural network with
piecewise linear activation function is piecewise linear [91, 104]. However, due to the com-
plicated structure and the huge number of linear segmentations, the piecewise linear neural
network is not able to be directly interpreted and understood. How to interpret the overall
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Notation Description

u
(l)
i The i-th neuron in layer l.

nl The number of neurons in layer l.

m The total number of hidden neurons in N .

z
(l)
i The input of the i-th neuron in layer l.

c
(l)
i The configuration of the i-th neuron in layer l.

c(h) The h-th configuration of the piecewise linear neural network N .

Ph The h-th convex polytope determined by Ch.

fh(·) The h-th linear classifier that is determined by Ch.

Qh The set of linear inequalities that define Ph.

Table 3.1: Frequently used notations.

mechanism of a piecewise linear neural network in an human understandable manner is an
interesting problem that has attracted much attention in recent years.

Following a principled approach of interpreting a machine learning model [10], we regard
an interpretation of a piecewise linear neural network N as the decision features that define
the decision boundary of N . We call a model interpretable if it explicitly provides its
interpretation (i.e., decision features) in closed form.

Below we give the formal definition of the piecewise linear neural network interpretation
problem.

Definition 2. Given a piecewise linear neural network N with fixed structure and parame-
ters, our task is to interpret the overall behavior of N by computing an interpretable model
G that satisfies the following requirements.

• Exactness. G is mathematically equivalent to N such that the interpretations pro-
vided by G truthfully describe the exact behavior of N .

• Consistency. G provides similar interpretations for classification of similar in-
stances.

Table 3.1 summarizes a list of frequently used notations.
Next, we introduce the OpenBox method that interprets the overall mechanism of a

piecewise linear neural network in an exact and easy-to-understand manner.
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3.3 OPENBOX Method

Mimicking a simple, interpretable model is an intuitive method of deep learning interpre-
tation. However, the limitation of the efficiency and mimicking precision of mimic learning,
especially when dealing with very huge deep learning models, prompts the proposal of more
precise and efficient interpretation approaches. We study the piecewise linear property of
deep neural networks with piecewise linear activation functions, then propose an exact and
consistent interpretation approach to interpret the predictions made by deep models.

In this section, we describe the OpenBox method, which produces an exact and con-
sistent interpretation of the given piecewise linear neural network by computing an inter-
pretation model G in a piecewise linear closed form. We first define the configuration of
a piecewise linear neural network N , which specifies the activation status of each hidden
neuron in N . Then, we illustrate how to interpret the classification result of a fixed input
instance. Last, we introduce how to interpret the overall behavior of N by computing an
interpretation model G that is mathematically equivalent to N .

3.3.1 The Configuration of a Piecewise Linear Neural Network

For a hidden neuron u(l)
i , the piecewise linear activation function φ(l)

i (z(l)
i ) is in the following

form.

φ
(l)
i (z(l)

i ) =



r1z
(l)
i + t1, if z(l)

i ∈ I1

r2z
(l)
i + t2, if z(l)

i ∈ I2

...

rkz
(l)
i + tk, if z(l)

i ∈ Ik

(3.4)

where k ≥ 1 is the number of linear segmentations of φ(l)
i , {r1, . . . , rk} are constant slopes,

{t1, . . . , tk} are constant intercepts, and {I1, . . . , Ik} is a collection of constant real intervals
that partitions R.

Given a fixed piecewise linear neural network N , an input instance x ∈ X determines
the value of z(l)

i , and further determines which linear function in φ(z(l)
i ) is applied. Based

on which linear function is used, we encode the activation status of each hidden neuron by
k states. Each state uniquely corresponds to one of the k linear functions of φ(z(l)

i ). Let c(l)
i

denote the state of u(l)
i , we have c(l)

i ∈ {1, . . . , k} and z
(l)
i ∈ Iq if and only if c(l)

i = q. Since
the input to neurons are different from neuron to neuron, that is, z(l)

i might be different for
different i and l, the states of different hidden neurons may differ from each other.

Based on the state of activation functions, we define the configuration as follow:
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Definition 3. Let c(l) = {c(l)
1 , c

(l)
2 , . . . , c

(l)
ml} denote the states of all hidden neurons in hl.

We define the configuration of N as an m-dimensional vector which specifies the states
of all hidden neurons in N , written as

c = {c(1), . . . , c(L−1)} (3.5)

The configuration c of a piecewise linear neural network is uniquely determined by the
input instance x. We write the function that maps an input instance x ∈ X to a configuration
c ∈ {1, . . . , k}N as conf : X → {1, . . . , k}N .

For a neuron u(l)
i , denote by r(l)

i and t(l)i the variables of slope and intercept of the linear
function that corresponds to the state c(l)

i . r(l)
i and t(l)i are uniquely determined by c(l)

i , such
that r(l)

i = rq and t(l)i = tq if and only if c(l)
i = q.

For all hidden neurons in hl, we write the variables of slopes and intercepts as r(l) =
{r(l)

1 , . . . , r
(l)
ml}> and t(l) = {t(l)1 , . . . , t

(l)
ml}>, respectively. Then, we rewrite the activation

function for all neurons in a hidden layer hl as

φ(z(l)) = r(l) ◦ z(l) + t(l) (3.6)

where r(l) ◦ z(l) is the Hadamard product between r(l) and z(l).
Next, we introduce how to interpret the classification result of a fixed input instance.

3.3.2 Exact Interpretation for the Prediction of a Fixed Instance

Given a piecewise linear neural network N , we interpret the prediction made by N on a
given input instance x ∈ X by deriving the closed form of N (x) using the configuration
c(x) as follows.

Following Equation 3.2 and Equation 3.6, we have that for all l ∈ {1, . . . , L− 1}

a(l) = f(z(l)) = r(l) ◦ z(l) + t(l) (3.7)

By plugging a(l) into Equation 3.1, we rewrite z(l+1) as

z(l+1) = W (l+1)(r(l) ◦ z(l) + t(l)) + b(l+1)

= (W (l+1) ◦ r(l))z(l) +W (l+1)t(l) + b(l+1)

= W̃ (l+1)z(l) + b̃(l+1)

(3.8)
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where b̃(l+1) = W (l+1)t(l) + b(l+1), and W̃ (l+1) = W (l+1) ◦ r(l) is the extended version of
Hadamard product, such that the entry at the i-th row and j-th column of W̃ (l+1) is

W̃
(l+1)
ij = W

(l+1)
ij r

(l)
j

Then, by iteratively substituting Equation 3.8 into itself, we can write z(l) for all l ∈
{2, . . . , L− 1} as

z(l) =
l−2∏
q=0

W̃ (l−q)z(1) +
l∑

i=2

l−i−1∏
q=0

W̃ (l−q)b̃(i)

By substituting z(1) = W (1)x + b(1) into the above equation, and let W̃ (1) = W (1), we
rewrite z(l) for all l ∈ {1, . . . , L} as

z(l) =
l−1∏
q=0

W̃ (l−q)x+
l∑

i=1

l−i−1∏
q=0

W̃ (l−q)b̃(i)

= Ŵ (1:l)x+ b̂(1:l)

(3.9)

where Ŵ (1:l) = ∏l−1
q=0 W̃

(l−q) is the coefficient matrix of x, and b̂(1:l) is the sum of the rest
of the terms. The superscript (1 : l) indicates that Ŵ (1:l) and b̂(1:l) represent the overall
computation of the given piecewise linear neural network on x from input layer to layer hl.

The predicted probability given by N is the softmax of z(L), so the closed form of N (x)
given input instance x is

N (x) = a(L)

= softmax(z(L))

= softmax(Ŵ (1:L)x+ b̂(1:L))

(3.10)

For a fixed piecewise linear neural network N and a fixed input instance x, the con-
figuration c = conf(x) is fixed. Therefore, Ŵ (1:L) and b̂(1:L) are constant parameters that
are uniquely determined by the fixed c. N (x) reduces to a linear classifier in the form of
Equation 3.10 whose decision boundaries are explicitly defined by Ŵ (1:L)x+ b̂(1:L).

Interpretation. Inspired by the interpretation method widely used by conventional linear
classifiers, such as Logistic Regression and linear SVM [10], we interpret the prediction made
by the network N on a given input instance x by the decision features of N (x). Specifically,
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the entries of the i-th row of Ŵ (1:L) reflects the feature importance of predicting x to the
i-th class label.

Equation 3.10 provides a straightforward way to interpret the prediction result of a fixed
input instance. However, individually interpreting the classification result of every single
input instance is far from the understanding of the overall behavior of the piecewise linear
neural network N . Next, we describe how to interpret the overall behavior of the neural
network by constructing an interpretation model G that is mathematically equivalent to N .

3.3.3 Exact Interpretation of a Piecewise Linear Neural Network

A fixed piecewise linear neural network N with m hidden neurons has at most km config-
urations where k is the number of linear segmentations in the piecewise linear activation
function. We represent the i-th configuration by c(i) ∈ C, where C ⊆ {1, . . . , k}m is the set
of all configurations of N .

The volume of C, denoted by |C|, is bounded from upper by km. Each input instance
x ∈ X has its corresponding configuration conf(x) ∈ C. A configuration actually correspond
to a linear region within the input space X . Instances x1, x2 within the same linear region
share the same configuration, written as conf(x1) = conf(x2). Denote by Pi = {x ∈ X |
conf(x) = c(i)} the set of input instances that have the same configuration c(i). We prove
in Theorem 2 that Pi is a convex polytope in X for any configuration c(i) ∈ C.

Theorem 2. Given a fixed piecewise linear neural network N , for any configuration c(i) ∈
C, Pi = {x ∈ X | conf(x) = c(i)} is a convex polytope in X .

Proof. We prove this theorem for neural networks with ReLU activation function. The result
can be easily generalize to other piecewise linear activation functions. For ReLU, we prove
this by proving that conf(x) = c(i) is equivalent to a set of 2m linear inequalities with
respect to x.

First, we prove that the input to each hidden layer, written as z(l) for any l ∈ {1, . . . , L−
1}, is a linear function of x. For l = 1, it follows Equation 3.1 that z(1) = W (1)x + b(1).
For l ∈ {2, . . . , L − 1}, it follows Equation 3.9 that z(l) = Ŵ (1:l)x + b̂(1:l), which is a linear
function of x, because Ŵ (1:l) and b̂(1:l) are constant parameters when c(i) is fixed. In sum,
z(l) is a linear function of x for all l ∈ {1, . . . , L− 1}.

Second, we prove that conf(x) = c(i) is equivalent to a set of 2m linear inequali-
ties with respect to x. Recall that z(l)

i ∈ Cq if and only if c(l)
i = q. Denote by ψ :

{1, . . . , k} → {I1, . . . , Ik} the bijective function that maps a configuration c
(l)
i to a real

interval in {I1, . . . , Ik}, such that ψ(c(l)
i ) = Iq if and only if c(l)

i = q. Then, conf(x) = c(q)
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Algorithm 1 OpenBox(N , Dtrain)
Require: a fixed piecewise linear neural network N , the training set Dtrain.
Ensure: the set of active local linear classifiers G .
1: for each x ∈ Dtrain do
2: Compute the configuration c(h)← conf(x).
3: if c(h) 6∈ C then
4: C ← C ∪ c(h).
5: Compute the closed form of fh(x) and Ph.
6: G← G ∪ (fh(x), Ph).
7: end if
8: end for
9: return G

is equivalent to a set of constraints, denoted by

Qq = {z(l)
i ∈ ψ(c(l)

i ) | i ∈ {1, . . . ,ml}, l ∈ {1, . . . , L− 1}}. (3.11)

Since z(l)
i is a linear function of x and ψ(c(l)

i ) is a real interval, each constraint z(l)
i ∈ ψ(c(l)

i )
in Qq is equivalent to two linear inequalities with respect to x.

Thus, conf(x) = c(i) is equivalent to a set of 2m linear inequalities. As a result, Pi is a
convex polytope in X .

According to the proof of Theorem 2, all input instances sharing the same configuration
c(i) form a unique convex polytope Pi that is explicitly defined by 2m linear inequalities in
Qi. c(i) determines the linear classifier for the the convex polytope Pi, which is determined
using Equation 3.10. All input instances in the convex polytope Pi are predicted using this
linear classifier.

Denote by fi(x) the linear classifier of the polytope Pi, we write N (x) in the following
piecewise linear form.

N (x) =



f1(x), if x ∈ P1

f2(x), if x ∈ P2

...

fm(x), if x ∈ Pt

(3.12)

where t = |C| is the number of linear regions, P1 ∪ · · · ∪ Pt = X and ∀i 6= j, Pi ∩ Pj = ∅.
According to Equation 3.12, we can interpret N as a set of local linear classifiers,

each of which is a linear classifier fi(x) that classifies the input instances in convex polytope
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region Pi. Denote by a tuple (fi(x), Pi) the i-th local linear classifier, the piecewise linear
neural network N is mathematically equivalent to a set of local linear classifiers, denoted
by

G = {(fi(x), Pi) | c(i) ∈ C}. (3.13)

where G is our proposed interpretation model for N .
Since a piecewise linear neural network with m hidden neurons and k-segment piecewise

linear activation functions can have at most km configurations, G may contain at most km

local linear classifiers. However, due to the hierarchical transformation of a deep learning
model, the states of the hidden neurons in hl highly depends on the states of the neurons
in the former layers of hl. Therefore, the volume of C might be much less than km. Thus,
the number of local linear classifiers in G is much less than km.

In practice, we do not need to compute the entire set of local linear classifiers in G all
at once. Instead, we can first compute an active subset of G, that is, the set of local linear
classifiers that are actually used to classify the available set of input instances. Then, we
can update G whenever a new local linear classifier is used to classify a newly coming input
instance. We propose an OpenBox algorithm to compute G as the active set of local linear
classifiers that are actually used to classify the set of training input instances, denoted by
Dtrain. Algorithm 1 describes the OpenBox method.

The time cost of Algorithm 1 consists of the time Tconf to compute conf(x) in step 3 and
the time Tlc to compute the local linear classifier (fi(x), Pi) in step 5. Since Tconf and Tlc
are dominated by matrix multiplications, we evaluate the time cost of Algorithm 1 by the
number of scalar multiplications. First, since we compute conf(x) by forward propagating
from layer h1 to layer hL−1, Tconf = ∑L−1

l=1 nlnl−1. Second, since (fi(x), Pi) is determined
by the set of tuples G = {(Ŵ (1:l), b̂(1:l)) | l ∈ {1, . . . , L− 1}}, Tlc is the time to compute G.
Given (Ŵ (1:l−1), b̂(1:l−1)), we can compute (Ŵ (1:l), b̂(1:l)) by plugging z(l) into Equation 3.8,
and the time cost is ml+1ml(ml + 1). Since Ŵ (1:1) = W (1) and b̂(1:1) = b(!), we can iter-
atively compute G. The overall time cost is Tlc = ∑L−1

l=1 ml+1ml(ml + 1). The worst case
of Algorithm 1 happens when every input instance x ∈ Dtrain has a unique configuration
conf(x). Let n denote the number of input instances in Dtrain, the time cost of Algorithm 1
in the worst case is n(Tconf +Tlc). Since ml, l ∈ {1, . . . , L−1} are constant for a fixed neural
network, the time cost of Algorithm 1 is O(nd).

Interpretation. Now we are ready to introduce how to interpret the classification result
of an input instance x ∈ Pi, i ∈ {1, . . . , |C|}. First, we interpret the classification result of
x using the decision features of fi(x). Second, we interpret why x is contained in Pi using
the polytope boundary features, which are the decision features of the polytope boundaries.
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Models PLNN PLNN-NS LR LR-F LR-NS LR-NSF

NS × X × × X X

Flip × × × X × X

Table 3.2: The models to interpret. LR is Logistic Regression. NS means non-negative and
sparse constraints. Flip means the model is trained on the instances with flipped labels.

More specifically, a polytope boundary of Pi is defined by a linear inequality z(l)
q ∈ ψ(c(l)

q )
in Qi. By Equation 3.10, z(l)

q is a linear function with respect to x The polytope boundary
features are the coefficients of x in z(l)

q .
We also discover that some linear inequalities in Qi are redundant whose hyperplanes do

not intersect with Pi. To simplify our interpretation on the polytope boundaries, we remove
such redundant-inequalities by Caron’s method [15] and focus on studying the polytope
boundary features of the non-redundant ones.

The advantages of OpenBox are three-fold as follows. First, our interpretation is exact,
because the set of local linear classifiers in G are mathematically equivalent to the clas-
sification function of the piecewise linear neural network N . Second, our interpretation is
group-wise consistent. It is due to the reason that all input instances in the same convex
polytope are classified by exactly the same local linear classifier, and thus the interpreta-
tions are consistent with respect to a given convex polytope. Last, our interpretation is easy
to compute due to the low time complexity of Algorithm 1.

3.4 Experiments

In this section, we evaluate the performance of OpenBox, and compare it with the state-
of-the-art method LIME [107]. In particular, we address the following questions:

(1) What do the local linear classifiers look like?

(2) Are the interpretations produced by LIME and OpenBox exact and consistent?

(3) Are the decision features of local linear classifiers easy to understand, and can we
improve the interpretability of these features by non-negative and sparse constraints?

(4) How can one interpret the polytope boundary features of local linear classifiers?

(5) How effective are the interpretations ofOpenBox in hacking and debugging a piecewise
linear neural network model?
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Data Sets # Neurons (m1,m2, . . . ,mL)
PLNN PLNN-NS

|C| km |C| km

SYN (2, 4, 16, 2, 2) 266 222 41 222

FMNIST-1 (784, 8, 2, 2) 78 210 3 210

FMNIST-2 (784, 8, 2, 2) 23 210 18 210

Table 3.3: The network structures (m1,m2, . . . ,mL) and the number of configurations |C| of
PLNN and PLNN-NS. The neurons in successive layers are initialized to be fully connected.
k = 2 is the number of linear functions of ReLU, m is the number of hidden neurons.

Table 3.2 shows the details of the six models we used. PLNN represents piecewise linear
neural network, PLNN-NS represents piecewise linear neural network with non-negative
parameters (i.e., weights, bias). For both PLNN and PLNN-NS, we use the same network
structure described in Table 3.3, and adopt the widely used activation function: ReLU [44].
We apply the non-negative and sparse constraints proposed by Chorowski et al. [21] to train
PLNN-NS. Since our goal is to comprehensively study the interpretation effectiveness of
OpenBox rather than achieving state-of-the-art classification performance, we use relatively
simple network structures for PLNN and PLNN-NS, which are still powerful enough to
achieve significantly better classification performance than Logistic Regression (LR). The
decision features of LR, LR-F, LR-NS and LR-NSF are used as baselines to compare with
the decision features of local linear classifiers.

The Python code of LIME is published by its authors1. The other methods and models
are implemented in Matlab. PLNN and PLNN-NS are trained using the DeepLearnTool-
Box [99]. All experiments are conducted on a PC with a Core-i7-3370 CPU (3.40 GHz),
16GB main memory, and a 5,400 rpm hard drive running Windows 7 OS.

We use the following data sets. Detailed information of the data sets is shown in Ta-
ble 3.4.

Synthetic (SYN) Data Set. As shown in Figure 3.2(a), this data set contains 20,000
instances uniformly sampled from a quadrangle in 2-dimensional Euclidean space. The red
and blue points are positive and negative instances, respectively.

FMNIST-1 and FMNIST-2 Data Sets. Each of these data sets contains two classes
of images in the Fashion MNIST dataset [122]. FMNIST-1 consists of the images of Ankle
Boot and Bag. FMNIST-2 consists of the images of Coat and Pullover. Figure 3.1 show some

1https://github.com/marcotcr/lime
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Data Sets
Training Data Testing Data

# Positive # Negative # Positive # Negative

SYN 6,961 13,039 N/A N/A

FMNIST-1 4,000 4,000 3,000 3,000

FMNIST-2 4,000 4,000 3,000 3,000

Table 3.4: Detailed description of data sets.

example images in FMNIST-1 and FMNIST-2. All images in FMNIST-1 and FMNIST-2
are 28-by-28 grayscale images. We represent an image by cascading the 784 pixel values into
a 784-dimensional feature vector. The Fashion MNIST data set is available online2.

3.4.1 What Do the Local Linear Classifiers Look Like?

We demonstrate our claim in Theorem 2 by visualizing the local linear classifiers of the
PLNN trained on SYN.

Figures 3.2(a)-(b) show the training instances of SYN and the prediction results of
piecewise linear neural network on the training instances, respectively. Since all instances
are used for training, the prediction accuracy is 99.9%.

In Figure 3.2(c), we plot all instances with the same configuration in the same colour.
Clearly, all instances with the same configuration are contained in the same convex polytope.
This demonstrates our claim in Theorem 2.

Figure 3.2(d) shows the local linear classifiers whose convex polytopes cover the deci-
sion boundary of piecewise linear neural network and contain both positive and negative
instances. As it is shown, the solid lines show the decision boundaries of the local linear
classifiers, which capture the difference between positive and negative instances, and form
the overall decision boundary of piecewise linear neural network. A convex polytope that
does not cover the boundary of piecewise linear neural network contains a single class of
instances. The local linear classifiers of these convex polytopes capture the common features
of the corresponding class of instances. As to be analyzed in the following subsections, the
set of local linear classifiers produce exactly the same prediction as piecewise linear neural
network, and also capture meaningful decision features that are easy to understand.

2https://github.com/zalandoresearch/fashion-mnist
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(a) Ankle Boot of FMNIST-1

(b) Bag of FMNIST-1

(c) Coat of FMNIST-2

(d) Pullover of FMNIST-2

Figure 3.1: Exempla images of FMNIST-1 and FMNIST-2.
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(a) training data of SYN
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(b) prediction results of PLNN
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(c) convex polytopes
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(d) local linear classifiers

Figure 3.2: The local linear classifiers of the PLNN trained on SYN.
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(a) FMNIST-1 (b) FMNIST-2

Figure 3.3: The predictions of LIME, OpenBox and PLNN. The predictions of all methods
are computed individually. We sort the results by PLNN’s predictions in descending order.

3.4.2 Are the Interpretations Exact and Consistent?

Exact and consistent interpretations are naturally favored by human minds. In this subsec-
tion, we systematically study the exactness and consistency of the interpretations of LIME
and OpenBox on FMNIST-1 and FMNIST-2. Since LIME is too slow to process all instances
in 24 hours, for each of FMNIST-1 and FMNIST-2, we uniformly sample 600 instances from
the testing set, and conduct the following experiments on the sampled instances.

We first analyze the exactness of interpretation by comparing the predictions com-
puted by the local interpretable model of LIME, the local linear classifiers of OpenBox and
piecewise linear neural network, respectively. The prediction of an instance is the probability
of classifying it as a positive instance.

In Figure 3.3, since LIME does not guarantee zero approximation error on the local
predictions of piecewise linear neural network, the predictions of LIME are not exactly
the same as piecewise linear neural network on FMNIST-1, and are dramatically different
from piecewise linear neural network on FMNIST-2. The difference of predictions is more
significant on FMNIST-2, because the images in FMNIST-2 are more difficult to distinguish,
which makes the decision boundary of piecewise linear neural network more complicated
and harder to approximate. We can also see that the predictions of LIME exceed [0, 1]. This
is because the output of the interpretable model of LIME is not a probability at all. As a
result, it is arguable that the interpretations computed by LIME may not truthfully describe
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(a) FMNIST-1 (b) FMNIST-2

Figure 3.4: The cosine similarity (CS) between the decision features of each instance and
its nearest neighbour. The results of LIME and OpenBox are separately sorted by cosine
similarity in descending order.

the exact behavior of piecewise linear neural network. In contrast, since the set of local linear
classifiers computed by OpenBox is mathematically equivalent to F (·) of piecewise linear
neural network, the predictions of OpenBox are exactly the same as piecewise linear neural
network on all instances. Therefore, the decision features of local linear classifiers exactly
describe the overall behavior of piecewise linear neural network.

Next, we study the interpretation consistency of LIME and OpenBox by analyzing
the similarity between the interpretations of similar instances.

In general, a consistent interpretation method should provide similar interpretations for
similar instances. For an instance x, denote by x′ the nearest neighbor of x by Euclidean
distance, by γ, γ′ ∈ Rd the decision features for the classification of x and x′, respectively.
We measure the consistency of interpretation by the cosine similarity between γ and γ′,
where a larger cosine similarity indicates a better interpretation consistency.

As shown in Figure 3.4, the cosine similarity of OpenBox is equal to 1 on about 50% of
the instances, because OpenBox consistently gives the same interpretation for all instances
in the same convex polytope. Since the nearest neighbours x and x′ may not belong to
the same convex polytope, the cosine similarity of OpenBox is not always equal to 1 on
all instances. In constrast, since LIME computes individual interpretation based on the
unique local perturbations of every single instance, the cosine similarity of LIME is signifi-
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Data Set FMNIST-1 FMNIST-2

Accuracy Train Test Train Test

LR 0.998 0.997 0.847 0.839

LR-F 0.998 0.997 0.847 0.839

PLNN 1.000 0.999 0.907 0.868

LR-NS 0.772 0.776 0.711 0.698

LR-NSF 0.989 0.989 0.782 0.791

PLNN-NS 1.000 0.999 0.894 0.867

Table 3.5: The training and testing accuracy of all models.

cantly lower than OpenBox on all instances. This demonstrates the superior interpretation
consistency of OpenBox.

In summary, the interpretations of OpenBox are exact, and are much more consistent
than the interpretations of LIME.

3.4.3 Decision Features of Local Linear Classifiers and the Effect of Non-
negative and Sparse Constraints

Besides exactness and consistency, a good interpretation should also have a strong seman-
tical meaning, such that the “thoughts” of an intelligent machine can be easily understood
by a human brain. In this subsection, we first show the meaning of the decision features of
local linear classifiers, then study the effect of the non-negative and sparse constraints in
improving the interpretability of the decision features. The decision features of piecewise
linear neural network and non-negative piecewise linear neural network are computed by
OpenBox. The decision features of LR, LR-F, LR-NS and LR-NSF are used as baselines.
Table 3.5 shows the accuracy of all models.

Figure 3.5 shows the decision features of all models on FMNIST-1. Interestingly, the
decision features of piecewise linear neural network (PLNN) are as easy to understand as
the decision features of LR and LR-F. All these features clearly highlight meaningful image
parts, such as the ankle and heel of Ankle Boot, and the upper left corner of Bag. A closer
look at the the average images suggests that these decision features describe the difference
between Ankle Boot and Bag.

The decision features of piecewise linear neural network capture more detailed difference
between Ankle Boot and Bag than the decision features of LR and LR-F. This is because the
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(a) Avg. Image (b) LR (c) LR-NS (d) PLNN (e) PLNN-NS
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Figure 3.5: The decision features of all models on FMNIST-1. (a)-(e) and (f)-(j) show the
average image and the decision features of all models for Ankle Boot and Bag, respectively.
For PLNN and PLNN-NS, we show the decision features of the local linear classifier whose
convex polytope contains the most instances.

local linear classifiers of piecewise linear neural network only capture the difference between
a subset of instances within a convex polytope, however, LR and LR-F capture the overall
difference between all instances of Ankle Boot and Bag. The accuracies of piecewise linear
neural network, LR and LR-F are comparable because the instances of Ankle Boot and Bag
are easy to distinguish. However, as to be shown in Figure 3.6, when the instances are hard
to distinguish, piecewise linear neural network captures much more detailed features than
LR and LR-F, and achieves a significantly better accuracy.

Figure 3.6 shows the decision features of all models on FMNIST-2. As it is shown, LR
and LR-F capture decision features with a strong semantical meaning, such as the collar
and breast of Coat, and the shoulder of Pullover. However, these features are too general to
accurately distinguish between Coat and Pullover. Therefore, LR and LR-F do not achieve a
high accuracy. Interestingly, the decision features of piecewise linear neural network capture
much more details than LR and LR-F, which leads to the superior accuracy of piecewise
linear neural network.

The superior accuracy of piecewise linear neural network comes at the cost of cluttered
decision features that may be hard to understand. Fortunately, applying non-negative and
sparse constraints on piecewise linear neural network effectively improves the interpretability
of the decision features without affecting the classification accuracy.
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Figure 3.6: The decision features of all models on FMNIST-2. (a)-(e) and (f)-(j) show the
average image and the decision features of all models for Coat and Pullover, respectively.
For PLNN and PLNN-NS, we show the decision features of the local linear classifier whose
convex polytope contains the most instances.

In Figures 3.5 and 3.6, the decision features of PLNN-NS highlight similar image parts
as LR-NS and LR-NSF, and are much easier to understand than the decision features of
PLNN. In particular, in Figure 3.6, the decision features of PLNN-NS clearly highlight the
collar and breast of Coat, and the shoulder of Pullover, which are much easier to understand
than the cluttered features of piecewise linear neural network. These results demonstrate
the effectiveness of non-negative and sparse constraints in selecting meaningful features.
Moreover, the decision features of PLNN-NS capture more details than LR-NS and LR-NSF,
thus PLNN-NS achieves a comparable accuracy with PLNN, and significantly outperforms
LR-NS and LR-NSF on FMNIST-2.

In summary, the decision features of local linear classifiers are easy to understand, and
the non-negative and sparse constraints are highly effective in improving the interpretability
of the decision features of local linear classifiers.

3.4.4 Are Polytope Boundary Features of Local Linear Classifiers Easy
to Understand?

The polytope boundary features (PBFs) of polytope boundaries (PBs) interpret
why an instance is contained in the convex polytope of a local linear classifier. In this
subsection, we study the semantical meaning of PBFs. Limited by space, we only use the
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CP z
(2)
6 z

(2)
11 z

(3)
2 z

(3)
4 #Ankle Boot #Bag Accuracy

1 / > 0 > 0 / 3,991 3,997 0.999

2 ≤ 0 > 0 / ≤ 0 9 0 1.000

3 / ≤ 0 / > 0 0 3 1.000

Table 3.6: The PBs of the top-3 convex polytopes (CP) containing the most instances in
FMNIST-1. “/” indicates a redundant linear inequality. Accuracy is the training accuracy
of LLC on each CP.

CP z
(2)
4 z

(2)
5 z

(2)
8 z

(3)
2 #Coat #Pullover Accuracy

1 > 0 > 0 > 0 > 0 3,932 3,942 0.894

2 > 0 ≤ 0 > 0 > 0 32 10 0.905

3 > 0 ≤ 0 ≤ 0 > 0 18 0 0.944

Table 3.7: The PBs of the top-3 convex polytopes (CP) containing the most instances in
FMNIST-2. Accuracy is the training accuracy of LLC on each CP.

PLNN-NS models trained on FMNIST-1 and FMINST-2 as the target model to interpret.
The local linear classifiers of PLNN-NS are computed by OpenBox.

Recall that a PB is defined by a linear inequality z(l)
i ∈ ψ(c(l)

i ), where the PBFs are the
coefficients of x in z(l)

i . Since the activation function is ReLU, z(l)
i ∈ ψ(c(l)

i ) is either z(l)
i > 0

or z(l)
i ≤ 0. Since the values of PBFs are non-negative for PLNN-NS, for a convex polytope

Ph, if z(l)
i > 0, then the images in Ph strongly correlate with the PBFs of z(l)

i ; if z(l)
i ≤ 0,

then the images in Ph are not strongly correlated with the PBFs of z(l)
i .

The above analysis of PBs and PBFs is demonstrated by the results in Tables 3.6 and 3.7,
and Figure 3.7. Take the first convex polytope in Table 3.6 as an example, the PBs are
z

(2)
11 > 0 and z

(3)
2 > 0, whose PBFs in Figures 3.7(b)-(c) show the features of Ankle Boot

and Bag, respectively. Therefore, the convex polytope contains images of both Ankle Boot
and Bag. A careful study of the other results suggests that the PBFs of the convex polytopes
are easy to understand and accurately describe the images in each convex polytope.

We can also see that the PBFs in Figure 3.7 look similar to the decision features of
PLNN-NS in Figures 3.5 and 3.6. This shows the strong correlation between the features
learned by different neurons of PLNN-NS, which is probably caused by the hierarchy network
structure. Due to the strong correlation between neurons, the number of configurations in
C is much less than kN , as shown in Table 3.3.
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Figure 3.7: (a)-(d) show the PBFs of the PLNN-NS on FMNIST-1. (e)-(h) show the PBFs
of the PLNN-NS on FMNIST-2.

Surprisingly, as shown in Table 3.7, the top-1 convex polytope on FMNIST-2 contains
more than 98% of the training instances. On these instances, the training accuracy of local
linear classifier is much higher than the training accuracies of LR-NS and LR-NSF. This
means that the training instances in the top-1 convex polytope are much easier to be linearly
separated than all training instances in FMNIST-2. From this perspective, the behavior of
PLNN-NS is like a “divide and conquer” strategy, which set aside a small proportion of
instances that hinder the classification accuracy such that the majority of the instances can
be better separated by a local linear classifier. As shown by the top-2 and top-3 convex
polytopes in Table 3.7, the set aside instances are grouped in their own convex polytopes,
where the corresponding local linear classifiers also achieve a very high accuracy. Table 3.6
shows similar phenomenon on FMNIST-1. However, since the instances in FMNIST-1 are
easy to be linearly separated, the training accuracy of PLNN-NS marginally outperforms
LR-NS and LR-NSF.

3.4.5 Can We Hack a Model Using OpenBox?

Knowing what an intelligent machine “thinks” provides us the privilege to “hack” it. Here,
to hack a target model is to significantly change its prediction on an instance x ∈ X by
modifying as few features of x as possible. In general, the biggest change of prediction is
achieved by modifying the most important decision features. A more precise interpretation of
the target model reveals the important decision features more accurately, thus allows one to
modify fewer features to achieve a bigger change of prediction. Following this idea, we apply
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LIME and OpenBox to hack PLNN-NS, and compare the quality of their interpretations
by comparing the change of PLNN-NS’s prediction when modifying the same number of
decision features.

For an instance x ∈ X , denote by γ ∈ Rd the decision features for the classification of x.
We hack PLNN-NS by setting the values of a few top-weighted decision features in x to zero,
such that the prediction of PLNN-NS on x changes significantly. The change of prediction
is evaluated by two measures as follows. First, the change of prediction probability
(CPP) is the absolute change of the probability of classifying x as a positive instance.
Second, the number of label-changed instance (NLCI) is the number of instances
whose predicted label changes after being hacked. Again, due to the inefficiency of LIME,
we use the sampled data sets in Section 3.4.2 for evaluation.

In Figure 3.8, the average CPP and NLCI of OpenBox are always higher than LIME
on both data sets. This demonstrates that the interpretations computed by OpenBox are
more effective than LIME when they are applied to hack the target model.

Interestingly, the advantage of OpenBox is more significant on FMNIST-1 than on
FMNIST-2. This is because, as shown in Figure 3.3(a), the prediction probabilities of most
instances in FMNIST-1 are either 1.0 or 0.0, which provides little gradient information for
LIME to accurately approximate the classification function of the PLNN-NS. In this case,
the decision features computed by LIME cannot describe the exact behavior of the target
model.

In summary, since OpenBox produces the exact and consistent interpretations for a
target model, it achieves an advanced hacking performance over LIME.

3.4.6 Can We Debug a Model Using OpenBox?

Intelligent machines are not perfect and predictions fail occasionally. When such failure
occurs, we can apply OpenBox to interpret why an instance is mis-classified.

Figure 3.9 shows some images that are mis-classified by PLNN-NS with a high probabil-
ity. In Figures 3.9(a)-(c), the original image is a Coat, however, since the scattered mosaic
pattern on the cloth hits more features of Pullover than Coat, the original image is classified
as a Pullover with a high probability. In Figures 3.9(d)-(f), the original image is a Pullover,
however, it is mis-classified as a Coat because the white collar and breast hit the typical
features of Coat, and the dark shoulder and sleeves miss the most significant features of
Pullover. Similarly, the Ankle Boot in Figure 3.9(g) highlights more features on the upper
left corner, thus it is mis-classified as a Bag. The Bag in Figure 3.9(j) is mis-classified as
an Ankle Boot because it hits the features of ankle and heel of Ankle Boot, however, misses
the typical features of Bag on the upper left corner.
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(a) FMNIST-1 (b) FMNIST-2

(c) FMNIST-1 (d) FMNIST-2

Figure 3.8: The hacking performance of LIME and OpenBox. (a)-(b) show the average
(Avg.) CPP. (c)-(d) show the NLCI.
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(a) CO (b) CO: 0.04 (c) PU: 0.96

(d) PU (e) CO: 1.00 (f) PU: 0.00

(g) AB (h) AB: 0.16 (i) BG: 0.84

(j) BG (k) AB: 1.00 (l) BG: 0.00

Figure 3.9: The mis-classified images of (a) Coat (CO), (d) Pullover (PU), (g) Ankle Boot
(AB), and (j) Bag (BG). (a), (d), (g) and (j) show the original images. For the rest of
the subfigures, the caption shows the prediction probability of the corresponding class; the
image shows the decision features supporting the prediction of the corresponding class.
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In conclusion, as demonstrated by Figure 3.9, OpenBox accurately interprets the mis-
classifications, which is potentially useful in debugging abnormal behaviors of the inter-
preted model.

3.5 Summary

In this chapter, we tackle the challenging problem of interpreting piecewise linear neural
networks. By studying the states of hidden neurons and the configuration of a piecewise
linear neural network, we prove that a piecewise linear neural network is mathematically
equivalent to a set of local linear classifiers, which can be efficiently computed by the pro-
posed OpenBox method. Extensive experiments show that the decision features and the
polytope boundary features of local linear classifiers provide exact and consistent interpre-
tations on the overall behavior of a piecewise linear neural network. Such interpretations
are highly effective in hacking and debugging piecewise linear neural network models.

There are some possible future directions to follow up on this project. First, the appli-
cation of the OpenBox framework can be extended. As we discussed in this chapter, this
framework can efficiently provide a trustworthy interpretation of piecewise linear neural
networks. However, can we extend this interpretation framework to interpret more gen-
eral neural networks that adopt smooth curve activation functions, such as Sigmoid and
Tanh? Second, we should consider the user experiences when giving interpretations. When
designing to provide interpretations, the target users of the interpretation and their easy-
to-understand evaluation of these interpretations are important factors. In this case, taking
into consideration user experiences to evaluate the quality of interpretation approaches is
necessary. The first question is solved in Section 5, where we propose a piecewise linear
approximation to neural networks with smooth curve activation functions, then use Open-
Box to give interpretations. We plan to investigate the second question in future works, to
propose some possible solutions to bring user experiences into model interpretations.
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Chapter 4

Interpreting Deep Neural
Networks via Oblique Model Tree

In this chapter, we investigate the deep learning model interpretation problem. Recently,
with rapid development and wide application of deep learning, the significance of the inter-
pretability of deep learning models, especially in practical applications, attracts more and
more concerns. We propose a model-agnostic interpretation approach, namely the oblique
model tree (OMT), to provide interpretations to predictions made by deep learning models.
The oblique model tree is a tree structure that provides interpretations to a deep neural
network by mimicking from the deep neural network. We devise an algorithm to efficiently
build the oblique model tree. Our experiments on one text dataset and two image datasets
demonstrate the effectiveness of the oblique model tree. That is, the oblique model tree is
able to closely mimic the original deep model and provide easy-understandable interpreta-
tions to the deep model.

4.1 Introduction

During recent years, deep neural networks (e.g., DNN, CNN) have been widely used and
achieve great success in many areas, including image classification [71], recommendation
system [24], speech recognition [48] and game events such as Go game [112]. At the same
time, the lack of interpretability is realized to be a big challenge of deep neural networks,
which limit the usage of deep neural networks in some practical applications.

Interpretability of deep neural networks is not only important but necessary, especially
for some practical applications. One typical example is the usage of deep neural networks
in healthcare. Suppose a deep neural network is used to provide diagnosis predictions, an
interpretation of why and how a diagnosis is given should be provided to patients, together
with a diagnosis prediction made by the model. Such an interpretation is necessary to let
clinical staff adopt the prediction, and also let the patient trust it [19]. Another example
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is self-driving. A piece of news in May 2018 tells that an Uber self-driving car killed a
pedestrian. 1 This shocking news brings a discussion on the safety and trustworthiness of
deep learning. To ensure the safety of a deep learning model and make a deep learning model
trustworthy, interpretations of the deep learning model (i.e., interpretations of predictions
and internal mechanisms) is necessary. Further, when accidents happen, such interpretations
can help us find out how it happens and how to improve the model.

A series of works investigate the interpretability of deep neural networks from multiple
perspectives [18, 31, 86, 111]. One line of works proposes to interpret deep neural net-
works that are already well-trained. These approaches are called post-hoc interpretation
approaches [80].

There are two typical types of post-hoc interpretation approaches. The first typical type
of post-hoc interpretation approaches is called global interpretation, which proposes to ana-
lyze and explain the whole logic of a deep neural network model. Analyzing the whole logic
is to analyze the behaviors of the model, the functions represented by the model, and the
effectiveness of hidden layers and neurons. Global interpretation can be given by visualizing
layers and units of the deep model to provide meaningful labels ranging from colors, mate-
rials, textures, and scenes to the individual units [128]. Interpreting layers and units helps
to understand the structure and behaviors of a deep model. The second typical post-hoc
interpretation approach is called local interpretation, which provides interpretations to the
prediction results given by a deep neural network on an arbitrary input sample. That is to
provide explanations to how and why a prediction occurred (i.e., make a diagnosis). Local
interpretation can be given by learning a sparse linear model in a local region near a par-
ticular instance [107], or by analyzing the gradient of class scores with respect to features
of a particular instance [114].

These approaches focus on different views of interpretations. In this case, a major chal-
lenge is: how can we achieve local interpretation and global understanding at the same time?
Local interpretation explains the prediction made by the deep model on a given input in-
stance. Meanwhile, global understanding is expected to help explain the global mechanism
of the whole deep model.

Mimic learning provides a solution. Mimic learning is also known as knowledge distil-
lation [5]. Interpreting by mimic learning is to mimic a complicated deep model using an
interpretable simple model such as decision tree [126] and gradient boosting tree[19]. One
major challenge of these approaches is when the deep model is very complicated, the mim-

1https://www.economist.com/the-economist-explains/2018/05/29/why-ubers-self-driving-car-killed-a-
pedestrian
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icked model itself grows to be very complex and may be difficult to interpret. This motivates
us to explore the possibility of proposing a new model structure to explore interpretation
via mimic learning. Such a model structure is expected to achieve similar performance as
the deep model and at the same time easy to interpret.

Motivated by this, we propose an oblique model tree structure, which offers interpreta-
tions to a given deep model by mimicking the deep models. The oblique model tree consists
of an oblique decision tree with logistic regression classifier at leaf nodes. The oblique model
tree is a simpler model with lower complexity than deep neural networks, and in general,
has good interpretability along with strong learning capacity. We devise a tree building
algorithm for oblique model trees, which is designed to take into consideration both the
tree splitting process and the logistic regression classifiers of leaf nodes. We conduct exten-
sive experiments on several deep learning architectures including deep feedforward neural
network(DNN) and convolutional neural network(CNN) for binary classification tasks on
both text and image datasets. The experimental results demonstrate that our oblique model
tree architecture has a strong learning capacity of the deep model, and maintains the com-
petitive prediction performance. Meanwhile, we prove that the interpretations given by an
oblique model tree to the original deep model are clear and easy-understandable by sufficient
qualitative and quantitative analysis.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the frame-
work of interpreting by mimic learning. In Section 4.3, we introduce the oblique model tree
structure and devise an algorithm for building an oblique model tree. In Section 4.4, we
report the experimental results. Finally, in Section 4.5 we present the conclusion of the
work.

4.2 Interpretation by Mimic Learning

Deep neural networks are regarded as unexplainable black boxes due to their complicated
nonlinear transformations through hierarchical structures. As deep neural networks are
widely used in many applications, the interpretation problem of deep neural networks at-
tracts more and more attention. The approach of treating the network as a ‘black box’ and
providing interpretations to predictions made by this ‘black box’ model is called model-
agnostic interpretation [17, 107]. One typical model-agnostic interpretation approach is to
mimic a simple, interpretable model from the black-box network.

4.2.1 Mimic Learning

Mimic learning is also known as teacher-student model [19], knowledge distillation [60].
The main idea is, given a large, complex and high-accurate model, to transfer knowledge
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Figure 4.1: Pipeline of mimic learning.

from this model to a smaller, faster, yet still accurate model. The large model is the teacher
model which is used to train the small student model. The method of mimicking the teacher
model is to utilize the soft labels of the teacher model as target labels to train a student
mimic model. The soft label is the prediction results given by the teacher model, such as
the prediction probability value in classification tasks.

Figure 4.2 shows the training and prediction pipelines of the mimic learning framework.
In particular, in the training pipeline, first, a deep model (e.g., DNN, CNN) is well trained
based on training data and the corresponding class labels. For each input sample, the well-
trained deep model generates a prediction result, that is, the soft label of the input sample.
By feeding the input samples and corresponding soft labels, the student mimic model is
trained to minimize the gap between the output of the student mimic model and that of
the teacher deep model.

There are two reasons why the mimic learning approach works well on deep neural
networks. First, deep neural networks are always over-parameterized [60]. In this case, the
practical model complexity of a trained network might be much lower than the expressive
power of the model. This provides room for compressing the network or distilling knowledge
into a smaller neural network. Second, the teacher model can eliminate some potential noise
and error in the training data, and its soft labels are usually more informative than the
original labels, thus can make the learning of the student model easy [19].

4.2.2 Interpreting by Mimic Learning

The main idea of interpreting by mimic learning is to learn a simple, interpretable mimic
model from the target model [5, 19, 40, 57, 121, 126]. The target model is the deep neural
network we explore to interpret. The mimic model approximates the predictions made by
the target network. When the prediction given by the mimic model is similar to that of the
target network, the mimic model is the functional equivalent to the target model [107], and
is able to explain the prediction behaviors of the target model.
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Figure 4.2: Training and prediction pipeline of mimic learning.

Definition 4. Given a deep model N : Rd → Rc, the goal of interpreting by mimic learn-
ing task is to learn a mimic model G such that ∀x ∈ Rd: G(x) ≈ N (x). G is obtained
by minimizing the expectation of the specified objective function L(N (x), G(x)) over all x
values:

arg min
G
L(N (x), G(x))

where L(N (x), G(x)) is devised to measure the approximation error.

In order to generate interpretations of the target model, the mimic model G is expected
to be with a simple and interpretable model structure and competitive prediction perfor-
mance. The tree structure is a typical machine learning model structure which is usually
with good interpretability. Therefore, we propose a tree structure to mimic the given target
model, named the oblique model tree.

4.3 Interpretable Oblique Model Tree

In this section, we propose our solution to interpret a given black-box deep model by mim-
icking an oblique model tree from the deep model. Our introduction includes three parts.
First, we introduce our proposed oblique model tree structure. Then we propose the mimic
learning algorithm for learning an oblique model tree from the given deep model. Finally,
we discuss the interpretations given by the mimicked oblique model tree.
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Figure 4.3: An example of the oblique model tree

4.3.1 Oblique Model Tree

The oblique model tree (OMT for short) is an extraordinary binary decision tree structure.
Each internal node contains an oblique split which is a linear combination of input fea-
tures. Each leaf node corresponds to a classification model that is constructed using logistic
regression.

Formally, given a classification task, let X denote the set of input instances, let x =
{x1, x2, . . . , xd} denote an arbitrary input instance in X that consists of d features , d
denotes the dimension of features. Instances in X are classified into c class labels. Let y
denote the class label of x, we have y ∈ {1, 2, . . . , c}. An oblique model tree built on X

consists of a set of non-leaf nodes P and a set of leaf nodes T .
For an arbitrary non-leaf node p ∈ P , there is an oblique split on p, denoted by hp. The

oblique split hp is a linear combination of the d-dimensional features, written as

hp(x) = a0 +
d∑
i=1

aixi (4.1)
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where a = {a0, a1, a2, . . . , ad} denotes the coefficients of hp. The division of child nodes
is based on the calculation of hp(x) comparing with zero. Specifically, an input instance
belonging to left child should satisfy hp(x) ≤ 0, an input instance belonging to right child
node should satisfy hp(x) > 0.

For a leaf node t ∈ T , a corresponding logistic regression classifier ft(x) is constructured
to make predictions. The logistic regression classifier ft(x) is written as

ft(x) = arg max
i
{Pr(y = i|x)} (4.2)

Pr(y = i|x) = e`i(x)∑c
k=1 e

`k(x) (4.3)

`(x) =


w(1)

w(2)

...
w(c)

 ·
 1
x

 (4.4)

where w(i) = {w(i)
0 , w

(i)
1 , . . . , w

(i)
d } denotes the weight vector corresponding to i-th label,

`i(x) is the i-th item in `(x), Pr(y = i|x) denotes the probability of x being predicted to
label i. ft(x) finally prints out the label with maximum predicted probability.

Let us consider the effectiveness of an oblique model tree in the input space. Let S
represent the whole input space. S is divided by the oblique model tree into a set of disjoint
partitions, where each internal node p ∈ P of the tree corresponds to a space splitting
hyperplane and each leaf node t ∈ T represents a subregion St. That is,

S =
⋃
t∈T

St, St ∩ St′ = ∅ for t 6= t′ (4.5)

In this case, the mimic model G which is an oblique model tree can be written as

G =
∑
t∈T

ctft(x) (4.6)

where ct = 1 if x ∈ St, otherwise we have ct = 0.
Figure 4.3 shows an example of the oblique model tree. Starting from the root node, the

oblique splitting hyperplane h1 at root node divides the input space into two half subspaces.
Then another two oblique splitting hyperplanes h2, h3 act on two half subspaces separately
to do further splitting. h4 acts on a half subspace of h3. Finally, the whole input space is
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(a) LMT (b) ODT (c) OMT

Figure 4.4: An example to illustrate how the proposed algorithm works. (a) the axis-parallel
splits and leaf LR model learnt by logistic model tree, (b) the oblique splits learnt by oblique
model tree, using the OC1 algorithm[87, 93], (c) the oblique splits and leaf LR model learnt
by our method.

divided by this oblique model tree into five small subregions, denoted by S1, S2 . . . S5. Each
subregion corresponds to a leaf node of the tree. The logistic regression classifier at each
leaf node does approximation to the behavior of the deep model in the corresponding local
region.

An oblique model tree represents a piecewise linear approximation to the given deep
model. It divides the input space into a number of disjoint regions by oblique hyperplanes
p ∈ P . These oblique hyperplanes make the oblique model tree more flexible than logistic
model tree structures [73]. That is, intuitively the number of disjoint regions divided by
an oblique model tree is always smaller than regions generated by a logistic model tree, on
the same task. In addition, an oblique model tree generates a logistic regression classifier
ft within each linear region St ∈ S, and can deal with more complicated regions than the
traditional oblique decision tree. In this case, when dealing with the same prediction task,
the number of regions divided by an oblique model tree is intuitively smaller than that of
the oblique decision tree. Figure 4.4 gives an example to illustrate the advantages of the
oblique model tree over the oblique decision tree and the logistic model tree.

To classify a given input x, we start from the root node of the tree and search for a
path from the root node to a specific leaf node. This leaf node points out the subregion to
which x belongs. To find this path, at each internal node p, we compare x with the current
splitting hyperplane hp(x), then descend to the left child if hp(x) ≤ 0, otherwise to the right
child. After reaching a certain leaf node, the prediction is given by the logistic regression
model.
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4.3.2 Building Oblique Model Tree

We devise an algorithm to build an oblique model tree recursively starting from the root
node.

Each internal node of an oblique model tree represents a splitting hyperplane that divides
the corresponding input space region into two halves. Two child nodes correspond to two
disjoint subregions divided by the splitting hyperplane. If two child nodes are leaf nodes,
an individual logistic regression classifier is built to predict instances within each subregion.
In order to divide the tree nodes and stop dividing when appropriate, we temporally treat
two child nodes as leaf nodes when dividing a node. In this case, two problems need to
be solved during the node division, that is, determining the space splitting hyperplane and
determining the logistic regression classifier on each child node.

To divide a tree node, we start by initializing a splitting hyperplane randomly. After
that, the idea of Lloyd’s algorithm [82] is adopted to update the splitting hyperplane and
build the child nodes’ logistic regression classifiers. Specifically, the following two steps are
executed iteratively:

1) Divide the input space according to the current splitting hyperplane hp(x), then op-
timize the logistic regression model on each child node.

2) Update the splitting hyperplane based on the logistic regression models on child nodes
computed in Step 1.

The objective function L(N , G) is designed to reflect the approximation degree of G to
N . The approximation degree on a tree node p is written as

Lp(N , G) = − 1
|Xp|

∑
x∈Xp

c∑
i=1

ŷi log p(y = i|x) (4.7)

where Xp denotes the set of input instances at node p, p(y = i|x) denotes the probability
of x being predicted by the oblique model tree to label i, G denotes the oblique model tree
whose root node is p. We formulate the prediction probability p(y = i|x) as a combination
of space spliting and the prediction capability of the child nodes. Specifically, p(y = j|x)
represents the combined probability of x belonging to label j, and is calculated by combining
the probability of x being divided to each child node multiply the prediction probability
given by the logistic regression model on corresponding child node, written as

p(y = i|x) = p(x ∈ Xl)Pr(y = i|x,Xl) + p(x ∈ Xr)Pr(y = i|x,Xr) (4.8)
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where Pr(y = i|x,Xl), P r(y = i|x,Xr) are computed by the logistic regression classifier on
left, right child node, respectively (Equation 4.3), Xl, Xr are smaller sets of instances at
two child nodes of p, divided by hp(x) and satisfy Xp = Xl ∪Xr.

The sigmoid function is applied on hp(x) to calculate the probability of x belonging to
each child node, written as

p(x ∈ Xr) = sigmoid(hp(x)),

p(x ∈ Xl) = 1− p(x ∈ Xr)
(4.9)

Both the splitting hyperplane and the logistic regression models of child nodes are
optimized using the gradient descent approach. An overview of OMT building algorithm is
shown in Algorithm 2.

Our designed algorithm constructs the oblique model tree in order from simple to com-
plex model. The size of the oblique model tree relies on the complexity of the original deep
model and the complexity of the training dataset. For simple datasets that can even be clas-
sified by logistic regressions to achieve good prediction performance, our algorithm would
prefer to stop the growth of the oblique model tree at the root node, thus it is simplified to a
standard logistic regression model. For large and complex datasets, a well-designed oblique
model tree with a larger tree size will be constructed.

The time complexity of building an oblique model tree with tree depth h is approximate
O(chnd2), where n is the number of samples in the input dataset assigned to this node,
and d is the number of attributes. As analyzed in [73], the runtime of a simple logistic
regression is O(nd2). If the maximum number of the outer iteration(Algorithm 2, line 6) is
taken as a constant c, the time complexity of constructing a node is O(cnd2).

Stop condition. The algorithm is recursively run from the root node of an oblique model
tree until at least one of the following termination conditions is satisfied:

(1) the number of samples assigned to the node is less than a threshold. This condition
is because the logistic regression models at leaf nodes need enough samples for model
fitting;

(2) the prediction accuracy of the current node is higher than a threshold, which is our
expected approximating capability;

(3) the node splitting is seriously unbalanced. That is, a child node has much more samples
than the other one. Stop splitting such a node can avoid the occurrence of overfitting;
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Algorithm 2 BuildingOMT
Require: The current input set X, a deep model N
Ensure: A oblique model tree T

{Initialization}
a← parameter vector of oblique split
wl ← weight vector of left child’s logistic model
wr ← weight vector of right child’s logistic model
w ← {wl, wr}
ε← convergence threshold of L
repeat
Xl ← {xi|h(xi) ≤ 0, xi ∈ X}
Xr ← X −Xl

Lprev ← L
{Optimize logistic model on each child node using gradient descent}
repeat

current L ← cost(X,N(X), a, w)
w ← w − λw∇L

until L convergence
{Optimize oblique split using gradient descent}
repeat

current L ← cost(X,N(X), a, w)
a← a− λa∇L

until L convergence
until |L − Lprev| < ε

if termination conditions are not satisfied then
Tl ← BuildOMT (Xl, N)
Tr ← BuildOMT (Xr, N)
Attach Tl, Tr to the corresponding branch of T

end if
return T
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(4) the node splitting causes a reduction of energy compared to the classification model
of the node itself. This demonstrates that the node splitting has no positive increase
in prediction performance.

Our experimental results show that these stop criteria work well in building an oblique
model tree.

Data augementation. We adopt data augmentation in building oblique model trees.
During the tree constructing process, the input space is iteratively divided into smaller
regions. In some small divided regions, the number of corresponding instances becomes
very small. This may lead to overfitting in the corresponding regions and destroy the gen-
eralization capability. We use a standard data augmentation technique, namely Gaussian
noise [2], to enlarge the data set in such regions. New instances are generated by adding
random Gaussian noises to the original instances. Then the generated Gaussian noise in-
stances are given to the oblique model tree, to filter out these located in the current region.
Data Augmentation is applied to regions where the number of instances in the region lower
than a fixed threshold.

4.3.3 Interpreting by Oblique Model Tree

The oblique model tree offers interpretations to predictions made by the target deep model.
First, a path from the root node to a certain leaf node tells which leaf node, or which local
region the input sample belongs to. Then, the logistic regression classifier on the leaf node
can map the prediction result back to the feature attributions and measure the importance
of feature attributions on the prediction.

The good interpretability of oblique model trees benefits from the tree structure and the
local logistic regression model on each leaf node. Tree structures have good interpretability
because of their clear edge-node natural structure and rule-extraction capability, in this
case, the tracking of a given sample flow to a specific small region of a specific leaf is clear
and distinct. The logistic regression model at the leaf node offers an intuitive interpretation
to the given instance by explaining the feature importance in a prediction through the value
of the weight vector.

4.4 Experimental Results

In this section, we present experiments to evaluate our algorithm. We organize this section
by answering to following three questions:
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Dataset # Training # Testing # Features

Spambase 3,500 1,100 50

Bi-MNIST 8,000 5,000 784

Bi-FMNIST 8,000 6,000 784

Table 4.1: Statistics of data sets

• How is the performance of the oblique model tree as a classifier, comparing with deep
models and other classification methods? (Section 4.4.2)

• How is the mimicability of OMT? (Section 4.4.3)

• How does OMT provide interpretation to deep models? (Section 4.4.4, 4.4.5)

These questions will be answered in the following sections, respectively.

4.4.1 Experiment Setup

In order to better present and visualize the result, our experiments are all on binary clas-
sification problems. It is easy to generalize our approach to multidimensional classification
problems. We use three datasets, including one text dataset and two image datasets:

Spambase: This is a spam email text set from UCI [28]. Each instance represents an
email with the label ’spam’ or ’non-spam’. Each instance is represented by 57 features, such
as word frequencies, statistics of character sequences. We apply simple data cleaning to
remove meaningless stop words and remain 50 useful features.

Bi-MNIST: This is a subset of the hand-writing MNIST dataset [76]. The MNIST con-
tains 10 class labels, each of which is an image group of the hand-writing number from ’0’ to
’9’. Bi-MNIST consists of the hand-writing ’5’ and ’6’. Each instance is a 28 by 28 grayscale
image.

Bi-FMNIST: This is a subset of the Fashion-MNIST dataset [122]. The Fashion-MNIST
is a set of Zalando’s article images and contains 10 class labels, with each instance a 28 by 28
grayscale image. We choose data within class ’Pullover’ and ’Coat’ to form the Bi-FMNIST
dataset.

Table 4.1 shows the statistics of datasets we used. We train deep models on these datasets
by optimizing the classification performance. We train a two-hidden-layer DNN for Spam-
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Methods Spambase Bi-MNIST Bi-FMNIST

DT 0.916± 0.016 0.966± 0.005 0.814± 0.010

LR 0.925± 0.016 0.980± 0.004 0.860± 0.009

SVM 0.915± 0.016 0.987± 0.003 0.864± 0.009

AdaBoost 0.919± 0.016 0.982± 0.004 0.838± 0.008

OMT 0.927± 0.015 0.988± 0.003 0.879± 0.008

NN 0.933± 0.015 0.994± 0.002 0.905± 0.007

Table 4.2: The prediction accuracies of OMT, neural network, and baseline models on the
test datasets.

base dataset, with the structure of [784, 100, 18, 2]. We train CNN models with the structure
of LeNet-5 [75] for both Bi-MNIST and Bi-FMNIST.

All experiments were run on a PC with Windows 7 system, 16 GB memory, and a 3.40
GHz Intel Core i7-3770 CPU processor. All codes and methods are implemented in Matlab.
The DNN model is implemented using the Matlab DeepLearnToolbox 2, two CNN models
are implemented using the MatConvNet toolbox [119].

4.4.2 Prediction Performance

To demonstrate that the oblique model tree achieves comparative classification performance
with the teacher deep model, we design an experiment to examine the prediction accuracy of
oblique model trees. In this experiment, we consider an oblique model tree as an individual
classification model. We compare the oblique model tree with several baseline methods,
which are typical machine learning classification models, including Logistic Regression (LR),
Decision Tree (DT), Support Vector Machine (SVM), and AdaBoost [37]. The SVM uses
the radial basis function as the kernel. Baseline models are trained using the ground-truth
labels. All models and parameters are trained to their best.

Table 4.2 shows the prediction performance of all these methods. The accuracy is the
average of 10-fold cross-validation random trials. The results demonstrate that, deep models
(DNN for Spambase, CNNs for both Bi-MNIST and Bi-FMNIST) always achieve the best
accuracy on all datasets. Meanwhile, OMTs maintain strong prediction accuracy, which
is very close to the deep neural networks, better than the other four baseline methods.

2https://www.mathworks.com/matlabcentral/fileexchange/38310-deep-learning-toolbox
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Dataset d(ynn, f) ρ(ynn, f)

Spambase 0.019 0.911

Bi-MNIST 0.007 0.990

Bi-FMNIST 0.059 0.931

Table 4.3: Compare distance and correlation between the prediction probability given by
OMT and that given by deep model on testing datasets.

This indicates that an OMT can be used as an individual classifier to achieve competitive
prediction performance.

4.4.3 Mimicability

To investigate the mimicability of an oblique model tree to the deep model, we design
experiments to examine how close the prediction probabilities given by an OMT to the
prediction probabilities given by the target deep model. These experiments verify whether
the OMT behaves similarly to the deep model. The prediction results of both the deep
model and OMT are probabilities of belonging to a specific class, which is within [0, 1]. We
propose Manhattan distance and correlation coefficient as representations of the similarity.
The Manhattan distance d is in the form of

d(ynn, f) =
∑
|ynn − f(x)|. (4.10)

The correlation coefficient ρ is with the form of

ρ(ynn, f) = Cov(ynn, f(x))
σynnσf

. (4.11)

Table 4.3 shows the average Manhattan distance and correlation coefficient. These results
were calculated on testing datasets of Spambase, Bi-MNIST, and Bi-FMNIST. The results
show that, the average Manhattan distances on Spambase and Bi-MNIST are very small,
with the value 1% ∼ 2%. The average distance on Bi-FMNIST is about 5% ∼ 6%, a little
higher but still very small. In addition, on all these three datasets, the very high correlation
coefficients (≥ 91%) demonstrate the really tight positive correlation between these two
methods.
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Figure 4.5: This figure shows the distance distribution between OMTs and the teacher deep
models, on three testing datasets. Here x-axis represents the distance, y-axis is the number
of instances corresponding to the current distance.

The histograms in Figure 4.5 show the distributions of Manhattan distance among
instances. From this figure, we observe that for the Bi-MNIST dataset, more than 90%
instances are within a shorter than 0.01 distance. For the Spambase dataset, this percentage
is 80%. For the Bi-FMNIST dataset, more than 70% instances are within a shorter than
0.05 distance. The extremely unbalanced distribution shows, in most cases, the prediction
results obtained by the OMT are very similar to the deep model. These results consist of
the main idea of OMT, that is, learn a piecewise linear approximation of the black box
deep model. Instances with large distances are likely located at regions with highly-curved
neural network decision boundaries.
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4.4.4 Examining learned features

To demonstrate that the learned oblique model tree is able to provide good interpretations
to the neural network model, we analyze the interpretations given by the oblique model
tree. We design two experiments to prove that the oblique model tree is able to extract
decision features for the deep model’s prediction.

The first experiment is to add perturbations to decision features selected by
the OMT, then examine the influences of such perturbations on prediction results. More
precisely, given a certain instance x, at first, by using the OMT the top k most important
decision features of x are selected. Then, small perturbations are added to these k features
to generate x′. Finally, x′ is set into the original neural network model to make a prediction.
In our experiment, the perturbations are added by setting the values of these features to be
zero, which is to directly "blind" these features. Intuitively, the larger the influence on the
prediction results of the deep neural network, the more important the selected features.

In this experiment, we use LIME, a local interpretation method proposed by Ribeiro et
al. [107] as the baseline. Experiments are designed on test datasets of Spambase, Bi-MNIST,
and Bi-FMNIST, and results are shown in Figure 4.6. In Figure 4.6, we count the number
of instances going opposite prediction label after adding perturbations. The blue line corre-
sponds to hack top important features selected by LIME while the red line corresponds to
hack important features selected by OMT. Besides, Figure 4.7 shows the influence on the
deep model’s prediction accuracy after adding perturbations. From these figures, we can see
that in all three datasets, the selected features of OMT have a greater impact than LIME,
which indicates that OMT has learned better features from the deep model.

The second experiment is to investigate whether OMT can learn decision bound-
aries of neural networks well. Given the input instance x, r(x) is the vector with minimal
||r||2 such that x+ r(x) locates at the decision boundaries of the deep model. That is, r(x)
is expected to be orthogonal to the decision boundaries of the deep model at x+ r(x) and
||r(x)||2 represent the minimal distance of x to the decision boundaries of the deep model.
We follow the idea of Fawzi et al. [35] and Szegedy et al. [118] to approximate the value of
r(x) by finding the smallest perturbations required to misclassify x. This idea is known as
the adversarial perturbation [101]. In this case, r(x) is approximated by optimizing

arg min ‖r‖2 s.t. ŷ(x+ r) 6= ŷ(x). (4.12)

The algorithms from [35, 118] are used to approximate r(x).
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Figure 4.6: This figure shows the number of instances been flipped by adding perturbation.
Here x-axis represents k, the number of features been perturbed, y-axis shows the number
of instances being predicted to opposite labels.

The logistic regression model in each leaf node of an OMT provide an approximation
of the deep model’s decision boundaries within the corresponding small region. Specifically,
(w(i) − w(j))x+ (w(i)

0 − w
(j)
0 ) = 0 (Eq. 4.4) represents the decision boundary between class

label i and j within the small region. Here (w(i)−w(j)) provide the direction perpendicular
to this mimicked decision boundary. In particular, in our experiments there are only 2 class
labels, thus we use w to represent (w(1) − w(0)).We define romt(x) as the vector with the
minimal distance of x to the decision boundary of the OMT, and have

romt(x) = a ∗ w

‖w‖2
(4.13)
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Figure 4.7: This figure shows the changes in the deep model’s prediction accuracy after
perturbation. Here x-axis is k, the number of features been perturbed, and y-axis represents
the accuracy after perturbing.

where a is computable.
We compare ||r(x)||2, the minimal distance of x to the decision boundaries of the deep

model, with ||romt(x)||2, the minimal distance of x to the decision boundaries of the learned
OMT. Figure 4.8 shows the distribution of the minimal distances to the decision boundaries.
This experiment is implemented on 500 input instances which are randomly selected from
testing datasets. The results show that, on all three datasets, the statistical distributions
of ‖romt(x)‖2 is very close to the distributions of ‖r(x)‖2, which indicates that the decision
boundaries of the learned OMT lie very close to the decision boundaries of the original
neural network.
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Figure 4.8: This figure shows distributions of the minimal distances to the decision bound-
aries. The legend label APPROX represents ||r(x)||2 and OMT represents ‖romt(x)‖2.

4.4.5 Feature explanation

Interpretations of deep neural networks are expected to help humans understand how the
model works. The oblique model tree interprets the original neural network model by telling
which are the decision features for a specific prediction result. In this experiment, we inves-
tigate how these decision features selected by OMT meet with human understanding. We
provide both the global view and instance view explanations.

Global view proposes to understand the entire model and provides reasons for most
predictions. A well approximated OMT can be used to understand the original deep model,
specifically, the decision boundaries in the input space, the main rule extractions for mak-
ing predictions. In Figure 4.9 and 4.10, we visualize the global view of the learned OMT
structure, where images upon each node represent the average image corresponding to each
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(a) Bi-MNIST

(b) Bi-FMNIST

Figure 4.9: Examples of OMT splitting input space on Bi-MNIST and Bi-FMNIST datasets.
In (a)(b), two figures on each node represent the average images of instances with each label.
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Figure 4.10: Examples of OMT splitting input space on Spambase dataset. We group fea-
tures of Spambase into visible spectrum where the brighter the position is, the greater the
word frequency.

label, flowing through this node. Compare the images of a node and images of the child
nodes shows how the dataset is divided into two parts and flow to both child nodes. For
instance, in Figure 4.9(a) the average shape of handwriting ’5’ and ’6’ of the current node
are shown on each node. The results show that, the node splittings mostly depend on the
shapes of images. When the tree grows from root to deeper layers, the average images are
with clearer characteristics and shapes.

Figure 4.11 shows examples of regional classification provided by the logistic regression
models on leaf nodes. In figure 4.11 (a) and (b) the four figures from left to right are the
average images of the first label (i.e. handwriting ’5’, class ’pullover’), its decision features
provided by OMT, the average image of the other class label (i.e. handwriting ’6’, class
’coat’), and the decision features provided by OMT for recognizing this class. Figure 4.11(c)
shows decision features given by OMT for predicting spam and non-spam email in a certain
leaf region. We can see from these figures that OMTs extracted decision features locates
at most recognizable positions, which is with our expectation, such as in figure 4.11(b) for
recognizing ’pullover’, the wide shoulder and zipper3 are extracted, for recognizing ’coat’
the tall collar is extracted.

3Pullover has no zipper, so the zipper position is with deeper color than the coat.
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(a) Bi-MNIST

(b) Bi-FMNIST

(c) Spambase

Figure 4.11: In this figure, (a)(b) show the average images and OMT’s decision features of
typical local regions of Bi-MNIST and Bi-FMNIST, (c) shows the most frequency words
and OMT’s selected decision words in a local region of Spambase.

(a) Bi-MNIST ‘5’ (b) Bi-MNIST ‘6’

(c) Bi-FMNIST ‘Pullover’ (d) Bi-FMNIST ‘Coat’

Figure 4.12: Individual instance analysis. In each subfigure, the first image is the original
instance image, the second and third images represent the decision features of image being
classified to each label.

68



Instance view provide interpretations to specific predictions. Given an arbitrary in-
put instance x, the OMT is able to provide interpretations to the prediction result of x.
Figure 4.12 visualizes the interpretations, which are feature importance. The instances are
arbitrarily selected from each class label. The three images in each subfigure from left to
right are the chosen instance, the w ·x distribution for first label class (i.e. ‘5’ and ‘pullover’),
the w · x distribution for the other label class (i.e. ‘6’ and ‘coat’), respectively. This figure
intuitively displays why a specific instance is classified to a certain label. For example, in
figure 4.12(a) the w · x distribution of class ‘5’ is brighter and larger than the distribution
of class ‘6’, which means it ‘align’ more with the recognizable position of handwriting ‘5’
compared with handwriting ‘6’.

4.5 Summary

In this chapter, we study the interpretation of deep neural networks through mimic learning.
First, we propose the oblique model tree, which is a simple, interpretable tree model and
can mimic a given deep model. Then we introduce an algorithm to build an oblique model
tree from the given deep neural network. We discuss the interpretations given by a mimic
oblique model tree to the deep neural network. Our experimental results on image and
text datasets show that our proposed oblique model tree achieves comparative prediction
performance with the deep model, and closely mimic the behaviors of the deep model. We
also show that an oblique model tree can provide reasonable interpretations to predictions
made by the target deep model.

There are several follow-up directions of this project worthy of further study. The first
is to develop a more effective and faster algorithm to build oblique model trees. We show in
this Chapter that an oblique model tree is able to approximation a black-box deep model to
give an interpretation and is with high expressive capacity and good interpretability. Thus,
an efficient algorithm can decrease the time cost to build an oblique model tree thus help
the application of the oblique model tree in many problems. Besides, the applications of
oblique model trees are not restricted to the deep model interpretation problem, it is also
interesting to apply the oblique model tree structure to other applications. In particular, the
oblique model tree can be used as an individual prediction model. If the logistic regression
model is used on the leaf nodes, it becomes a classification model. Different local models
can be used on leaf nodes when applying to specific applications.
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Chapter 5

Piecewise Linear Approximation of
Deep Curve Neural Networks for
Model Complexity

Model complexity is a fundamental measure for deep neural networks. A good model com-
plexity measure can help to tackle many challenging problems, such as overfitting detection,
model selection, and performance improvement. The existing literature on model complexity
mainly focuses on neural networks with piecewise linear activation functions. Model com-
plexity of neural networks with general smooth curve activation functions remains an open
problem. In this chapter, we develop a complexity measure for deep fully-connected neural
networks with smooth curve activation functions. To achieve the measure, we first propose
linear approximation neural network (LANN for short), a piecewise linear framework to
approximate a given deep model with smooth curve activation function. LANN is designed
to construct individual piecewise linear approximation for activation function of each neu-
ron, and minimize the number of linear regions to satisfy a required approximation degree.
Then, we analyze the upper bound of the number of linear regions formed by LANNs, and
define the complexity measure facilitated by the upper bound. To examine the usefulness of
the complexity measure, we experimentally explore the training process of neural networks
and detect overfitting. Our results demonstrate that occurrence of overfitting is positively
correlated with the increase of model complexity during training. We find that the L1 and
L2 regularizations suppress the increase of model complexity. Further, we propose two ap-
proaches to prevent overfitting by directly constraining model complexity: neuron pruning
and customized L1 regularization. Finally, we show that, by studying a piecewise linear
approximation, LANN can directly provide interpretations for the curve neural networks
using OpenBox.
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5.1 Introduction

Deep neural networks have gained great popularity in tackling various real-world applica-
tions, such as machine translation [120], speech recognition [20] and computer vision [41].
One major reason behind the great success is that the classification function of a deep
neural network can be highly nonlinear and express a highly complicated function [8]. Con-
sequently, a fundamental question asks, how nonlinear and how complex the classification
function of a deep neural network is. Model complexity measures [91, 104] address this
question. Progress in model complexity measure directly facilitates the advances of many
directions of deep neural network, such as model architecture design, model selection, per-
formance improvement [54], and overfitting detection [53].

The challenges in measuring model complexity are tackled from different angles. For
example, the influences of model structure on complexity have been investigated, includ-
ing layer width, network depth, and layer type. The power of width is discussed and a
single hidden layer network with a finite number of neurons is proved to be an universal
approximator [6, 61]. With the exploration of deep network architectures, some recent stud-
ies pay attention to the effectiveness of deep architectures in increasing model complexity,
known as depth efficiency [8, 23, 33, 83]. The bounds of model complexity of some specific
model structures are proposed, from sum-product networks [27] to piecewise linear neural
networks [91, 100].

Model parameters (e.g., weight, bias of layers) also play important roles in model
complexity. For example, f1(x) = ax + b sin(x) may be considered more complex than
f2(x) = cx + d according to their function forms. However if the parameters of the two
functions are a = 1, b = 0, c = 1, and d = 0, f1 and f2 are then two coincident lines.
This example demonstrates the importance of model parameters on complexity. Raghu et
al. [104] propose a complexity measure for neural networks with piecewise linear activation
functions by measuring the number of linear regions through a trajectory path between two
instances. Their proposed complexity measure reflects the effect of model parameters to
some degree.

However, the approach of [104] cannot be directly generalized to neural networks with
smooth curve activation functions, such as Sigmoid [43, 67], Tanh [66]. At the same time,
in some specific applications, smooth curve activation functions are found superior than
piecewise linear activation functions. For example, many financial models use Tanh rather
than ReLU [29]. A series of state-of-art studies speed up and simplify the training of neural
networks with smooth curve activation functions [64]. This motivates our study on model
complexity of deep neural networks with smooth curve activation functions.
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(a) (b)

Figure 5.1: (a) Two functions behaving the same on a set of data points may still be very
different. (b) Illustration of overfitting.

In this chapter, we develop a complexity measure for deep fully-connected neural net-
works with smooth curve activation functions. Previous studies on deep models with piece-
wise linear activation functions use the number of linear regions to model the nonlinearity
and measure model complexity [91, 97, 100, 104]. To generalize this idea, we develop a
piecewise linear approximation to approach target deep models with smooth curve activa-
tion functions. Then, we measure the number of linear regions of the approximation as a
indicator of the target model complexity. The piecewise linear approximation is designed
under two desiderata. First, to guarantee the approximation degree , we require an approx-
imation of the function of the target model rather than simply mimicking the behavior or
performance, such as the mimic learning approach [5, 60]. The rationale is that two functions
having the same behavior on a set of data points may still be very different, as illustrated
in Figure 5.1(a). Therefore, approximation using the mimic learning approach [5, 60] is
not enough. Second, to compare the complexity values of different models, the complexity
measure has to be principled. The principle we follow is to minimize the number of linear
regions given an approximation degree threshold. Under these two desiderata, the mini-
mum number of linear regions constrained by a certain approximation degree can be used
to reflect the model complexity.

Technically we propose the linear approximation neural network (LANN for short), a
piecewise linear framework to approximate a target deep model with smooth curve activa-
tion functions. A LANN shares the same layer width, depth and parameters with the target
model, except that it replaces every activation function with a piecewise linear approxima-
tion. An individual piecewise linear function is designed for the activation function on every
neuron to satisfy the above two desiderata. We analyze approximation degree of LANNs
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with respect to the target model, then devise an algorithm to build LANNs to minimize
the number of linear regions. We provide an upper bound to the number of linear regions
formed by LANNs, and define the complexity measure facilitated by the upper bound.

To demonstrate the usefulness of the complexity measure, we analyze the training pro-
cess of deep models, especially the problem of overfitting [53]. Overfitting occurs when a
model is more complicated than the ultimately optimal one, and thus the learned function
fits too closely to the training data and fails to generalize, as illustrated in Figure 5.1(b).
Our results show that the occurrence of overfitting is positively correlated to the increase of
model complexity. Besides, we observe that regularization methods for preventing overfit-
ting, such as L1, L2 regularization [45], constrain the increase of model complexity. Based
on this finding, we propose two simple and effective approaches for preventing overfitting
by directly constraining the growth of model complexity.

The rest of the chapter is organized as follows. In Section 5.2 we provide the problem for-
mulation. In Section 5.3 we introduce the linear approximation neural network framework.
In Section 5.4 we develop the complexity measure. In Section 5.5 we explore the training
process and overfitting in the view of complexity measure. In Section 5.6 we investigate
the interpretation given by linear approximation neural networks. Section 5.7 concludes the
chapter.

5.2 Problem Definition

A deep (fully connected) neural network (DNN for short) consists of a series of fully
connected layers. Each layer includes an affine transformation and a nonlinear activation
function. In classification tasks, let f : Rd → Rc represent a DNN model, where d is the
number of features of an input, and c the number of class labels. For an input instance
x ∈ Rd, f can be written in the form of

f(x) = VohL(hL−1(· · · (h1(x)))) + bo (5.1)

where Vo and bo, respectively, are the weight matrix and the bias vector of the output layer,
f(x) ∈ Rc is the output vector corresponding to the c class labels, L is the number of hidden
layers, and hi is i-th hidden layer in the form of

hi(z) = φ(Viz + bi), i = 1, . . . , L (5.2)
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(a) Approximation g1
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(b) Approximation g2

Figure 5.2: Example shows piecewise linear approximation under different approximation
principles.

where Vi and bi are the weight matrix and the bias vector of the i-th hidden layer, re-
spectively. φ(·) is the activation function. In this chapter, if z is a vector, we use φ(z) to
represent the vector obtained by separately applying φ to each element of z.

In this chapter, we are interested in fully connected neural networks with curve activation
functions. We focus on two typical curve activation functions, Sigmoid [43, 67], Tanh [66].
Our methodology can be easily extended to other curve activation functions.

Given a target model, which is a trained fully connected neural network with curve
activation functions, we want to measure the model complexity. Here, the complexity re-
flects how nonlinear, or how curved the classification function of the network achieves. Our
complexity measure should take both the model structure and the parameters into consid-
eration. To measure the model complexity, a main intuition is to obtain a piecewise linear
approximation of the target model, then use the number of linear segments of the approxi-
mation to reflect the target model complexity. This idea is inspired by the previous studies
on deep models with piecewise linear activation functions [91, 97, 100, 104]. Those studies
demonstrate that the number of linear segments reflects the degree of nonlinearity, that is,
the complexity of deep models. To make the idea of measuring by approximation feasible,
the approximation should satisfy two requirements.

First, the quality/degree of approximation should be guaranteed. To make the idea of
measuring complexity by the nonlinearity of approximation feasible, a prerequisite is that
the approximation should be highly close to the function of the target model. In this case,
the mimic learning approach [5, 60], which approximates by learning a student model un-
der the guidance of the target model outputs, is not suitable, since it learns the behavior
of the target model on a specific dataset and cannot guarantee the generalizability, as il-

74



lustrated in Figure 5.1(a). To ensure the closeness of the approximation functions to the
target models, we propose linear approximation neural network (LANN). A LANN is an
approximation model that builds piecewise linear approximation to every activation func-
tion in the target model. To make the approximation degree controllable and flexible, we
design an individual approximation function for the activation function on every neuron
separately according to their status distributions (Section 5.3.1). Furthermore, we define
a measure of approximation degree in terms of approximation error and analyze through
error propagation (Section 5.3.2).

Second, the approximation should be constructed in a principled and universal manner.
To understand the rationale of this requirement, consider an example in Figure 5.2, where
the target model is a curved line (the solid curve). One approximation g1 (the red line
in Figure 5.2(a)) is built using as few linear segments as possible. Another approximation
g2 (the red line in Figure 5.2(b)) evenly divides the input domain into small pieces and
then approximates each piece, say, using linear regression. Both of them can approximate
the target model to a required approximation degree and can reflect the complexity of
the target model. However, we should not use g1 on some occasions and use g2 on some
other occasions to measure the complexity of the target model, since they are built following
different protocols. To make the complexity measure comparable, the approximation should
be constructed under a consistent protocal. We suggest constructing approximations under
the protocal of using as few linear segments as possible (Section 5.3.3). In this case, the
minimum number of linear segments required to satisfy the approximation degree can reflect
model complexity.

5.3 LANN Architecture

In order to achieve a complexity measure, we propose a piecewise linear approximation to
the target model. We first introduce the architecture of the linear approximation neural
network. Then, we discuss the degree of approximation. Last, we propose the algorithm of
building a piecewise linear approximation network.

5.3.1 Linear Approximation Neural Network

The classification function of a deep model with piecewise linear activation functions is still
piecewise linear and has a finite number of linear regions [91]. The number of linear regions
of such a deep model is commonly used to assess the nonlinearity of the model, i.e., the
complexity [91, 97, 100, 104]. Motivated by this, we develop a piecewise linear approximation
of the classification function of a target model that uses curve activation functions, then,
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Figure 5.3: The structure of a LANN.

we use the number of linear regions in the approximation as a reflection of the complexity
of the target model.

Given a target model that is a trained DNN with curve activation function, we propose
linear approximation neural network (LANN), which is a piecewise linear approximation of
the target model.

Definition 5 (Linear Approximation Neural Network). Given a fully connected neural
network f : Rd → Rc, a linear approximation neural network g : Rd → Rc is an approx-
imation of f in which each activation function φ(·) in f is replaced by a piecewise linear
approximation function `(·).

The LANN shares the same layer depth, width as well as weight matrix and bias vector
with the target model, except that is approximates every activation function using an indi-
vidual piecewise linear function. This brings two advantages. First, designing an individual
approximation function for each neuron makes the approximation degree of a LANN model
g to its target model f flexible and controllable. Second, the number of subfunctions of
neurons is able to reflect the nonlinearity of the network. These two advantages will be
further discussed in Section 5.3.2 and Section 5.3, respectively. A piecewise linear function
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`(·) consisting of k subfunctions (linear regions), and can be written in the following form.

`(z) =



α1z + β1, if η0 < z ≤ η1

α2z + β2, if η1 < z ≤ η2
...

αkz + βk, if ηk−1 < z ≤ ηk

(5.3)

where αi, βi ∈ R are the parameters of the i-th subfunction. Given a variable z, the i-th
subfunction is activated if z ∈ (ηi−1, ηi], denote by s(z) = i. Let α∗ = αs(z) and β∗ = βs(z)

be the parameters of the activated subfunction. We have `(z) = α∗z + β∗.
Let φi,j be the activation function of the neuron {i, j}, where i is the index of the

layer and j the id of the neuron in the layer. Then, `i,j is the approximation of φi,j . Let
`i = {`i,1, `i,2, . . . , `i,mi} be the set of approximation functions for i-th hidden layer, mi is
the width of i-th hidden layer. The i-th layer of a LANN has the following form.

h′i(z) = `i(Viz + bi) (5.4)

A LANN is in the form of

g(x) = Voh
′
L(h′L−1(. . . (h′1(x)))) + bo (5.5)

Since the composition of piecewise linear functions is piecewise linear, a LANN is a
piecewise linear neural network. Denote by si,j the activation status of neuron {i, j}. We
follow the convention in [104] and call the collection of statuses of all neurons the activation
pattern1.

Definition 6 (Activation pattern). An activation pattern of a piecewise linear neu-
ral network is the set of activation statuses of all neurons, denoted by s =
{s1,1, . . . , s1,m1 , . . . , sL,1, . . . , sL,mL

}, where si,j is the activation status of neuron {i, j}.

Given an input instance x, the corresponding activation pattern s(x) is determined. The
transformation of `i of layer i is reduced to a linear transformation that can be written in

1The activation pattern in this section and the configuration in Section 3 are with similar meaning. We
use the term “activation pattern" to align with related works [104] in model complexity.
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the following square matrix.

Li =



α∗i,1 0 . . . 0 β∗i,1

0 α∗i,2 . . . 0 β∗i,2
...

... . . . ...
...

0 0 . . . α∗i,mi
β∗i,mi

0 0 . . . 0 1


(5.6)

where α∗i,j and β∗i,j are the parameters of the activated subfunction of neuron {i, j}, which
is determined by si,j . The piecewise linear neural network is reduced to a linear function
y = Wx+ b with the weight and bias value

[
W b

]
=
[
Vo bo

] ∏
i=L,...,1

Li
 Vi bi

0 1

 (5.7)

Obviously, an activation pattern corresponds to a linear region of the piecewise linear
neural network. Given two different activation patterns, the square matrix Li of at least
one layer is different, so is the corresponding linear functions. Thus, the linear regions of
a piecewise linear neural network can be represented by activation patterns. We define the
linear region that includes input instance x by the activation pattern s(x).

5.3.2 Degree of Approximation

We measure the complexity of models with respect to approximation degrees. Thus, we first
provide a measure of approximation degree using approximation error. Then, we analyze
approximation error of LANN in terms of neuronal approximation functions.

Definition 7 (Approximation error). Let f ′ : R → R be an approximation function of
f : R→ R. Given input x, the approximation error of f ′ at x is e(x) = |f ′(x)− f(x)|.

where | · | denotes the absolute value. This definition describes the approximation error
at a specific input. Below we define approximation error at model level which reflects the
general degree of approximation of a model:

Definition 8 (Approximation error of LANN). Given a deep neural network f : Rd → Rc

and a linear approximation neural network g : Rd → Rc learned from f . We define the
approximation error of g to f as the expectation of the absolute distance between their
outputs:

E(g; f) = E[ 1
c

∑
|g(x)− f(x)| ] (5.8)
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Since a LANN is learned by conducting piecewise linear approximation to every activa-
tion function, the approximation of every activation contributes some approximation error.
The approximation error of a LANN is the accumulation of the approximation error on
every neuron.

In literature [33, 104], approximation error of activation is treated as small perturbation
added to a neuron, then, the exponential growth of neuron perturbations through multiple
layers during forward propagation is discussed. Based on this, we go one step further to
estimate the contribution of perturbation of every neuron to the model prediction through
error propagation analysis.

Consider a target model f and its LANN approximation g. According to Definition 7,
the approximation error of `i,j of g corresponding to neuron {i, j} can be rewritten to
ei,j = |`i,j − φi,j |.

Suppose the same input instance is fed into f and g simultaneously. After the forward
computation of the first i hidden layers, the output of the i-th layer of f and g are different.
Let ri be the output difference of the i-th hidden layer between g and f , and ri−1 for the
(i− 1)-th layer. Let x be the input to the i-th layer as well as the output of the (i− 1)-th
layer of f . We can compute ri by

ri = h′i(x+ ri−1)− hi(x) (5.9)

The absolute value of ri is

|ri|= |h′i(x+ ri−1)− hi(x)|

= |h′i(x+ ri−1)− hi(x+ ri−1) + hi(x+ ri−1)− hi(x)|

≤ |h′i(x+ ri−1)− hi(x+ ri−1)|+ |hi(x+ ri−1)− hi(x)|

(5.10)

To keep the discussion simple, we write xr = x+ ri−1. The first term of the righthand side
of Eq. (5.10) is

|h′i(xr)− hi(xr)| = ei(Vixr + bi), (5.11)

where ei = [ei,1, ei,2, . . . , ei,mi ]T is a vector consisting of every neuron’s approximation error
of the i-th layer. Applying the first-order Taylor expansion to the second term of Eq. (5.10),
we have:

|hi(x+ ri−1)− hi(x)| = |Ji(x)ri−1 + εi| (5.12)

where Ji(x) = dhi(x)
dx is the Jacobian matrix of the i-th hidden layer of f , εi is the remainder

of the first-order Taylor approximation . Plugging Eq. (5.11) and Eq. (5.12) into Eq. (5.10),
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we have:
|ri| ≤ ei(Vixr + bi) + |Ji(x)ri−1|+ |εi| (5.13)

Assuming x and ri−1 being independent, the expectation of |ri| is

E[|ri|] ≤ E[ei] + E[|Ji|] E[|ri−1|] + E[ε̂i] (5.14)

where the error ε̂i = εi + εi, εi denotes the error in E[ei], in other words, the disturbances
of ri−1 on the distribution of ei. Since E[ei] is a vector where the elements correspond to
the neurons in the i-layer layer, the expectation of ei,j is:

E[ei,j ] =
∫
ei,j(x)ti,j(x)dx, (5.15)

where ti,j(x) is probability density function (PDF) of neuron {i, j}.
We notice that hi(x) consists of a linear transformation Vix+ bi followed by activation

φ. So the Jacobian matrix can be computed by Ji(x) = φ′ ◦ Vi. The j-th row of E[|Ji|] is

E[|Ji|]j,∗ =
∫
|φ′(x)|ti,j(x)dx ◦ |Vi|j,∗ (5.16)

where the subscript j, ∗ means the j-th row of the matrix.
The above process describes the propagation of approximation error through the i-th

hidden layer. Applying the propagation calculation recursively from the first hidden layer
to the output layer, we have the following result.

Theorem 3 (Approximation error propagation). Given a deep neural network f : Rd → Rc

and a linear approximation neural network g : Rd → Rc learned from f . The approximation
error

E(g; f) = 1
c

∑
(|Vo| E[|rL|]), (5.17)

where, for i = 2, . . . , L,

E[|ri|] ≤ E[ei] + E[|Ji|]E[|ri−1|] + E[|ε̂i|] (5.18)

and E[|r1|] = E[e1].

80



Based on Theorem 3, expanding Eq. (5.18), we have

E(|rL|) ≈
L∑
i=1

i+1∏
q=L

E[|Jq|](E[ei] + E[|ε̂i|]) (5.19)

Plugging Eq. (5.19) into Eq. (5.17), the model approximation error E(g; f) can be rewritten
in terms of E[ei,j ], that is,

E(g; f) =
∑
i,j

1
c

∑
( |Vo|

i+1∏
q=L

E[|Jq|] )∗,j︸ ︷︷ ︸
w

(e)
i,j

(E[ei,j ] + E[|ε̂i,j |]) (5.20)

here ∑(·)∗,j sums up the j-th columns. w(e)
i,j is the amplification coefficient of E[ei,j ] re-

flecting its amplication in the subsequent layers to influence the output. w(e)
i,j is independent

from the approximation of g and is only determined by f . When E(g; f) is small and the ap-
proximation of g is very close to f , the error ε̂i can be ignored, E(g; f) is roughly considered
a linear combination of E[ei,j ] with amplification coefficient w(e)

i,j .

5.3.3 Approximation Algorithm

We use the smallest LANN that meets the minimum degree of approximation, which mea-
sured by approximation error E(g; f), to assess the complexity of a model. Given a threshold
of approximation degree, we minimize the number of linear regions needed by the approxi-
mation. The number of linear regions reflects how nonlinear the function of the target model
is. Unfortunately, the actual number of linear regions corresponding to data manifold [10]
in the input-space is unknown. To tackle the challenge, we notice that a piecewise linear
activation function with k subfunctions contributes k − 1 hyperplanes to the input-space
partition [22, 91]. To minimize the number of linear regions, we minimize the number of hy-
perplanes of input-space partition. Formally, under a requirement of approximation degree
λ, our algorithm learns a LANN model with minimum K(g) = ∑

i,j ki,j .

min(K(g)) s.t. E(g; f) < λ (5.21)

Before presenting our algorithm, we first introduce how we obtain the neuron distribu-
tion ti,j .
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Distribution of activation function

In Section 5.3.2, in order to compute E[ei,j ] and E[|Ji|], we introduce the probability density
function ti,j of the activation of neuron {i, j}. To compute ti,j , the distribution of activation
function is involved. The distribution of an activation function is how outputs (or inputs) of
a neuronal activation function distribute with respect to the data manifold. It is influenced
by the parameters of previous layer and the distribution of input data. Since the common
curve activation functions are bounded to a small output range, to simplify the calculation,
we study the posterior distribution of an activation function [38, 64] instead of the input
distribution. To estimate the posterior distribution of neuron {i, j}, we use kernel density
estimation (KDE) [113] with Gaussian kernel, and use the output of activation function φi,j
on training dateset as the distributed samples {x1, x2, . . . , xn}.

ti,j = 1
nh

n∑
q=1

K(x− xq
h

) (5.22)

where the bandwidth h is chosen by the rule-of-thumb estimator [113]. To compute E[ei,j ]
and E[|Ji|], we uniformly sample nt points {∆x1, . . . ,∆xnt} within the output range of
φ, where distance between two neighbor samples is ∆x = φ(∞)−φ(−∞)

nt
. We then use the

expectation on these samples as an estimation of E[ei,j ].

E[ei,j ] ≈
nt∑
q=1

ei,j(∆xq)ti,j(∆xq) (5.23)

The output of φ is smooth and in small range, setting large sample size nt will not
bring obvious improvement in the expectation estimation. In our experiments, we set
nt = 200. Notice that xq is the output of φ. The corresponding input is φ−1(xq), so
ei,j(xq) = |`i,j(φ−1(∆xq))−∆xq|. E[|Ji|] is computed in the same way.

Piecewise linear approximation of activation

To minimize K(g), the piecewise linear approximation function `i,j of an arbitrary neu-
ron {i, j} is initialized with a linear function (k = 1). Then every new subfunction is added
to `i,j to minimize the value of E[ei,j ]. Every subfunction is a tangent line of φ. The initial-
ization is the tangent line at (0, φ(0)), which corresponds to the linear regime of activation
function [64]. A new subfunction is added to the next tangent point (p∗, φ(p∗)), which is
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Algorithm 3 nextTangentPoint
Input: φ, `, t
Output: p∗, E[e]−
{∆x1, . . . ,∆xnt} ← uniformly sampled points
//Compute E[e] by Eq. (5.23)
for ∆x in {∆x1, . . . ,∆xnt} do
`′∆x = add tangent line of ∆x to `
Compute E[e(`′∆x)]

end for
∆x∗ = arg min∆x E[e(`′∆x)]
E[e]− = E[e]− E[e(`′∆x∗)]

found from the set of uniformly sampled points {∆x1,∆x2, . . . ,∆xnt}. That is,

p∗i,j = argmin
p

E[ei,j ]+p; p ∈ {∆x1, . . . ,∆xnt} (5.24)

where subscript +p means `i,j with additional tangent line of (p, φ(p)) is used in computing
E[ei,j ]. Algorithm 3 shows the pseudocode of determining the next tangent point.

Algorithm of building LANNs

To minimize K(g), the algorithm starts with initializing every approximation function `i,j
with k = 1. g is a linear function. Then, we iteratively add a subfunction to the approxi-
mation function of a certain neuron to decrease E(g; f) to the most degree in each step.

Considering Eq. (5.20), when building a LANN the error ε̂i cannot be ignored because
E[ei,j ] is large. The amplification coefficient w(e)

i,j of lower layer is exponentially larger than
that of upper layer. Otherwise, error E[ε̂i,j ] grows exponentially from lower to upper layer.
Deriving this formula to get the exact weight of E[ei,j ] is complicated. A simple way is to
roughly consider each E[ei,j ] to be equally important in the algorithm. For a neuron from
the first layer, small E[ei,j ] is desired due to large magnitude of w(e)

i,j even through E[ε̂i,j ] = 0.
Another neuron from the last hidden layer, its amplification coefficient w(e)

i,j is with lowest
magnitude over all layers but the E[ε̂i,j ] is unignorable and might influence the distribution
of neuron status, thus approximation with small E[ei,j ] is desired to decrease the value of
E[ei,j ] and E[ε̂i,j ].

Algorithm 4 outlines the LANN building algorithm. Below we describe the main steps.
To reduce the calculation times of E(g; f), we set up the batchsize b to batch processing a
group of neurons.
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Algorithm 4 BuildingLANN
Input: a DNN f(x) with activation function φ; training dataset Dtr; a set of activation
function distributions T = {ti,j}; batchsize b; approximation degree λ
Input: a LANN model g
Initialize `i,j in g with linear functions
//w(e)

i,j ← compute neuron weight (Eq. (5.20))
for i← 1 to L do
for j ← 1 to mi do

Compute E[ei,j ] by Eq.(5.23)
p∗i,j , E[ei,j ]− ←nextTangentPoint(φ, `i,j , ti,j)

end for
end for
while E(g; f) ≤ λ do
Nu = select b neurons with maximum E[ei,j ]−
for every neuron u ∈ Nu do
`u ← add tangent line of p∗u to `u
E[eu] = E[eu]− E[eu]−
p∗u,E[eu]− ←nextTangentPoint(φ, `i,j , ti,j)

end for
E(g; f)← approximation error on Dtr

end while

a) Initialize g to set every `i,j to be a linear function (ki,j = 1). Find next tangent point
p∗i,j for every `i,j .

b) Find neuron {i∗, j∗}

{i∗, j∗} = arg max(E[ei,j ]− E[ei,j ]+p∗i,j
), (5.25)

Tangent line of (p∗i∗,j∗ , φ(p∗i∗,j∗)) is considered currently the most effective addition.

c) Add the new subfunction to `i∗,j∗ . Then update its next tangent point p∗i∗,j∗ .

d) Repeat Steps b) and c) until E(g; f) < λ.

The complexity of the algorithm (Algorithm 4) is O(K(g)n). The time cost of the first
loop is O((∑L

i=1mi) ∗ n2
t ). The second loop repeats (K(g) −∑L

i=1mi) times, within each
loop the computation cost is O((∑L

i=1mi) + n2
t + n), where nt is the number of segment of

t(x), n is the number of instances of Dtr.
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5.4 Model Complexity

The previous section described how to build a linear approximation neural network to
approximate a target model so that the approximation satisfies a given approximation
degree requirement and has as few linear regions as possible. The number of linear regions
reflects how nonlinear the classification function of the target model is, which is complexity
of the target model. In this section, we propose a tight upper bound to the number of linear
regions of a LANN, then define a complexity measure based on the upper bound.

The idea of measuring model complexity using the number of linear regions is popular
in piecewise linear neural networks [91, 97, 100, 104]. Montufar et al. [91] and Raghu et
al. [104] presented an upper bound to the number of linear regions in piecewise linear neural
networks. We generalize their results to the LANN model, of which the major difference is
that, in LANN, each piecewise linear activation function has different forms and different
numbers of subfunctions. We propose a tight upper bound to the number of linear regions
formed by a LANN model.

Theorem 4 (Upper bound). Given a linear approximation neural network g : Rd → Rc with
L hidden layers. Let mi be the width of the i-th layer and ki,j the number of subfunctions
of `i,j. The number of linear regions of g is upper bounded by

L∏
i=1

(
mi∑
j=1

ki,j −mi + 1)d. (5.26)

Proof. First of all, according to [91, 100, 104], the total number of linear regions divided
by k hyperplanes in the input space Rd is upper bounded by ∑d

i=0
(k
i

)
, whose upper bound

can be obtained using binomial theorem:

d∑
i=0

(k
i

)
≤ (k + 1)d. (5.27)

Now consider the first hidden layer h′1 of a LANN model. A piecewise linear function
consisting of ki,j subfunctions contributes ki,j − 1 hyperplanes to the input space splitting.
The first layer h′1 contains m1 neurons, with j-th neuron consisting of k1,j subfunctions. So
h′1 contributes ∑m1

j=1(k1,j − 1) hyperplanes to the input space Rd splitting, and divides Rd

into at most
(
m1∑
j=1

k1,j −m1 + 1)d (5.28)

linear regions.
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Now move to the second hidden layer h′2. For each linear region divided by the first
layer, it can be divided by the hyperplanes of h′2 to at most (∑m2

j=1 k2,j −m2 + 1)d smaller
regions.

Thus, the total number of linear regions igenerated by h′1, h′2 is at most

(
m1∑
j=1

k1,j −m1 + 1)d ∗ (
m2∑
j=1

k2,j −m2 + 1)d. (5.29)

Recursively do this calculation until the last hidden layer h′L. The number of linear
regions divided by g is at most

L∏
i=1

(
mi∑
j=1

ki,j −mi + 1)d. (5.30)

This theorem indicates that the number of linear regions is polynomial with respect to
layer width and exponential with respect to layer depth. This is consistent with the previous
studies on the power of neural networks [8, 9, 33, 83, 102, 104]. Meanwhile, the value of
k reflects the nonlinearity of neurons according to the status distribution of activation
functions. The distribution is influenced by both model parameters and input data manifold.
So this upper bound to some degree reflects the impact of model parameters. Based on this
upper bound, we define a complexity measure:

Definition 9 (Complexity measure). Given a deep neural network f and a linear approxi-
mation neural network g learned from f with approximation degree λ, the λ-approximation
complexity measure of f is

C(f)λ = d
L∑
i=1

log(
mi∑
j=1

ki,j −mi + 1) (5.31)

This complexity measure is essentially a simplification of our proposed upper bound by
logarithm. In the following, we introduce our recommended method of setting the value of
λ. To be briefly, our suggested λ located at the range when (E ′)2/E ′′ converges to a constant.

5.4.1 Determine λ

In this section, we suggest the range of λ when using LANN for complexity measure. A
suitable value of λ makes the complexity measure trustworthy and stable. When the value
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(a) Approximation error E (b) Approximation gain k

(c) Second-order derivative a (d) k2/a

Figure 5.4: Changing trend of approximation error E , approximation gain k, a which is the
second-order derivative of E , and k2/a computed from k and a.

of λ is too large, the measure may be unstable and unable to reflect the real complexity.
It seems a small value of λ is preferred. However, a small value calls for a higher cost to
construct the LANN approximation. Based on analyzing the curve of the approximation
error, we provide an empirical recommendation for the value range.

We first analyze the curve of approximation error in several aspects. The approximation
error E is the optimization objective of the algorithm for building LANN (Algorithm 4),
obviously the value of E will continue to decrease during building a LANN (Figure 5.4(a)).
We name the first-order derivative of E as approximation gain, denoted by k. The ap-
proximation gain represents the contribution of the current epoch to the decrease of the
approximation error E . Our algorithm ensures that at any time during building a LANN,
the value of k is larger than all remaining possible operations, that is, all later possible
operations. Figure 5.4(b) shows the curve of approximation gain. Since we ignore the error
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(a) Approximation error E (b) Approximation gain k

(c) Second-order derivative a (d) k2/a

Figure 5.5: Changing trend of approximation error E , approximation gain k, a which is the
second-order derivative of E , and k2/a computed from k and a. Here we enlarge second half,
after 100 epoches of Figure 5.4.

ε̂ in the algorithm, the curve of approximation gain in practice has a small range of jitter.
However, the continued downward trend of the approximation gain is obvious.

We also consider the derivative of k, which is the second-order derivative of the approxi-
mation error E , denoted by a. a reflects the changing trend of k. It is easy to prove that, the
trend of a goes decrease during building a LANN: if not, after a finite number of epochs we
have k = 0. But in fact, E will never be reduced to zero, the operations in each epoch will
bring a non-zero effect to E , thus k will not be 0. Figure 5.4(c) shows the changing trend of
a.

From Figure 5.4, it can be seen that the changing trends of the approximation error E ,
the approximation gain k and the second-order derivative a are close to each other. The
trend of the curve decreases rapidly at the beginning, then gradually tends to converge.
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This is consistent with our algorithm design. After E flattens, the following relationships
will be established: k → 0, a→ 0, k 6= 0, a 6= 0, a << k.

Suppose there is a timestamp t0 in the flatten region of E , k, a represent the first-order,
second-order derivative of E . We show changing trends of the flatten regions in Figure 5.5.
According to Figure 5.4 and the above analysis, the curve after t0 is basically stable. We
estimate the total gain of approximation error that can be brought by the remaining epochs.
Suppose there exists a n that after n epochs from t0, k becomes zero. Then the gain of the
remaining epochs is the gain of the next n epochs. Suppose a is a constant, n = k/a. The
gain of the remaining epochs is estimated by kn− an2/2 = k2/2a.

We analyze k and a from the view of the remaining gain estimation. k and a continue
to decrease during building a LANN. If k and a goes almost stable and with a very close
decreasing trend, the estimation of the remaining gain of t0 should be close to the estimation
of epochs around t0. Suppose the above consition is ture, we have: k2/a ≈ (k+a)2/(a+a′)⇒
k/a ≈ a/a′, where a′ is the derivative of a. This is, the downward trend of k and a are
basically similar, and a′ << a << k << 1 is true.

As a result, the phenomenon that k2/a of a timestamp almost equals to the calculated
value of its neighbors demonstrates that, the derivative of k and a are similar. The gain of
remaining epochs are expected to be relatively stable, that is, each afterward epoch will not
bring much influence to the value of E . In this case, the approximation error E is relatively
stable.

The conclusion is, for the construction of a LANN based on a specific target model,
λ < λ0 is suggested where λ0 is the starting point of k2/a converging to a constant.

When comparing two LANNs, the value of λ is λ < min(λ0,a, λ0,b) and ka(λ) ≈ kb(λ).
This to some degree ensures the stability of complexity measure of the target models, since
the estimated gain of remaining epochs of two LANNs are almost similar.

In practical experiments, the value of k2/a is used to check whether the value of λ is
reasonable. In our experiments, we choose a unified λ = 0.1 and verify its rationality. From
our experimental results, it seems for a relatively simple network (e.g. 3 layers, hundreds of
width), λ ∈ [0, 0.12] is good enough since the k2/a goes convergence. In Figure 5.6 we show
why λ = 0.1 is a reasonable value in our experiments.

5.5 Insights from Model Complexity

In this section, we study several problems from the insights of complexity measure. First, we
come out a directly obtained results of contributions of hidden neurons to model stability.
We then investigate the changing trend of model complexity in training process. After that
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(a) Approximation error E (b) k2/a

Figure 5.6: Verification of the rationality of λ = 0.1 for three models trained on CIFAR:
L3M200T , L6M200T , L3M400T . The left figure shows the curve of approximation errors of
three models. The right figure shows the value k2/a in the area nearby 0.1. Here x axis is
the corresponding approximation error.

Sec 5.5.1 Sec 5.5.2 Sec 5.5.3, 5.5.4

MOON - - L3M(32,128,16)T

MNIST L3M300S L3M100T , L6M100T , L3M200T -

CIFAR L3M300T L3M200T , L6M200T , L3M400T L3M(768,256,128)T

Table 5.1: Model structure of DNNs in our experiments.

we study the occurrence of overfitting and L1, L2 regularization. Finally, we propose two
new simple and effective approaches for preventing overfitting.

Our experiments and evaluations are implemented on a synthetic dataset: the Two-
Moons dataset 2, and two real-world datasets: the MNIST handwritten digits dataset [75]
and the CIFAR-10 dataset [70]. To demonstrate the reliability of the complexity measure
not depending on model structures, we design multiple model structures. We use λ = 0.1 for
complexity measure in all experiments, who locates in our suggested range for all models we
used. Table 5.1 summarizes the model structures we used. To read Table 5.1, L3 indicates
the network is with 3 hidden layers, M300 means every layer contains 300 neurons while

2The synthetic dataset is generated by sklearn.datasets.make_moons API.
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(a) (b) (c)

(d) (e)

Figure 5.7: The evolution of decision boundary and linear regions when building a LANN, on
the ’Sine’ synthetic dataset. Each subfigure is an evolution moment during building a LANN.
In each figure, the first row shows the classification boundary of the LANN comparing to the
classification boundary of the deep model. Orange and blue correspond to different label.
The second row shows the linear regions splitted by the LANN. One color corresponds to one
linear region. Specifically, the ’Sine’ is, Dsyn = {(x, y)} where x = [x1, x2]T , x1, x2 ∈ [−4, 4],
y = 1 if sin(x1) > x2 otherwise y = 0. The target binary classification network includes two
hidden layer with 20 neurons in each layer and Sigmoid activation function.
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Figure 5.8: Amplification coefficient of every neuron.

M(32,128,16) means each layer contains 32, 128 and 16 neurons respectively. Subscripts S, T
indicate the activation function type is Sigmoid or Tanh respectively.

5.5.1 Hidden Neurons and Stability

The analysis in Section 5.3.2 gives out the amplification coefficient w(e)
i,j (Eq. 5.20), which

measures how much a small purturbation on neuron {i, j} is amplified during subsequent
layers. In other words, the amplification coefficient reflects the effects of a neuron to model
stability. The formulation of w(e)

i,j demonstrates the multiplication of E[Jp] through sub-
sequent layer. Furthermore, our w(e)

i,j demonstrates the different contributions of neurons
from the same layer. Figure 5.8 visualizes amplification coefficients of trained models on the
MNIST, CIFAR datasets. To exclude the influence of layer width, each layer of the models
is with equal width.

Besides amplification coefficient, we also visualize E[ri], the error accumulation of all
previous layers. According to our analysis, E[ri] is expected to have opposite trend with
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Figure 5.9: Layerwise error accumulation (λ = 0.1).
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Figure 5.10: Percentage of flipped prediction labels after random neuron ablation.
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Figure 5.11: Changing trend of complexity measure in training process of three models on
MNIST dataset.

w
(e)
i,j : E[r] of upper layer is expected to be exponentially larger than lower layers. Figure 5.9

shows error accumulation E[ri] on the same models.
To verify that a small perturbation on the lower layer influences the model outputs more

than the upper layer, we randomly ablate neurons (fix neuron output to 0) from one layer
of a well-trained model and observe the number of instances being flipped prediction labels.
The results of ablating different layers are shown in Figure 5.10.

5.5.2 Complexity in Training

To investigate the changing trend of model complexity in the training process, we pe-
riodically measure the model complexity during training, after initialization. The 0.1-
approximation complexity measure C(f)0.1 are shown in Figure 5.11. Two important ideas
come out of the results. First, model complexity keeps increasing during training. This in-
dicates that the function of a deep model becomes more and more complicated. Second,
comparing three structures tells us how the model structure influences the complexity mea-
sure.

The results demonstrate that increases in both width and depth can increase the model
complexity. Further, with the same number of neurons, the complexity of a deep and narrow
model (L6M100T on MNIST, L6M200T on CIFAR) is much higher than a shallow and wide
one (L3M200T on MNIST, L3M400T on CIFAR). This agrees with existing studies on the
effectiveness of width and depth of DNNs [8, 33, 91, 100].
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NM (30.76) L1 (26.13) L2 (26.48)

Figure 5.12: Decision boundaries of models trained on MOON dataset. NM, L1, L2 are short
for normal train, train with L1, L2 regularization respectively. In brakets are the value of
complexity measure C(f)0.1.

5.5.3 Overfitting and Complexity

The complexity measured through LANNs can be used to understand overfitting. Overfit-
ting occurs when using a model that is more flexible than is necessary [53]. Deep neural
networks are able to accommodate curvilinear relationships and are highly flexible. As a
result, the model maximizes its performance on the training set by memorizing data, rather
than learning the patterns which can generalize to new data [45]. Discussion from previous
studies points that an overfitted model will be more complex than another one that fits
equally well [53]. This idea is also intuitively demonstrated by the polynomial fit example
in Figure 5.1(b).

Regularization is an effective approach to prevent overfitting, by adding regularizer to
the loss function, especially L1 and L2 regularization [45]. L1 regularization results in a more
sparse model, and L2 regularization results in a model with small weight parameters. A guess
is these regularization approaches which prevent overfitting are able to constrain the model
complexity from increasing. To verify this, we train deep models on the MOON dataset
with and without regularization. After 2,000 training epochs, their decision boundaries and
complexity measure C(f)0.1 are shown in Figure 5.12.

We also measure model complexity during the training process, after each epoch of
CIFAR, with or without L1, L2 regularization. The results are shown in Figure 5.13.
Figure 5.13(a) is the overfitting degree measured by (Accuracytrain − Accuracytest), Fig-
ure 5.13(b) is the corresponding complexity measure C(f)0.1. The results verify the conjec-
ture that L1, L2 regularization constrain the model complexity increasing.
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Figure 5.13: Complexity measure during training of CIFAR dataset. Weight penalty are
1e− 4, 1e− 3 for L1, L2 regularization respectively.

NM PR C-L1 L1 L2

C(f)0.1 31.17 25.02 25.11 25.78 26.55

# Regions 45,772 182 356 382 545

Table 5.2: Complexity measure and number of linear regions of MOON.

5.5.4 New Approaches for Overfitting

Motivated by the finding that the increase of model complexity during training is signif-
icantly correlated with the occurrence of overfitting, we come out of two approaches to
prevent overfitting, by directly constraining the increasing of model complexity.

First, neuron pruning. From the definition of complexity (Def. 9), we know that
constraining model complexity C(f)λ is to constrain its variable ki,j for each neuron, which
equals to constraining the nonlinearity of the distribution of a neuron. In this case, the
approach we proposed is to periodically prune neurons with a maximum value of E[|t|],
after each epoch’s training. The reason is, closing to 0 is the linear range of a sigmoid, or
tanh [58], with a larger value of E[t] the distribution t is with higher probability located
at the nonlinear range and therefore requires larger k. Pruning neurons with a potentially
large degree of nonlinearity can effectively constrain the increase of model complexity. At the
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Figure 5.14: Decision boundaries of models trained with different regularization methods
on MOON dataset. PR, C-L1 are short for training with neuron prunning, with customized
L1 regularization.
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Figure 5.15: Degree of overfitting and complexity measure in training process of CIFAR
dataset.

same time, small number of prunning will not obviously decrease the model performance.
Practical results demonstrate that this approach is simple, efficiency and really effective.

Second, customized L1 regularization. This is to give customized coefficient to ev-
ery column of weight matrix Vi(i = 1, . . . , L) when doing L1 regularization. Each column
corresponds to a specific neuron and with coefficient:

ai,j = E[|φ′i,j |] =
∫
|φ′(x)|ti,j(x)dx (5.32)

One explanation is, ai,j equals to the expectation of first-order derivative of φi,j . With
larger value of E[|φ′i,j |], the distribution ti,j is with higher probability located at the linear
range of the activation function (0 = argmaxxφ

′(x)). In this case, this customized L1

approach assigns larger sparse penalty weight to more linearly distributed neurons. On the
other hand, neurons with more nonlinear distribution can maintain their expressive power.
Another view to understand this approach is by Eq. (5.19): ai,j |Vi| = E[|Ji|]. That is, the
formulation of customized L1 regularization can also be interpreted as the constraint of of
E[|J |], which will obviously result in smaller E(g; f) as well as smaller C(f). Customized
L1 is more flexible than normal L1 regularization, thus behaves better with large penalty
weight.
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Figure 5.16: Left shows the accuracy on the CIFAR training dataset, the right one shows
the accuracy on the CIFAR test dataset. Both in the training process.

In Figure 5.14 we comparing decision boundaries of models training on the MOON
dataset, with different regularization approaches. Table 5.2 records the corresponding com-
plexity measure and the account of number of linear regions the input space been split. In
Figure 5.15 shows overfitting and complexity measure in the training process of a model
on CIFAR. After each epoch 5% neurons are pruned. See from the results, neuron pruning
maintain the performance on test dataset and shows effectiveness in constraining overfit-
ting and complexity. Coefficients of customized L1 are scaled such that the average equal
to penalty weight of L1. Results shows, with small penalty weight, customized L1 behaves
close to normal L1. With large penalty weight, performance of L1 model is affected, test
accuracy decrease by 3%. Customized L1 maintains the performance.

That is, the customized L1 regularization is more flexible than normal L1 regularization,
and behaves better with large weight penalty. We report the experimental results that
customized L1 maintains the prediction performance on the CIFAR test dataset while L1 is
about 3% lower. In Figure 5.16 we show the corresponding prediction accuracy on training
and test dataset.

5.5.5 Complexity Measure is Data Insensitive

A model complexity measure should be insensitive to data. That is, in the case of sam-
pling two different datasets sampled from the same data distribution under i.i.d, the model
complexity measured by LANN on these two datasets is expected to be similar.

To verify if our complexity measure by LANN is data sensitive, we measure the approx-
imation error of LANNs on the test dataset. Below in Table 5.3 we compare approximation
errors on the training dataset (the dataset used to build LANNs) and test dataset of models
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Dataset Model Etrain Etest

MNIST L3M100T 0.0999 0.0988

MNIST L6M100T 0.0979 0.0971

MNIST L3M200T 0.0911 0.0907

MNIST L3M300S 0.0944 0.0942

MNIST L3M300T 0.0989 0.0977

CIFAR L3M200T 0.0979 0.0984

CIFAR L6M200T 0.0973 0.0970

CIFAR L3M400T 0.0984 0.0976

CIFAR L3M(768,256,128)T 0.0970 0.0979

Table 5.3: Compare approximation error on training dataset and test dataset.

used in our experiments. The results show that LANNs achieve very close approximation
error on training and test dataset, which demonstrates that our complexity measure is data
dependence but data insensitive.

Furthermore, our experiment shows that the number of linear function pieces generated
on each layer of a LANN g is always almost uniform. That is, there is no obvious difference
between the number of subfunction pieces, written as ki, of early hidden layers and later
hidden layers. This result is consistent with our discussion of Eq. (5.20). For a neuron
from an early hidden layer, the amplification coefficient w(e)

i,j is exponentially larger than
that of a neuron from a later layer. On the other hand, for a neuron for a later layer, the
unignorable error E[ε̂i,j ] is exponentially larger than that of a neuron from an early layer
due to layerwise accumulation. The approximations of neurons from early and later layers
are equally important and small values of E[ei,j ] are desired for both. In this case, we expect
the number of linear function pieces in each layer to be uniformly distributed.

5.6 Interpretation by LANN

In this section, we demonstrate that LANN is able to provide interpretations to the pre-
dictions of the target model. A LANN establishes a piecewise linear approximation of the
target model with guaranteed approximation degree, then the OpenBox method can be used
to directly provide interpretations based on the piecewise linear approximation.
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Figure 5.17: Interpretations of the example images from MNIST with the class label ‘4’. The
first column is the original input image. The second column shows the interpretations given
by Vanilla Gradient [114]. The third to sixth columns are the interpretations provided by
LANN built with different values of λ: 0.02, 0.05, 0.1, 0.2.
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Figure 5.18: Interpretations of the example images from FMNIST with class label ’coat’. The
first column shows the original input images. The second column shows the interpretations
given by the Vanilla Gradient. The third to sixth columns are the interpretations provided
by LANN built with different values of λ: 0.02, 0.05, 0.1, 0.2.

Suppose a LANN g is built from the target model f under certain approximation error
λ. Given an input x, the linear region including x is determined by the activation pattern.
Its linear classification function y = Wx + b is computable using the activation pattern
(Equation 5.3). Things go easily under the linear situation. The magnitude of the weight
matrix W describes the importance of every feature to every class label. Specifically, the
i-th row, denoted by Wi, indicates the importance of features to the class label i.

Given an input x, a LANN obtains a linear approximation of the curvilinear decision
boundary corresponding to the linear region including x. The idea of constructing a linear
approximator at the neighborhood of an input sample then interpreting using the linear
approximator is a common idea to provide interpretation to curve neural networks [107,
114, 115]. One approach of constructing such a linear approximator is by first-order Taylor
expansion [114]. Another kind of approaches are perturbation-based, that is to perturb a
group of points around the input sample x, then learn a local linear approximator [107] or
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compute the average value of their first-order Taylor derivative [115]. The former approach
can be considered a linear approximator within a very tiny ∆x (lim ∆x→ 0) distance around
x. It is efficiency but provide interpretations which are sensitive to perturbations [42]. The
second approach provides smoother and more stable interpretations but it spends more time
to give an interpretation.

Given an input x, LANN generates interpretation in one forward propagation time cost,
which is to compute the corresponding linear function (see OpenBox). As well, interpreta-
tions provided by a piecewise linear approximation (i.e., LANN) stays consistent within the
linear region including x. With different λ, the average volume of linear regions changes. In
this case, the value of λ affects the volume of linear regions within which the interpretations
stay stable. Another effectiveness of the stable linear region is, the linear approximator
reflects the common characteristics of the region and ignores the unique characteristics of
every point. This acts as a smoothness within the linear region, and provides a regional
smooth interpretation. In this case, with the agreement of large λ, the average volume
of linear regions grows, and the interpretation provided by a LANN is able to reflect the
importance of features in a large region.

We show that a LANN network can efficiently provide smooth interpretations.
In Figure 5.17 and 5.18 we visualize interpretations given by a LANN, comparing with

interpretations given by Vanilla Gradient, on several arbitrarily selected images. To investi-
gate the effects of the value of λ on interpretations, LANN networks are built with different
values of λ. The results show, with a small value of λ, interpretations given by LANN look
close to that given by Vanilla Gradient (the third column). That agrees with our discussion
above that the extremity of a linear region reducing is a point, thus with a small value of λ,
the interpretation to the linear region tends to the interpretation of the point. See the fig-
ures from left-to-right order, with a larger value of λ, the interpretations become smoother
with fewer noises and tend to align with image shape. This shows that, for a linear region
with a larger volume, it is more possible to capture those commonly important features.

5.7 Summary

We studied the complexity measure of deep fully-connected neural networks with smooth
curve activation functions. We first proposed the linear approximation neural network
(LANN), which can approximate the function of a given DNN model to a required ap-
proximation degree with as a small number of linear regions as possible. We discussed the
number of linear regions formed by a LANN, and use it as a measure of model complexity.
From the view of complexity measure, we estimate the amplification of small perturbations
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on a neuron to impact the output and analyzed the occurrence of overfitting. Our results
demonstrated the positive correlation between the growth of model complexity and occur-
rence of overfitting in the training process, and L1, L2 regularizations which are designed
for preventing overfitting showed their impacts on constraining model complexity. Based on
this discovery, we developed two approaches for preventing overfitting: neuron pruning and
customized L1 regularization.

Our proposed complexity measure applies to any deep fully connected neural networks
with smooth curve activation functions. For example, our approach is applicable to fully
connected neural network with Batch Norm [64] layers. The contribution of a Batch Norm
layer γ x−µ√

σ2+ε + β to our approach can be considered as a coefficient γ/σ to the error pro-
pogation equation.

There are some future works to follow up this project. One interesting future direction
is to generalize the usage of our proposed linear approximation neural network (LANN) to
other types of network structures (i.e., CNN, RNN). Another interesting future direction is
to investigate the complexity of data samples applying the complexity of models measured
by our approach. The intuition is, with higher sample complexity, the trained model might
be with higher effective model complexity. In this case, the effective model complexity can
reflect the complexity of the data on which it is trained.
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Chapter 6

Conclusion and Future Directions

Due to the rapid development of deep neural networks in recent years, it is essential for us
to better understand deep learning models. The piecewise linear property provides a way to
explore to understand deep neural networks. This thesis focuses on two typical deep learning
understanding problems, namely model interpretability and model complexity, and proposes
solutions to these two problems from the perspective of the piecewise linear property.

In this chapter, we summarize the research presented in this thesis, then discuss several
future directions in understanding deep learning models from the perspective of piecewise
linear property.

6.1 Summary of the Thesis

In this thesis, we study the understanding of deep neural networks from the perspective of
piecewise linear property. We first provide a comprehensive overview of the piecewise linear
property, which is achieved by analyzing the network structures of deep neural network
models with piecewise linear activation functions (e.g., ReLU, hard Tanh). We discuss the
advantages and important roles played by the piecewise linear property in understanding
deep neural networks. Then, we investigate the understanding problems of model inter-
pretability and model complexity by adopting the piecewise linear property. We develop
two model interpretation approaches to provide local interpretations for predictions made
by deep neural networks. We also develop an approach to measure the model complexity of
deep neural networks. The summary of this thesis is as follow.

We investigate the model interpretation from the perspective of piecewise linear prop-
erty:

• We propose an exact and consistent interpretation to deep neural network with piece-
wise linear activation function, by analyzing the piecewise linear property of such
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model architecures. By studying the states of hidden neurons and the linear regions
generated by a piecewise linear neural network, we prove that a piecewise linear neu-
ral network is mathematically equivalent to a set of local linear classifiers, which can
be efficiently computed by the proposed OpenBox method. Our experimental results
show that the decision features and the polytope boundary features of local linear
classifiers provide exact and consistent interpretations on the overall behavior of a
piecewise linear neural network. Such interpretations are highly effective in hacking
and debugging piecewise linear neural network models.

• We propose a mimic learning approach to provide interpretation to arbitrary deep
learning models. We design the oblique model tree as a mimic model, which is a tree-
structured classification model. The oblique model tree acts by dividing the input
space into a number of disjoint regions and proposing a local logistic regression model
within each region. We propose an algorithm to efficiently build an oblique model
tree from the given deep neural network. The iterative space divisions and continuous
optimization of local logistic regressions provide enough capacity for the oblique model
tree to mimic complex deep neural networks. We show that the interpretation to
predictions of the deep model can be given by analyzing the tree structure and local
linear regression models of a mimic oblique model tree.

In general, our proposed OpenBox and OMT fit different application scenarios. Specifi-
cally, if given a piecewise linear neural network whose hidden states and parameter values
are reachable, OpenBox is a good choice to provide trustworthy interpretations to predic-
tions efficiently. If given a non-piecewise linear neural network or the hidden states are
unreachable, OMT can be used to provide interpretation by approximation. However, the
interpretation given by OpenBox is intuitively more trustworthy and precise than interpre-
tations given by OMT, since OpenBox provides interpretations based on the closed-form ex-
pression of piecewise linear neural networks, while OpenBox provides approximation-based
interpretations.

We also investigate model complexity from the perspective of piecewise linear property:
In recent years, the piecewise linear property has been adopted to investigate model com-
plexity [90, 104], generalization [97] and robustness [25]. Most of these studies are based
on deep neural networks with piecewise linear activation functions. However, there is still
limited research on understanding deep neural networks with smooth curve activation func-
tions. Motivated by this, we investigate the model complexity of deep neural networks with
smooth curve activation functions.
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• We propose a model complexity measure approach to deep neural networks with
smooth curve activation functions. We design a framework to make neural networks
with curve activation functions benefit from the piecewise linear property. We pro-
pose a piecewise linear approximation of deep neural networks with curve activation
functions, namely the piecewise linear neural network. We analyze the approximation
degree of the piecewise linear approximation model to a network with curve activa-
tion functions, in view of the approximation error in layer propagation. Then, we
provide an efficient algorithm to build the piecewise linear approximation. The piece-
wise linear approximation gives deep neural networks with curve activation functions
the piecewise linear property. We also measure the model complexity and provide an
interpretation analysis to networks based on the piecewise linear approximation.

6.2 Future Directions

Piecewise linear property is a valuable perspective to explore the understanding of deep
learning models. In addition to the exploration of model interpretability and model com-
plexity, which we discussed in this thesis, there is some other worth exploring problems
and applications. For example, can we obtain an average interpretation of a given specific
group of data with some common features? Such a group of data may correspond to a set of
neighbor linear regions in the input space. Also, although the exact number of linear regions
generated by a piecewise linear neural network is unable to be calculated, can we come out
an estimation of the average number of linear regions, as a representation of the effective
complexity measure? We will continue to explore these important future directions. Below
we introduce two of these future potential directions in detail.

6.2.1 Constraining Model Complexity of Deep Learning Models during
Training.

In Chapter 2, we discuss the study of model complexity of deep neural networks and then
propose a model complexity measure for deep neural networks with curve activation func-
tions in Chapter 5. In these discussions, we demonstrate the necessity of studying model
complexity in deep learning. However, understanding deep learning model complexity is still
at an early stage, and more exploration is expected.

Constraining model complexity during the training process is a meaningful and interest-
ing future direction. Deep learning models are always over-parameterized and have a high
expressive capacity. A deep learning model trained on a given task may have a high effective
complexity, even to the point of redundancy. Preventing the model from being unnecessary
high complexity is expected to bring many benefits, including increasing the interpretabil-
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ity of the model, preventing the model from the occurrence of overfitting, and making the
model easier to compress and migrate, among others. Thus constraining model complexity
may be helpful for understanding deep neural network.

However, one important challenge is that constraining model complexity during training
calls for a feasible representation of effective model complexity. This requires the complexity
measure metric to be able to distinguish situations in which the model is trained twice to
zero training error but has a different effective model complexity. In addition, the time
cost to measure model complexity should be low and avoid adding a high time cost to the
training process.

We look forward to finding a better model complexity constraint approach than existing
regularization methods which implicitly constrain model complexity. Such an approach is
expected to not increase the difficulty of training the model. High-efficiency model train-
ing and model complexity constraints must be able to proceed at the same time. On the
other hand, the degree of complexity constraint should be more than existing regularization
approaches.

Here we propose a possible idea to implement model complexity constraints during the
training of models with piecewise linear activation functions, which is based on the piecewise
linear property. Taking the number of linear regions as a representation of model complexity,
constraining model complexity means constraining the number of linear regions generated
in the input space. Thus, the challenge is in representing the number of linear regions during
training and deciding how to constrain them during training.

6.2.2 Measuring Model Complexity by the Volume of Information

In this thesis, we demonstrate the necessity of exploring model complexity in deep learning.
We note that the study of the model complexity of deep learning models is still at an early
stage, and that there have been limited explorations until now. Proposing a feasible model
complexity measure is a promising direction. In Chapter 2 and our survey paper, we group
deep learning model complexity into two major problems: the expressive capacity and the
effective complexity. From these two problems, we are most concerned with proposing a
feasible measure for effective complexity.

We are working on potential ways to measure effective model complexity. One idea is
that effective complexity can be represented by the volume of information that a model
contains. The minimum description length principle [108] states that “the best model on
a given dataset is the one that minimizes the combined cost of describing the model and
describing the mismatches between the model and the data.” Early in the 1990s, Hinton and
Camp [59] applied the minimum description length principle to neural networks. The authors
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represented the amount of information in a neural network using the minimum description
length of the model. They proposed keeping a neural network simple by constraining the
amount of information the network contains.

Since the model structure of neural networks has greatly changed in recent decades,
their methods [59] cannot be directly applied to exploring the amount of information in
today’s significantly more complex deep neural networks. However, we suggest that finding
a method to represent the amount of information (i.e. a minimum description length) in
deep neural networks would be a good avenue for studying effective model complexity.
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