5 research outputs found

    On the possibility of predicting glycaemia 'on the fly' with constrained IoT devices in type 1 diabetes mellitus patients

    Get PDF
    Type 1 Diabetes Mellitus (DM1) patients are used to checking their blood glucose levels several times per day through finger sticks and, by subjectively handling this information, to try to predict their future glycaemia in order to choose a proper strategy to keep their glucose levels under control, in terms of insulin dosages and other factors. However, recent Internet of Things (IoT) devices and novel biosensors have allowed the continuous collection of the value of the glucose level by means of Continuous Glucose Monitoring (CGM) so that, with the proper Machine Learning (ML) algorithms, glucose evolution can be modeled, thus permitting a forecast of this variable. On the other hand, glycaemia dynamics require that such a model be user-centric and should be recalculated continuously in order to reflect the exact status of the patient, i.e., an ‘on-the-fly’ approach. In order to avoid, for example, the risk of being disconnected from the Internet, it would be ideal if this task could be performed locally in constrained devices like smartphones, but this would only be feasible if the execution times were fast enough. Therefore, in order to analyze if such a possibility is viable or not, an extensive, passive, CGM study has been carried out with 25 DM1 patients in order to build a solid dataset. Then, some well-known univariate algorithms have been executed in a desktop computer (as a reference) and two constrained devices: a smartphone and a Raspberry Pi, taking into account only past glycaemia data to forecast glucose levels. The results indicate that it is possible to forecast, in a smartphone, a 15-min horizon with a Root Mean Squared Error (RMSE) of 11.65 mg/dL in just 16.15 s, employing a 10-min sampling of the past 6 h of data and the Random Forest algorithm. With the Raspberry Pi, the computational effort increases to 56.49 s assuming the previously mentioned parameters, but this can be improved to 34.89 s if Support Vector Machines are applied, achieving in this case an RMSE of 19.90 mg/dL. Thus, this paper concludes that local on-the-fly forecasting of glycaemia would be affordable with constrained devices.The authors would like to thank to the Endocrinology Department of the Morales Meseguer and Virgen de la Arrixaca hospitals of the city of Murcia (Spain). This work has been sponsored by the Spanish Ministry of Economy and Competitiveness through 387 the PERSEIDES (ref. TIN2017-86885-R) and CHIST-ERA (ref. PCIN-2016-010) projects; by MINECO grant BES-2015-071956 and by the European Comission through the H2020-ENTROPY-649849 EU Projec

    Artificial intelligence in diabetology

    Get PDF
    This review presents the applications of artificial intelligence for the study of the mechanisms of diabetes development and generation of new technologies of its prevention, monitoring and treatment. In recent years, a huge amount of molecular data has been accumulated, revealing the pathogenic mechanisms of diabetes and its complications. Data mining and text mining open up new possibilities for processing this information. Analysis of gene networks makes it possible to identify molecular interactions that are important for the development of diabetes and its complications, as well as to identify new targeted molecules. Based on the big data analysis and machine learning, new platforms have been created for prediction and screening of diabetes, diabetic retinopathy, chronic kidney disease, and cardiovascular disease. Machine learning algorithms are applied for personalized prediction of glucose trends, in the closed-loop insulin delivery systems and decision support systems for lifestyle modification and diabetes treatment. The use of artificial intelligence for the analysis of large databases, registers, and real-world evidence studies seems to be promising. The introduction of artificial intelligence systems is in line with global trends in modern medicine, including the transition to digital and distant technologies, personification of treatment, high-precision forecasting and patient-centered care. There is an urgent need for further research in this field, with an assessment of the clinical effectiveness and economic feasibility

    On the possibility of predicting glycaemia ‘on the fly’ with constrained IoT devices in type 1 diabetes mellitus patients

    No full text
    Type 1 Diabetes Mellitus (DM1) patients are used to checking their blood glucose levels several times per day through finger sticks and, by subjectively handling this information, to try to predict their future glycaemia in order to choose a proper strategy to keep their glucose levels under control, in terms of insulin dosages and other factors. However, recent Internet of Things (IoT) devices and novel biosensors have allowed the continuous collection of the value of the glucose level by means of Continuous Glucose Monitoring (CGM) so that, with the proper Machine Learning (ML) algorithms, glucose evolution can be modeled, thus permitting a forecast of this variable. On the other hand, glycaemia dynamics require that such a model be user-centric and should be recalculated continuously in order to reflect the exact status of the patient, i.e., an 'on-the-fly' approach. In order to avoid, for example, the risk of being disconnected from the Internet, it would be ideal if this task could be performed locally in constrained devices like smartphones, but this would only be feasible if the execution times were fast enough. Therefore, in order to analyze if such a possibility is viable or not, an extensive, passive, CGM study has been carried out with 25 DM1 patients in order to build a solid dataset. Then, some well-known univariate algorithms have been executed in a desktop computer (as a reference) and two constrained devices: a smartphone and a Raspberry Pi, taking into account only past glycaemia data to forecast glucose levels. The results indicate that it is possible to forecast, in a smartphone, a 15-min horizon with a Root Mean Squared Error (RMSE) of 11.65 mg/dL in just 16.15 s, employing a 10-min sampling of the past 6 h of data and the Random Forest algorithm. With the Raspberry Pi, the computational effort increases to 56.49 s assuming the previously mentioned parameters, but this can be improved to 34.89 s if Support Vector Machines are applied, achieving in this case an RMSE of 19.90 mg/dL. Thus, this paper concludes that local on-the-fly forecasting of glycaemia would be affordable with constrained devices
    corecore