93 research outputs found

    Optimizing Pilot Overhead for Ultra-Reliable Short-Packet Transmission

    Full text link
    In this paper we optimize the pilot overhead for ultra-reliable short-packet transmission and investigate the dependence of this overhead on packet size and error probability. In particular, we consider a point-to-point communication in which one sensor sends messages to a central node, or base-station, over AWGN with Rayleigh fading channel. We formalize the optimization in terms of approximate achievable rates at a given block length, pilot length, and error probability. This leads to more accurate pilot overhead optimization. Simulation results show that it is important to take into account the packet size and the error probability when optimizing the pilot overhead.Comment: To be published on IEEE ICC 2017 Communication Theory Symposiu

    Ultra-Reliable Short Message Cooperative Relaying Protocols under Nakagami-m Fading

    Full text link
    In the next few years, the development of wireless communication systems propel the world into a fully connected society where the Machine-type Communications (MTC) plays a substantial role as key enabler in the future cellular systems. MTC is categorized into mMTC and uMTC, where mMTC provides the connectivity to massive number of devices while uMTC is related to low latency and ultra-high reliability of the wireless communications. This paper studies uMTC with incremental relaying technique, where the source and relay collaborate to transfer the message to a destination. In this paper, we compare the performance of two distinct cooperative relaying protocols with the direct transmission under the finite blocklength (FB) regime. We define the overall outage probability in each relaying scenario, supposing Nakagami-m fading. We show that cooperative communication outperforms direct transmission under the FB regime. In addition, we examine the impact of fading severity and power allocation factor on the outage probability and the minimum delay required to meet the ultra-reliable communication requirements. Moreover, we provide the outage probability in closed form

    Joint Power and Blocklength Optimization for URLLC in a Factory Automation Scenario

    Get PDF
    Ultra-reliable and low-latency communication (URLLC) is one of three pillar applications defined in the fifth generation new radio (5G NR), and its research is still in its infancy due to the difficulties in guaranteeing extremely high reliability (say 10 -9 packet loss probability) and low latency (say 1 ms) simultaneously. In URLLC, short packet transmission is adopted to reduce latency, such that conventional Shannon's capacity formula is no longer applicable, and the achievable data rate in finite blocklength becomes a complex expression with respect to the decoding error probability and the blocklength. To provide URLLC service in a factory automation scenario, we consider that the central controller transmits different packets to a robot and an actuator, where the actuator is located far from the controller, and the robot can move between the controller and the actuator. In this scenario, we consider four fundamental downlink transmission schemes, including orthogonal multiple access (OMA), non-orthogonal multiple access (NOMA), relay-assisted, and cooperative NOMA (C-NOMA) schemes. For all these transmission schemes, we aim for jointly optimizing the blocklength and power allocation to minimize the decoding error probability of the actuator subject to the reliability requirement of the robot, the total energy constraints, as well as the latency constraints. We further develop low-complexity algorithms to address the optimization problems for each transmission scheme. For the general case with more than two devices, we also develop a low-complexity efficient algorithm for the OMA scheme. Our results show that the relay-assisted transmission significantly outperforms the OMA scheme, while the NOMA scheme performs well when the blocklength is very limited. We further show that the relay-assisted transmission has superior performance over the C-NOMA scheme due to larger feasible region of the former scheme

    Multihop Diversity in Wideband OFDM Systems: The Impact of Spatial Reuse and Frequency Selectivity

    Full text link
    The goal of this paper is to establish which practical routing schemes for wireless networks are most suitable for wideband systems in the power-limited regime, which is, for example, a practically relevant mode of operation for the analysis of ultrawideband (UWB) mesh networks. For this purpose, we study the tradeoff between energy efficiency and spectral efficiency (known as the power-bandwidth tradeoff) in a wideband linear multihop network in which transmissions employ orthogonal frequency-division multiplexing (OFDM) modulation and are affected by quasi-static, frequency-selective fading. Considering open-loop (fixed-rate) and closed-loop (rate-adaptive) multihop relaying techniques, we characterize the impact of routing with spatial reuse on the statistical properties of the end-to-end conditional mutual information (conditioned on the specific values of the channel fading parameters and therefore treated as a random variable) and on the energy and spectral efficiency measures of the wideband regime. Our analysis particularly deals with the convergence of these end-to-end performance measures in the case of large number of hops, i.e., the phenomenon first observed in \cite{Oyman06b} and named as ``multihop diversity''. Our results demonstrate the realizability of the multihop diversity advantages in the case of routing with spatial reuse for wideband OFDM systems under wireless channel effects such as path-loss and quasi-static frequency-selective multipath fading.Comment: 6 pages, to be published in Proc. 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications (IEEE ISSSTA'08), Bologna, Ital
    • …
    corecore