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Abstract

Ultra-reliable and low-latency communication (URLLC) is one of three pillar applications defined

in the fifth generation new radio (5G NR), and its research is still in its infancy due to the difficulties

in guaranteeing extremely high reliability (say 10−9 packet loss probability) and low latency (say 1 ms)

simultaneously. In URLLC, short packet transmission is adopted to reduce latency, such that conventional

Shannon’s capacity formula is no longer applicable, and the achievable data rate in finite blocklength

becomes a complex expression with respect to the decoding error probability and the blocklength. To

provide URLLC service in a factory automation scenario, we consider that the central controller transmits

different packets to a robot and an actuator, where the actuator is located far from the controller, and the

robot can move between the controller and the actuator. In this scenario, we consider four fundamental

downlink transmission schemes, including orthogonal multiple access (OMA), non-orthogonal multiple

access (NOMA), relay-assisted, and cooperative NOMA (C-NOMA) schemes. For all these transmission

schemes, we aim for jointly optimizing the blocklength and power allocation to minimize the decoding

error probability of the actuator subject to the reliability requirement of the robot, the total energy

constraints, as well as the latency constraints. We further develop low-complexity algorithms to address

the optimization problems for each transmission scheme. For the general case with more than two

devices, we also develop a low-complexity efficient algorithm for the OMA scheme. Our results show

that the relay-assisted transmission significantly outperforms the OMA scheme, while NOMA scheme

performs well when the blocklength is very limited. We further show that the relay-assisted transmission

has superior performance over the C-NOMA scheme due to larger feasible region of the former scheme.

I. INTRODUCTION

The fifth-generation (5G) networks are envisaged to support three pillar use cases: enhanced

mobile broadband (eMBB), massive machine type communication (mMTC), and mission-critical
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internet of things (IoT) [1]. Extensive research has focused on eMBB and mMTC, but the research

on mission-critical IoT is still in its infancy [2]–[6]. The applications of mission-critical tasks

include factory automation (FA), autonomous driving, remote surgery, smart grid automation,

unmanned aerial vehicles (UAVs) control information delivery [7], which require ultra reliable

and low latency communication (URLLC) [8]–[10]. For example, in Industrial 4.0 [11], wired

connection will be replaced by wireless transmission to enhance the flexibility and reduce the

infrastructure cost. This change imposes challenging requirements on the wireless transmission in

terms of latency and reliability [12]. For mission-critical tasks in FA, the transmission duration

is expected to be lower than 100 µs to allow processing delays during queuing, scheduling,

backhaul transmission, and propagation [13], while guaranteeing the packet error probability of

10−9.

In conventional human-to-human (H2H) communications, the transmission delay is relatively

long (say 20-30 ms) and the packet size is large (say 1500 bytes), thus Shannon’s capacity can be

served as a tight upper bound of the achievable data rate due to the law of large numbers [14]. In

contrast, in URLLC, the packet size should be extremely low (say 20 bytes) to support the low-

latency transmission [13]. In this case, Shannon’s capacity formula is no longer applicable as the

law of large numbers is not valid. Thus, the achievable data rate under short blocklength needs

to be retreated. In [15], the achievable data rate in finite blocklength regime has been derived

as a complicated function of the signal-to-noise (SNR), the blocklength, and the decoding error

probability.

Recently, extensive research attention has been devoted to the short packet transmission (SPT)

design [16]–[26]. In particular, the frame structure is designed in [16] for SPT, where their results

showed that it is beneficial to group multiple messages from some users into a single packet

based on approximations from finite blocklength information theory. In [17], She et al. studied

the network available range maximization problem by dynamically selecting the transmission

modes between device-to-device (D2D) and cellular links. The non-asymptotic upper and lower

bounds on the coding rate for SPT over a Rician memoryless block-fading channel were derived

in [18] under a given packet error probability requirement. The overall error probability of

relay-assisted transmission under finite blocklength was derived in [19] under the assumption

of perfect channel state information (CSI). They further extended this model to the quasi-static

Rayleigh channels where only the average CSI is available at the source in [20], as well as

to the two-way amplify-and-forward relay network in [21]. Recently, the delay and decoding
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error probability were analyzed in [22] for simultaneous wireless information and power transfer

(SWIPT) relay-assisted system, where the relay first harvests energy from the source and then

uses the harvested energy to forward the source’s information to the destination node.

The aforementioned studies [16]–[22] mainly focused on the performance analysis of finite

blocklength transmission. In order to design a practical URLLC system, it is imperative to

intelligently optimize the resource allocation including blocklength and power allocation under

the given error probability and latency requirements. Unfortunately, the achievable coding rate

expression is neither convex nor concave with respect to the blocklength and the transmit power,

which brings the difficulty in obtaining the globally optimal solution [5]. This motivates the recent

studies in resource allocation for the SPT in [23]–[27]. Specifically, the average throughput and

the max-min throughput optimization under the latency constraint was solved via the exhaustive

search method with high complexity in [23]. Sun et al. in [24] considered the SPT for a two-

user downlink non-orthogonal multiple access (NOMA) system, with an aim to maximize the

throughput of user 1 subject to the throughput requirements for user 2. Note that the decoding

error probability requirement has not been considered in [23] and [24], and the throughput

is less important in URRLC as only control signals or measurement data with small packet

size are transmitted in URLLC. In [25], She et al. jointly optimized the uplink and downlink

transmission blocklengths to minimize the required total bandiwidth based on statistical channel

state information (CSI). However, the optimization is based on the simplified expression of the

rate for SPT, which cannot accurately characterize the relationship between the decoding error

probability and blocklength. In addition, several approximations are involved in the derivation of

the decoding error probability for each user due to the fact that only statistical CSI is available.

Most recently, Hu et al. [26] considered SWIPT in relay-assisted URLLC systems, where the

SWIPT parameters and blocklength are jointly optimized to maximize the reliability performance.

However, the decoding error probability at the relay cannot be guaranteed and the power is

assumed to be fixed in [26]. Most recently, in [27] we jointly optimize the blocklength and

unmanned aerial vehicle’s (UAV’s) location to minimize the decoding error probability while

guaranteeing the latency requirement and decoding error probability target. However, the power

allocation was not considered. Furthermore, the optimization over UAV’s location is obtained

by observing the curve of the second-order derivative of the objective function over location

variable without strict proof.

In this paper, we consider a typical mission-critical scenario (i.e., a FA scenario), where the
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central controller needs to transmit a certain amount of different data to two devices within

a given transmission time and under a very low packet error probability. One device named

actuator is located far away from the controller, while the other device named robot can move

between the controller and the actuator. We consider four fundamental transmission schemes,

namely, orthogonal multiple access (OMA), NOMA, relay-assisted transmission and cooperative

NOMA (C-NOMA). In this scenario, we aim for jointly optimizing the blocklength and the

transmit power of these two devices to minimize the decoding error probability for the actuator

while guaranteeing the decoding error probability for the robot, taking into account the energy

and blocklength constraints, which were not considered in [24]–[26] and new methods needs to

be developed. The main contributions of this paper are summarized as follows:

1) For the OMA scheme, we first prove that both the decoding error probability and energy

constraints hold with equality at the optimal point, and then propose a novel iterative

algorithm to obtain tight lower and upper bounds of the blocklength to reduce the search

complexity. A low-complexity algorithm is proposed to find the globally optimal solution

of transmit power. For the case of more than two devices, we also develop a novel

low-complexity algorithms to find the suboptimal solution of the optimization problem.

2) For the NOMA scheme, the search set of blocklength is first derived to reduce the search

complexity. In contrast to the OMA case, the decoding error probability function for each

given blocklength in the NOMA case is non-continuous with respect to the transmit power,

which complicates the optimization problem. Fortunately, we rigorously proved that the

decoding error probability holds with equality at the optimal point, such that the one-

dimensional line search algorithm can be used to find the optimal solution. We also provide

a sufficient condition when the decoding error probability function is a convex function,

which facilitates the application of a low-complexity bisection search method.

3) For the relay-assisted scheme, we also adopt the iterative algorithm to reduce the search

complexity of blocklength. Unlike the OMA and NOMA schemes, the decoding error

probability constraint of relay-assisted transmission does not hold with equality. To resolve

this issue, we fix the blocklength, such that the original optimization problem is reduced

to a one-dimension search optimization problem.

4) For the C-NOMA scheme, we adapt the iterative algorithm to reduce the search complexity

of blocklength, and then one-dimension search is proposed to find the optimal transmit
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power. For the special case, low-complexity bisection search method is applied.

5) To compare the performance of our proposed four transmission schemes, we perform exten-

sive simulation results, which show that the relay-assisted scheme significantly outperforms

the other three schemes for most times in terms of both the decoding error probability and

the network availability. Our results demonstrate the effectiveness of relaying transmission

in enhancing the reliability performance in the industrial automation scenario.

The remainder of this paper is organized as follows. In Section II, the system model and the

problem formulation are provided. In Section III, the transmission scheme is presented. The

general case with more than two devices is considered in Section IV. Simulation results and

analysis are presented in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. System model

Consider a downlink communication in one factory, where a central controller serves a robot

and an actuator as shown in Fig. 1. The robot is assumed to be located in the vicinity of the

controller, and the actuator is far away from the controller. Both the robot and the actuator are

equipped with a single antenna. The controller needs to transmit two small packets to the two

devices. The packet sizes for the actuator and the robot are assumed to be the same, and are

denoted as D bits.

The transmission of these two packets is subject to a latency constraint, i.e., the transmission

has to finish within M symbols or channel uses. The transmission time corresponds to tmax =

MTs seconds, where Ts is the symbol duration that is equal to 1/B with B as the system

bandwidth. For the applications with URLLC requirement, short frame structure is adopted and

the end-to-end delay should be kept within 1 ms [8], which is much shorter than the channel

coherence time. Hence, the channels are quasi-static fading and remain constant during the whole

transmission. The channel fading coefficients from the central controller to the robot and the

actuator are denoted as h̃1 and h̃2, respectively. The channel fading coefficient between the robot

and the actuator is denoted as h̃3. We also assume that these channels are perfectly known at the

controller, and the total energy consumption of the system should be below Ẽtot Joule. Since

we have assumed that the actuator is far away from the controller, the channel power gain
∣∣∣h̃2

∣∣∣2
is very small.
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Fig. 1: Illustration of a Factory Automation Scenario.

B. Achievable data rate for a simple point-to-point system

The data rate (coding rate) R of a communication system is defined as the fraction of the

number of information bits to the number of transmission symbols. According to Shannon’s

coding theorem, the Shannon capacity is defined as the highest coding rate that there exists an

encoder/decoder pair whose decoding error probability becomes negligible when the blocklength

approaches infinity [28]. However, in URLLC, the blocklength for each frame is limited and

small, in this case, the decoding error probability at the receiver cannot be ignored.

In URLLC scenarios, the required transmission delay is much shorter than the channel co-

herence time, thus the channel is quasi-static. According to the results in [29], for a simple

point-to-point communication system transmitting over a quasi-static Rayleigh fading channel,

the channel dispersion is zero and the achievable data rate converges to the outage capacity as

the blocklength increases. However, the closed-form expression of the outage capacity for short-

packet transmission is unavailable. In [15], the normal approximation was adopted to approximate

the coding rate R at finite blocklength, which is given by

R ≈ log2(1 + γ)−
√
V

m

Q−1 (ε)

ln 2
, (1)

where m is the channel blocklength, ε is the decoding error probability, γ denotes the signal-

to-noise ratio (SNR) at the receiver, Q−1 (·) is the inverse function Q(x)= 1√
2π

∫∞
x
e−

t2

2 dt, and

V is given by V =1− (1 + γ)−2. As shown in the numerical results in [29], this approximation

is very accurate when m is larger than 50, which is the case in our simulations. From (1), the

decoding error probability can be obtained as follows:

ε = Q (f (γ,m,D)) , (2)

where f (γ,m,D) = ln 2
√

m
V

(
log2(1 + γ)− D

m

)
. In the following, we aim to jointly optimize

the transmission blocklength and power to minimize the decoding error probability for four

different transmission schemes.
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III. TRANSMISSION SCHEMES

In this section, we aim for designing efficient resource allocation algorithms to minimize the

decoding error probability of the actuator under three sets of constraints: 1) the packets for robot

and actuator need to be transmitted within M symbols; 2) the robot should satisfy its reliability

requirement; 3) the total consumed energy should be kept within Ẽtot. The OMA, NOMA,

relay-assisted transmission, and C-NOMA transmission schemes are studied in the following

subsections.
A. OMA transmission

The OMA scheme is the simplest transmission scheme, where the controller serves the robot

and the actuator in two different orthogonal channel uses or blocklengths. In detail, the controller

transmits signal x1 to the robot with m1 blocklength. Due to this orthogonal property, the received

signal at the robot can be represented as
y1 =

√
p1h̃1x1 + n1, (3)

where p1 is the transmit power of the robot, n1 is the zero-mean additive complex white Gaussian

noise (AWGN) with variance σ2
1 , x1 carries information knowledge for the robot with packet

size D. Hence, the coding rate at the robot is given by D/m1.

From (3), the received signal to noise ratio (SNR) at the robot is given by

γ1 = p1h1, (4)

where h1 = |h̃1|2/σ2
1 denotes the normalized channel gain from the controller to the robot. Then,

according to (2), the decoding error probability of x1 at the robot is given by

ε1 = Q (f (γ1,m1, D)) . (5)

The controller transmits signal x2 to the actuator with blocklength equal to m2. The corre-

sponding error probability at the actuator is derived as

ε2 = Q (f (γ2,m2, D)) , (6)

where γ2 = p2h2 with p2 as the transmit power of the actuator and h2 = |h̃2|2/σ2
2 as the

normalized channel gain for the actuator. Without loss of generality (w.l.o.g.), we assume that

in this paper the robot has higher normalized channel gain than the actuator, i.e., h1 > h2.

The resource allocation problem for the OMA transmission can be formulated as:
min

{m1,m2,p1,p2}
ε2 (7a)

s.t. ε1 ≤ εmax
1 , (7b)

m1p1 +m2p2 ≤ Etot, (7c)

m1 +m2 ≤M, (7d)

m1,m2 ∈ Z, (7e)
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where constraint in (7b) is the decoding error probability requirement of the robot, constraint

(7c) ensures the system total energy consumption is within a budget Ẽtot = EtotTs, (7d) is the

constraint on the latency constraint, and constraint (7e) ensures that the blocklength for each

transmission phase is integer with Z denoting the positive integer set. The maximum decoding

error probability εmax
1 is assumed to be much less than 0.1 to ensure the stringent reliability

requirement, and this assumption holds for the remaining transmission schemes. As a result, ε1

should be smaller than 0.1. Then, the inequality D
m1

< log2(1 + γ1) should hold.

To solve the optimization problem in (7), we first provide the following lemma.

Lemma 1: Constraints (7b) and (7c) hold with equality at the optimum solution.

Proof : Please see Appendix A.

With m1 and m2 to be integers, the exhaustive search method can be used to find the optimal

solution. To reduce the search complexity when M is large, we shorten the search range of m1

and m2. In the following, we aim to derive the bounds of m1 and m2.

1) The upper and lower bounds of m1 and m2: Since εmax
1 is assumed to be a very small

value that is much smaller than 10−1, a necessary condition for constraint (7b) to hold is that

log2 (1 + p1h1) > D/m1
1, which leads to

p1 >
(

2
D
m1 − 1

)
/h1. (8)

On the other hand, based on the energy constraint (7c), we have: p1 < Etot/m1. Thus, the

blocklength allocation of the robot m1 should satisfy the following inequality:

Etot >
m1

h1

(2
D
m1 − 1)

∆
= g(m1). (9)

To investigate the properties of g(m1), the first-order and second-order derivatives of function

g(m1) w.r.t. m1 are give by
g′(m1) = 2

D
m1 − 1− ln 2 · D

m1

2
D
m1 , (10)

g′′(m1) = (ln 2)2 · D
2

m3
1

2
D
m1 ≥ 0. (11)

Thus, g′(m1) is a monotonically increasing function of m1, and we have

g′(m1) ≤ lim
m1→+∞

g′(m1) = 0. (12)

Hence, function g(m1) is a monotonically decreasing function of m1. Then, we can find the

lower bound of m1 that satisfies the inequality (9) which is denoted as mlb(0)
1 , and m1 should

be no smaller than m
lb(0)
1 , i.e., m1 ≥ m

lb(0)
1 . Similarly, for practical applications, the decoding

1 This can be proved as follows: ε1 = Q (f (γ1,m1, D)) < εmax
1 < 0.5 = Q (0). Since Q-function is a decreasing function,

we have f (γ1,m1, D) > 0. By substituting the expression of f (γ1,m1, D), the proof is complete.
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error probability of the actuator ε2 should be very small, e.g., much lower than 0.5. In this case,

the inequality log2 (1 + p2h2) > D/m2 should hold, which leads to

p2 >
(

2
D
m2 − 1

)
/h2. (13)

By using the inequality m2 ≤M −mlb(0)
1 , we have

m2p2 ≥
m2

h2

(
2

D
m2 − 1

)
≥ M −mlb(0)

1

h2

(
2

D

M−m
lb(0)
1 − 1

)
∆
= A(0). (14)

By using constraint (7c), we have

Etot − A(0) >
m1

h1

(
2

D
m1 − 1

)
. (15)

By using (15), the updated lower bound of m1 can be obtained, and denoted as mlb(1)
1 . Similar

to (14), we can obtain A(1) by substituting mlb(1)
1 into mlb(0)

1 , and the lower bound of m1 can be

obtained by using (15), where A(0) is replaced by A(1), and the updated lower bound is denoted

as mlb(2)
1 . Repeat the above procedure until mlb(n)

1 = m
lb(n−1)
1 or mlb(n)

1 = M − mlb(0)
2 . Then,

denote the final lower bound of m1 as mlb
1 .

This procedure is proved to converge as follows. By using A(0) ≥ 0 and comparing (9) and

(15), we can obtain mlb(1)
1 ≥ m

lb(0)
1 , and thus A(1) ≥ A(0), which leads to mlb(2)

1 ≥ m
lb(1)
1 . Hence,

the sequence of the lower bound mlb(n)
1 is monotonically increasing. Furthermore, the sequence

is upper bounded by M − m
lb(0)
2 . As a result, the sequence generated by the above iterative

procedure is guaranteed to converge.

By using the similar iterative procedure, we can also obtain the lower bound of m2, which is

denoted as mlb
2 . As a result, the search region of m1 is given by mlb

1 ≤ m1 ≤ (M−mlb
2 )

∆
= mub

1 .

For each given m1, we need to find the search range of m2, which is detailed as follows. The

optimal p1 can be obtained by solving the equation ε1 = εmax
1 with given m1, which is denoted

as p∗1. The solution can be readily obtained by using the bisection search method due to the fact

that ε1(p1) is a monotonically decreasing function of p1. Then, we have

Etot −m1p
∗
1 = m2p2 ≥

m2

h2

(
2

D
m2 − 1

)
. (16)

Hence, the lower bound of m2 with given m1 (denoted as mlb
2 (m1)) can be obtained from

(16), which is the minimum integer that satisfies (16). Obviously, the upper bound of m2 with

given m1 is M −m1. Hence, the search region of m2 is given by mlb
2 (m1) ≤ m2 ≤ (M −m1).
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2) Algorithm to solve Problem (7): Based on the above analysis, the algorithm to solve

Problem (7) is given in Algorithm 1. The main idea can be summarized as follows. For each

given integer value of m1 that satisfies mlb
1 ≤ m1 ≤ mub

1 , we calculate the value of ε1 when p1 is

set as Etot/m1. If ε1 > εmax
1 , then the value of m1 is not feasible, and we increase the value of m1

by one and continue to check the updated m1. Otherwise, we apply the bisection search method

to find the value of p1 such that ε1 = εmax
1 due to the monotonically decreasing property of

decoding error probability ε1 w.r.t. p1 [24]. By using Lemma 1, we have m2p2 = Etot −m1p1.

The search range of m2 is given by mlb
2 (m1) ≤ m2 ≤ M − m1. For each given m2, the

corresponding p2 is given by p2 = (Etot − m1p1)/m2, and we can calculate the value of ε2.

For each feasible m1, we can find the optimal solutions for m2 and p2 that yield the minimum

value of ε2, respectively. At last, we check all feasible m1 in the range of mlb
1 ≤ m1 ≤ mub

1 ,

and choose the final globally optimal solution.

Algorithm 1: Algorithm for Problem (7)
Input : h1, h2, D,M, εmax

1 , Etot
Output: p?1, p?2,m?

1,m
?
2

1 Apply the iterative procedure to calculate mlb
1 ,m

ub
1 and mlb

2 ;
2 for m1 = mlb

1 : mub
1 do

3 Set p1 = Etot/m1, and calculate the value of ε1.
4 if ε1 > εmax

1 then
5 The current m1 is not feasible, and return to the next m1;
6 else
7 Use (16) to find the lower bound of m2, denoted as mlb

2 (m1). Apply the bisection
search method to find the value of p1 such that ε1 = εmax

1 ;
8 for m2 = mlb

2 (m1) : M −m1 do
9 Calculate p2 = (Etot −m1p1)/m2, and the value of ε2, denoted as ε2(m1,m2).

10 end
11 Given m1, find the blocklength m2 with the minimum value of ε2(m1,m2):

m#
2

∣∣∣
m1

= arg min
mlb

2 ≤m2≤M−m1

ε2 (m1,m2) .

12 end
13 end
14 Return m?

1 = arg min
mlb

1 ≤m1≤mub
1

ε2

(
m1, m

#
2

∣∣∣
m1

)
,m?

2 = m#
2

∣∣∣
m?

1

and the corresponding p?1 and p?2.

3) Special case of Problem (7): In steps 8-10 of Algorithm 1, one has to calculate the value

of ε2 for each m2, which may incur high complexity. In this subsection, we consider one special

case when the SNR value γ is very high, i.e., γ � 1. In this case, V in (2) can be approximated

as one, i.e., V ≈ 1 2. The optimization problem in this special case can be efficiently solved.

2 In general, when γ > 20 dB, the value of V is larger than 0.99, which can be approximated as one.
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Specifically, the decoding error probability in (2) can be approximated as

ε̃ = Q
(
f̃ (γ,m,D)

)
, (17)

where f̃ (γ,m,D) = ln 2
√
m
(
log2(1 + γ)− D

m

)
.

For given m1 and p1, the product of m2 and p2 should satisfy m2p2 = Etot − m1p1
∆
= E2

according to Lemma 1. Then, the original problem defined in (7) can be transformed to the

following optimization problem:

min
mlb

2 ≤m2≤M−m1,m2∈Z
Q
(
f̃ (γ2,m2, D)

)
. (18)

Since Q-function is a decreasing function, the above problem is equivalent to the following

problem by substituting p2 = E2/m2 into it as

max
mlb

2 ≤m2≤M−m1,m2∈Z
ln 2
√
m2

(
log2

(
1+

E2h2

m2

)
−D
m2

)
. (19)

To solve the above problem, we first relax the integer variable m2 to a continuous variable,

and define
g̃(m2)

∆
=
√
m2

(
log2

(
1 +

E2h2

m2

)
− D

m2

)
. (20)

In the following theorem, we provide a sufficient condition for g̃(m2) to be a concave function.

Theorem 1: g̃(m2) is a concave function when E2h2
M−m1

≥ e−1, where e is the natural constant.

Proof : Please see Appendix B.

When the condition in Theorem 1 is satisfied, Problem (19) is a convex optimization problem.

If g̃′(mlb
2 ) ≤ 0, the optimal m2 is given by m2 = mlb

2 . If g̃′(M − m1) ≥ 0, the optimal m2

is m2 = M − m1. Otherwise, the optimal m∗2 satisfies g̃′(m2) = 0, and the low-complexity

bisection search method can be used to find m∗2. The final optimal integer m2 is the one with

lower objective value for its two neighbor integers, i.e., bm∗2c and bm∗2c+ 1.

B. NOMA transmission

In NOMA transmission, superposition coding is employed at the controller so that the con-

troller can transmit signals to the two devices simultaneously with different power levels. The

controller allocates higher transmit power to the user with lower channel gains and lower power

to the one with higher channel gains. On the one hand, the robot decodes the actuator’s signal

first. If decoding correctly, the robot will subtract the actuator’s signal from its received signals

and decodes its own signal. This is the so-called successive interference cancellation (SIC).

Otherwise, it has to decode its own signal by treating actuator’s information as interference.
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On the other hand, the actuator directly decodes its own signal by treating the robot’s signal as

interference since the controller allocates higher transmit power than the robot. To implement

this scheme, it is crucial that the robot knows whether SIC is successful or not. To this end, we

assume that the controller sends the actuator’s channel coding information along with the robot’s

channel coding information to the robot through dedicated error-free channels. The channel

coding information for both devices are different and the channel coding can assist in detecting

whether the decoded information is correct or not. Hence, the robot knows whether the SIC

is successful or not. In general, the channel coding information changes when CSI changes,

which is much longer than the URLLC transmission. Hence, each channel coherence time can

accommodate multiple URLLC transmissions. Then, the coding information only needs to be

transmitted to the robot at the beginning of channel coherence time, which causes negligible

overhead consumption.

In NOMA, the transmission blocklength for two devices is equal to M . Specifically, the

received signals at the robot and the actuator are given by

y1 =
√
p1h̃1x1 +

√
p2h̃1x2 + n1,

y2 =
√
p1h̃2x1 +

√
p2h̃2x2 + n2,

(21)

where the notations in (21) has the same meaning as those in the OMA transmission scheme.

For the robot, it first decodes the actuator’s signal, where the decoding signal to interference

plus noise ratio (SINR) is given by
γ1

2 =
p2h1

p1h1 + 1
. (22)

Following (2), the decoding error probability of x2 at the robot can be written as ε1
2 =

Q (f (γ1
2 ,M,D)). This equivalently indicates that the information x2 can be accurately cancelled

at the robot with probability 1− ε1
2. Note that this is different from the infinite blocklength case

in NOMA, where perfect decoding can be achieved by the robot. If the SIC is successful, the

robot decodes its signal x1 by removing the decoded signal x2. By using the first equality in

(21), the SINR of decoding the signal x1 is given by
γ1 = p1h1. (23)

Thus, following (2), the decoding error probability of x1 at the robot under perfect SIC

condition is given by ε1 = Q (f (γ1,M,D)). However, if the SIC fails, the robot will decode its

information x1 while treating x2 as interference, and the corresponding SINR is given by

γ̂1 =
p1h1

p2h1 + 1
. (24)

Thus, the decoding error probability of x1 at the robot is given by ε̂1 = Q (f (γ̂1,M,D)). Based
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on the above discussion, the decoding error probability of x1 at the robot is Bernoulli-distributed.

With probability 1− ε1
2, the decoding error probability is equal to ε1, and with probability ε1

2, it

is equal to ε̂1. Hence, the average decoding error probability of x1 at the robot is formulated as

ε̄1 = ε1(1− ε1
2) + ε̂1ε

1
2. (25)

Recall that the actuator directly decodes its own signal by treating the signal from the robot

as interference, and its SINR is given by

γ2 =
p2h2

p1h2 + 1
. (26)

The corresponding decoding error probability is given by ε2 = Q (f (γ2,M,D)).

Now, we can formulate the optimization problem under NOMA transmission as:

min
{p1,p2}

ε2 (27a)

s.t. ε̄1 ≤ εmax
1 , (27b)

Mp1 +Mp2 ≤ Etot, (27c)
p1 ≤ p2, (27d)

where (27d) represents that more power should be allocated to the user with weaker channel

gains.

Similar to the proof of Lemma 1, we can show that the energy constraint in (27c) holds with

equality at the optimum point. Then, we study the feasible range of the power allocation p1 to

facilitate the search algorithm. The expression of ε̄1 can be reexpressed as

ε̄1 = ε1 + (ε̂1 − ε1)ε1
2 ≥ ε1. (28)

By using constraints (27b) and (28), we have ε1 ≤ εmax
1 . By denoting f̄(γ) = f(γ,M,D), the

lower bound of p1 can be derived as

p1 ≥
f̄−1 (Q−1(εmax

1 ))

h1

∆
= plb

1 . (29)

From constraint (27d), we know that p1 ≤ Etot

2M
. To guarantee the meaningfulness of ε1

2, the

inequality log2 (1 + γ1
2) ≥ D/M should hold. Then, we have

p1 ≤
Etot2

− D
M

M
− 1

h1

+
2−

D
M

h1

. (30)

In addition, to guarantee the meaningfulness of ε2, the inequality log2 (1 + γ2) ≥ D/M should

hold, which yields

p1 ≤
Etot2

− D
M

M
− 1

h2

+
2−

D
M

h2

. (31)

Since h1 > h2, the upper bound of p1 is given by
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p1 ≤ min

{
Etot2

− D
M

M
− 1

h2

+
2−

D
M

h2

,
Etot

2M

}
∆
= pub

1 . (32)

To further reduce the search complexity, in the following theorem, we prove that constraint

(27b) holds with equality at the optimum point.

Theorem 2: Constraint (27b) holds with equality at the optimum solution.

Proof: Please see Appendix C.

Based on Theorem 2, we can readily know that the one-dimensional line search algorithm can

be used to find the optimal p?1.

C. Relay-assisted transmission

In this scheme, the robot acts as a relay that assists the transmission for actuator, where

decode-and-forward (DF) relay is assumed at the robot. The packet ID is inserted in the packet

head for each device to differentiate their corresponding data information. The whole blocklength

is divided into two phases, the broadcast phase with blocklength m1 and the relay phase with

blocklength m2, which satisfy the constraint of m1 +m2 ≤M .

In the first phase, the controller broadcasts a large packet that is a combination of two packets

to both devices, where the combined packet size is 2D. The received signals at both devices are

given by
y1,1 =

√
psh̃1x̃1 + n1,

y1,2 =
√
psh̃2x̃1 + n2,

(33)

where ps denotes the power allocated to the combined packet, x̃1 carries the data information

of the combined packet with coding rate 2D/m1. Then, the SNR of the robot to decode the

combined packet is given by γ1 = psh1, and the decoding error probability at the robot is given

by ε1 = Q (f (γ1,m1, 2D)).

Since the robot acts as a relay based on the DF mode, if the robot successfully decodes the

combined packet, it will forward the actuator’s packet to the actuator with coding rate D/m2 in

the second phase, and the received signal at the actuator is given by

y2,2 =
√
prh̃3x2 + n3, (34)

where pr is the transmit power at the actuator. The received SNR is γ2 = prh3, where h3

is the normalized channel gain given by h3 =
∣∣∣h̃3

∣∣∣2/σ2
2 . The error probability is given by

ε2 = Q (f (γ2,m2, D)).

There is a possibility that the actuator cannot decode its packet due to the following two

reasons: 1) the robot is not able to correctly decode the combined packet and will not forward
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anything to the actuator with probability ε1; and 2) the robot correctly decodes the combined

packet and forwards the packet to the actuator with probability 1 − ε1, but with probability

ε2, the actuator fails to decode the packet. In this case the actuator will have to decode the

combined packet by using the received signal from the first phase, i.e., y1,2. The achieved SNR

of the actuator for decoding the combined packet is given by γ̂2 = psh2, and the corresponding

decoding error probability is given by ε̂2 = Q (f (γ̂2,m1, 2D)).

As a result, the expected error probability of the actuator decoding its packet in the relay-

assisted transmission scheme is given by

ε̄2 = ((1− ε1) ε2 + ε1) ε̂2. (35)

Then, the resource allocation problem is formulated as
min

{m1,m2,ps,pr}
ε̄2 (36a)

s.t. ε1 ≤ εmax
1 , (36b)

m1ps +m2pr ≤ Etot, (36c)
m1 +m2 ≤M, (36d)
m1,m2 ∈ Z. (36e)

By using the contradiction method, we can easily prove that constraint (36c) holds with

equality at the optimal solution. However, in contrast to the above two transmission schemes,

the decoding error probability constraint (36b) may not hold with equality at the optimal solution,

as the objective function may also decrease with ε1. The algorithms proposed for the OMA and

NOMA transmission schemes cannot be applied.

By using the similar iterative procedure in OMA scheme, we are able to obtain the feasible

region of m1 as mlb
1 ≤ m1 ≤ mub

1 . For given m1, the search region of m2 can also be obtained

as mlb
2 (m1) ≤ m2 ≤ (M −m1).

In the following, we study the optimization problem of the power allocation ps and pr under

fixed m1 and m2. For each given m2, we can obtain the lower bound of pr to make ε2 meaningful:

pr ≥
(
2D/m2 − 1

)/
h3

∆
= plb

r . Thus, the upper bound of ps can be derived as

ps ≤
Etot

m1

− m2

m1

plb
r

∆
= pup

s . (37)

Hence, the feasible region of ps is given by plb
s ≤ ps ≤ pub

s , where plb
s is the solution to equation

ε1(ps) = εmax
1 with given m1. When ps is given, pr can be calculated as pr = (Etot −m1ps)/m2.

Then, the original optimization problem reduces to a one-dimension optimization problem as
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min
ps

ε̄2 (38a)

s.t. plb
s ≤ ps ≤ pub

s . (38b)

The one-dimensional line search method can be used to solve Problem (38).

In summary, we provide Algorithm 2 to solve Problem (36).

Algorithm 2: Algorithm for Problem (36)
Input : h1, h2, D,M, εmax

1 , Etot
Output: p?s, p?r,m?

1,m
?
2

1 Apply the iterative procedure to calculate mlb
1 ,m

ub
1 and mlb

2 ;
2 for m1 = mlb

1 : mub
1 do

3 Calculate the solution to the equation ε1 = εmax
1 , which is denoted as plb

s . Calculate the
lower bound of m2 with given m1, denoted as mlb

2 (m1).
4 for m2 = m̃lb

2 : (M −m1) do
5 Calculate the upper bound of ps as pub

s in (37), and solve Problem (38). Calculate
the objective value ε̄2(m1,m2).

6 end
7 Given m1, find the blocklength m2 with the minimum value of ε2(m1,m2):

m#
2

∣∣∣
m1

= arg min
m̃lb

2 ≤m2≤M−m1

ε2 (m1,m2) .

8 end
9 Return m?

1 = arg min
mlb

1 ≤m1≤mub
1

ε2

(
m1, m

#
2

∣∣∣
m1

)
,m?

2 = m#
2

∣∣∣
m?

1

and the corresponding p?s and p?r .

D. C-NOMA transmission

In this part, we consider the C-NOMA transmission in [30], which is a combination of the

NOMA scheme and relay-assisted scheme. Specifically, in the first phase, the controller transmits

two signals x1 and x2 to the two devices via the NOMA technique. In the second phase, the

robot acts as a relay and forwards the packet to the actuator. The blocklength for these two

phases are denoted by m1 and m2, which satisfies m1 +m2 ≤M .

Specifically, in the first phase, the received signals at the robot and the actuator are given by

y1,1 =
√
p1h̃1x1 +

√
p2h̃1x2 + n1,

y1,2 =
√
p1h̃2x1 +

√
p2h̃2x2 + n2,

(39)

respectively, where p1 and p2 are the transmit power allocated to the robot and the actuator, x1

and x2 carries different information knowledge for different packets with size D. Hence, the

coding rate for the transmission to the robot and the actuator are given by D/m1.
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By using the NOMA scheme, the SIC technique is employed at the robot side to cancel the

interference from the actuator. Similar to the analysis in the NOMA scheme, the decoding error

probability of x2 at the robot is given by

ε1
2 = Q

(
f
(
γ1

2 ,m1, D
))
, (40)

where γ1
2 is the same as that in (22). Under perfect SIC condition, the decoding error probability

of x1 at the robot is given by
ε1 = Q (f (γ1,m1, D)) , (41)

where γ1 = p1h1. However, if SIC fails, the corresponding decoding error probability of x1 at

the robot is given by ε̂1 = Q (f (γ̂1,m1, D)), where γ̂1 is given by (24). Using the same analysis

as in NOMA, the average decoding probability at the robot is given by

ε̄1 = ε1(1− ε1
2) + ε̂1ε

1
2. (42)

By using the similar analysis as in the relay-assisted scheme, the decoding error probability

of the actuator decoding x2 under the C-NOMA scheme is given by

ε̄2 =
((

1− ε1
2

)
ε2 + ε1

2

)
ε̂2, (43)

where ε1
2 and ε2 are given in Subsection-III-B, and ε̂2 is the decoding error probability of the

actuator when the actuator has to decode x2 from the received signal in the first phase. The

expression of ε̂2 is given by
ε̂2 = Q (f (γ̂2,m1, D)) , (44)

where γ̂2 is given by

γ̂2 =
p2h2

p1h2 + 1
. (45)

Therefore, the optimization problem of C-NOMA transmission scheme can be formulated as

min
{m1,m2,p1,p2,pr}

ε̄2 (46a)

s.t. ε̄1 ≤ εmax
1 , (46b)

m1(p1 + p2) +m2pr ≤ Etot, (46c)
m1 +m2 ≤M, (46d)
m1,m2 ∈ Z, (46e)
p1 ≤ p2. (46f)

Following the similar proof as Lemma 1, we can show that constraints (46b) and (46c) hold

with equality at the optimal point, thus the search method can be used to find the optimal solution

of Problem (46). To reduce the search complexity, we need to find tight lower and upper bounds

on m1 and m2.
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However, unlike the previous schemes that only two power allocation variables are involved,

the number of power allocation variables in C-NOMA scheme is three. This will complicate

the analysis of deriving the bounds of m1 and m2. To deal with this difficulty, we regard the

summation of p1 + p2 as a whole entity. To realize the functionality of the C-NOMA scheme,

ε1 and ε1
2 should be very small, e.g., much lower than 0.5. Then, we have

p1 ≥
1

h1

(
2

D
m1 − 1

)
, (47)

p2 ≥
1

h1

(
2

D
m1 − 1

)
(1 + p1h1) . (48)

By substituting (47) into the right hand side of (48), we have

p2 ≥
1

h1

(
2

D
m1 − 1

)
2

D
m1 . (49)

By adding (47) and (49), one can obtain

p1 + p2 ≥
1

h1

(
2

2D
m1 − 1

)
. (50)

To ensure that ε2 is meaningful, we have

pr ≥
1

h3

(
2

D
m2 − 1

)
. (51)

By using the similar iterative procedure, we can also obtain the lower bounds of m1 and m2,

which are denoted as mlb
1 and mlb

2 , respectively. As a result, the search region of m1 is given

by mlb
1 ≤ m1 ≤ (M −mlb

2 )
∆
= mub

1 . For each given m1 within the range, we need to find the

search range of m2, which is detailed as follows. Since ε1 < ε̄1 ≤ εmax
1 , the lower bound of p1

can be obtained by solving the equation of ε1(p1) = εmax
1 for given m1, which is denoted as plb

1 .

By using (48), we can obtain the lower bound of p2 as follows:

p2 ≥
1

h1

(
2

D
m1 − 1

) (
1 + plb

1 h1

) ∆
= plb

2 . (52)

Based on (46c), we have

Etot −m1(plb
1 + plb

2 ) ≥ m2pr ≥
m2

h3

(
2

D
m2 − 1

)
, (53)

where the last inequality is due to the fact that pr ≥ 1
h3

(
2

D
m2 − 1

)
must hold to guarantee the

meaningfulness of ε2. The lower bound of m2 under given m1 (denoted as mlb
2 (m1)) can be

obtained from (53), which is the minimum integer that satisfies (53). Obviously, the upper bound

of m2 with given m1 is M −m1. Hence, the search region of m2 is given by mlb
2 (m1) ≤ m2 ≤
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(M −m1).

Given m1 and m2, we need to find the optimal p1, p2 and ps. These variables are coupled

and it is difficult to find the optimal solution by using the optimization method. The one-

dimensional search is adopted to find the optimal solution. In particular, we first fix the value

of the sum of p1 and p2 as t, i.e., t = p1 + p2. Since constraint (46b) holds with equality at

the optimal point, the optimal p1 can be obtained by solving the equation ε̄1(p1) = εmax
1 by

inserting p2 = t− p1 into this equation. By combining (48) and (46f), the upper bound of p1 is

obtained as p1 ≤ min
(
t · 2−

D
m1 − 1

h1
+ 1

h1
· 2−

D
m1 , t

2

)
, pup

1 , and p1 should be within the domain

p1 ∈ (plb
1 , p

up
1 ). This equation has only one variable p1 and the one-dimensional search method

can be adopted to solve the equation. As constraint (46c) holds with equality, pr can be directly

obtained as pr = (Etot − tm1)/m2. Calculate the objective value with given m1, m2, t and pr.

The remaining task is to find the tight search region t. Obviously, the lower bound of t is given

by tlb = plb
1 + plb

2 . To obtain the upper bound of t, we first find the lower bound of m2pr, which

is given by

m2pr ≥
m2

h3

(
2

D
m2 − 1

)
. (54)

Then, the upper bound of t is given by

t ≤ 1

m1

(
Etot −

m2

h3

(
2

D
m2 − 1

))
= tub. (55)

Based on the above analysis, we provide Algorithm 3 to solve Problem (36).

Remark: It is noted that the feasible region of C-NOMA scheme is smaller than that of the

relay-assisted transmission scheme. Specifically, if p∗1 and p∗2 is any one feasible solution of

Problem (46), it can be readily checked that ps = p∗1 + p∗2 is also a feasible solution of Problem

(36). However, if {p∗1, p∗2} is not a feasible solution of Problem (46), ps = p∗1 + p∗2 may still be

feasible for Problem (36). For example, by letting

p2 =
1

h2

(
2

D
m1 − 1

)
, p1 =

1

h1

(
2

2D
m1 − 1

)
− 1

h2

(
2

D
m1 − 1

)
, (56)

it can be readily checked that p1 and p2 do not satisfy condition (48), which is not feasible

for Problem (46). However by setting ps = p1 + p2, ps is still feasible for Problem (36). This

observation means the feasible region for Problem (36) is larger than that of Problem (46).

IV. EXTENSION TO MORE DEVICES FOR THE OMA SCHEME

In this section, we consider the more general case when the system has more than two devices

for the OMA scheme. The extension to other schemes will be studied in the future work.
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Algorithm 3: Algorithm for Problem (46)
Input : h1, h2, h3, D,M, εmax

1 , Etot
Output: p?1, p?2, p?r,m?

1,m
?
2

1 Apply the iterative procedure to calculate mlb
1 ,m

ub
1 and mlb

2 ;
2 for m1 = mlb

1 : mub
1 do

3 Calculate the solution to the equation ε1 = εmax
1 , which is denoted as plb

1 . Use (52) to
calculate the lower bound of p2, denoted as plb

2 . Use (53) to find the lower bound of
m2, denoted as mlb

2 (m1).
4 if mlb

2 (m1) ≤ (M −m1) then
5 for m2 = mlb

2 (m1) : (M −m1) do
6 Calculate the lower bound of t as tlb = plb

1 + plb
2 , and the upper bound of t as

tub from (55). Use the one-dimensional search to find the optimal t that
achieves the minimum objective value. Denote the optimal objective value
ε̄2(m1,m2).

7 end
8 Given m1, find the blocklength m2 with the minimum value of ε2(m1,m2):

m#
2

∣∣∣
m1

= arg min
mlb

2 (m1)≤m2≤M−m1

ε2 (m1,m2) .

9 end
10 end
11 Return m?

1 = arg min
mlb

1 ≤m1≤mub
1

ε2

(
m1, m

#
2

∣∣∣
m1

)
,m?

2 = m#
2

∣∣∣
m?

1

and the corresponding p?1 and p?2.

A. Sytem Model and Problem Formulation

Let us denote the total number of devices as K, and the set of all devices as K. We assume

that the normalized channel gains of all K devices are arranged in a decreasing order, i.e.,

h1 > h2 > · · · > hK
3. Then, we aim to jointly optimize the power and blocklength allocation to

minimize the decoding error probability of the Kth device while guaranteeing the decoding error

probability requirements of the first K − 1 devices. Mathematically, the optimization problem

can be formulated as follows:

min
{mk,k∈K},{pk,k∈K}

εK (57a)

s.t. εk ≤ εmax
k , k ∈ K\K, (57b)∑

k∈K
mkpk ≤ Etot, (57c)∑

k∈K
mk ≤M, (57d)

mk ∈ Z, k ∈ K. (57e)

3Due to the small-scale fading, the probability that any two or more devices have the same channel gain is equal to zero.
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In contrast to the case of two devices where the globally optimal solution to Problem (7) can

be obtained, the globally optimal solution to Problem (57) for the more general case is not

available. In the following, we aim to obtain a suboptimal solution to Problem (57).

B. Problem Reformulation

To make Problem (57) tractable, we again approximate V as one, i.e., V ≈ 1. This approx-

imation is very accurate when the SNR value γ is very high, i.e., γ � 1. As the decoding

error probability is a decreasing function of power and blocklength, we can readily prove

that constraints (57b), (57c) and (57d) hold with equality at the optimum point by using the

contradiction method. By using the fact that εk = εmax
k , k ∈ K\K, pk can be derived as a

function of mk, given by

pk =
2

D
mk

+
Q−1(εmax

k )

ln 2
√
mk − 1

hk
, χ(mk), k ∈ K\K. (58)

By substituting (58) into (57), Problem (57) can be transformed as follows:

min
{mk,k∈K},pK

εK (59a)

s.t.
∑

k∈K\K

mkχ(mk) +mKpK = Etot, (59b)

∑
k∈K

mk = M,mk ∈ Z, k ∈ K. (59c)

Compared with the original Problem (57), the number of optimization variables of Problem (59)

is significantly reduced. However, this problem is still difficult to solve. In the following, we

first use the exhaustive search to find mK , and then optimize pK . To this end, we need to find

tight lower and upper bounds of mK to reduce the computational complexity.

C. Bounds of mK

In this subsection, we attempt to obtain the bounds of mK . We first provide the following

theorem.

Theorem 3: Define Ak = Q−1(εmax
k )/ln 2 and g (mk)

∆
= mkχ(mk). Then, g (mk) is a mono-

tonically decreasing and convex function when mk satisfies:

√
mk <

3
4
Ak ln 2 +

√
9
16

(ln 2)2A2
k + 8D ln 2

2
. (60)
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Proof : Please see Appendix D.

In general, for a typical URLLC system, the number of transmission bits is around 100 bits

and the decoding error probability requirement is around 10−9. Then, Ak is 8.653, and the value

of the right hand side of (60) is given by 14.236. Then, when mk ≤ 202, the inequality (60)

holds. In short packet transmission with OMA scheme, the number of blocklength to each device

is generally smaller than 100. Hence, in our considered scenario, g (mk) can be regarded as a

monotonically decreasing and convex function.

In the following, we provide an iterative procedure to obtain the tight bounds of mK . Since

mkpk = g(mk) < Etot and g(mk) is a monotonically decreasing function, we can obtain the

lower bound of mk by using the bisection search method, which is denoted as mlb(0)
k , k ∈ K\K.

To guarantee the meaningfulness of εK , the following inequality holds

pK >
(

2
D

mK − 1
)/

hK . (61)

Then, we have

Etot > mKpK >
mK

hK

(
2

D
mK − 1

)
∆
= q(mK). (62)

As a result, we can obtain the lower bound of mK from (62), which is denoted as m
lb(0)
K .

Then, for each device k, the upper bound of mk is given by m
ub(0)
k = M −

∑
i∈K\km

lb(0)
i , k ∈

K. Since q(mK) defined in (62) is a monotonically decreasing function, we have q(mK) >

q(m
ub(0)
K ). In addition, g(mk) is a monotonically decreasing function of mk, and we have g(mk) >

g(m
ub(0)
k ), k ∈ K\K. Then, for each k ∈ K\K, we have

Etot −
∑

i∈K\{K,k}
g(m

ub(0)
i )− q(mub(0)

K ) > g(mk), k ∈ K\K. (63)

Then, the lower bound of mk for k ∈ K\K can be obtained as mlb(1)
k , k ∈ K\K. For the Kth

device, we have

Etot −
∑

k∈K\K
g(m

ub(0)
k ) >

mK

hK

(
2

D
mK − 1

)
. (64)

Then, based on (64) we can update the lower bound of mK as mlb(1)
K . Then, for each device

k, the upper bound of mk is given by m
ub(1)
k = M −

∑
i∈K\km

lb(1)
i , k ∈ K. Finally, repeat the

above procedure until mlb(n)
K = m

lb(n+1)
K and mub(n)

K = m
ub(n+1)
K , where n is the iteration number.

Similar to the case of two devices, the above procedure can be proved to be convergent, and

denote the final converged upper and lower bounds of mK as mub
K and mlb

K , respectively.
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D. Optimization of pK with Given mK

Given mK , εK is a monotonically decreasing function of pK and pK is given by

pK =
1

mK

Etot −
∑

k∈K\K

mkχ(mk)

 , (65)

Problem (59) can then be equivalently transformed as

min
{mk,k∈K\K}

∑
k∈K\K

mkχ(mk) (66a)

s.t.
∑

k∈K\K

mk = M −mK , (66b)

mk ∈ Z, k ∈ K\K. (66c)

This problem is still difficult to solve due to the integer constraint (66c). To resolve this issue,

we relax {mk, k ∈ K\K} to continuous values. Then, Problem (66) can be relaxed as follows:

min
{mk,k∈K\K}

∑
k∈K\K

mkχ(mk) (67a)

s.t. mk ≥ mlb
k , k ∈ K\K, (66b), (67b)

where {mlb
k , k ∈ K\K} are given in the above subsection. Since mkχ(mk) is proved to be

convex as shown in Theorem 2, Problem (67) is a convex optimization problem, which can be

solved by using the Lagrangian dual decomposition method [31]. We first introduce the Lagrange

multiplier λ associated with constraint (66b), the partial Lagrangian function of Problem (67) is

given by

L(m, λ) =
∑

k∈K\K

mkχ(mk) + λ

 ∑
k∈K\K

mk −M −mK

 , (68)

where m = {mk, k ∈ K\K}.

In the following, we aim to obtain the optimal mk, k ∈ K\K for given λ, which is denoted as

m?
k(λ), k ∈ K\K. As L(m, λ) is a convex function of mk, k ∈ K\K, the optimal mk for given

λ can be obtained in the following. If

∂L(m, λ)

∂mk

∣∣∣∣
mk=mlb

k

≥ 0, (69)
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the optimal mk is given by m?
k(λ) = mlb

k . Otherwise, m?
k(λ) is the solution to the following

equation:
∂L(m, λ)

∂mk

= 0, (70)

which can be obtained by using the bisection search method.

Upon obtaining the optimal m?
k(λ), k ∈ K\K, we can obtain the value of the left hand side

of (66b), which is defined as function F (λ)

F (λ)
∆
=
∑

k∈K\K

m?
k(λ). (71)

By using the similar technique as in Appendix A of [32], we can prove that F (λ) is a mono-

tonically decreasing function of λ. Hence, the bisection search method can be adopted to find

the solution of λ to the equation F (λ) = M −mK if the original problem is feasible.

Denote the solution obtained by solving the relaxed problem (67) as {m̄k, k ∈ K\K}. In

general, {m̄k, k ∈ K\K} may violent the integer requirement. Hence, we need to convert the

continuous {m̄k, k ∈ K\K} to integer solutions, denoted as {m?
k, k ∈ K\K}. However, the

integer conversion problem is a combinatorial optimization problem, which is NP to solve.

In the following, we apply the greedy search method to solve the integer conversion problem.

Specifically, we first initialize the integer solution as m?
k = bm̄kc , k ∈ K\K. Note that g(mk)

is a monotonically decreasing function of mk. Each time we allocate one blocklength to the

device with the largest decrement of g(mk), i.e., k∗ = arg maxk∈K\K {g(mk)− g(mk + 1)}.

The rational behind this is that based on (66b) more energy can be allocated to the Kth device,

thus decreasing εK most. For the k∗th device, we set m?
k∗ = m?

k∗ + 1. If p?K is smaller than

zero, set ε?K = 1. Repeat the above procedure until
∑

k∈K\Km
?
k = M −mK . Then, the power

allocated to the Kth device can be recalculated as

pK =

Etot −
∑

k∈K\K
g(m?

k)

mK

. (72)

Thus, we can calculate εK based on current mK and p?K .

V. SIMULATIONS RESULTS

In this section, simulation results are provided to evaluate the performance of the proposed

algorithms. For simplicity, we assume that the controller, the robot and the actuator are located

on the same line, and the robot is moving from the controller to the actuator, and the robot is
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served as the relay to help the transmission of the actuator. The distance between the controller

and the actuator is set as 500 m. Let us denote d1, d2 and d3 as the distances from the controller

to the robot, the controller to the actuator, and the robot to the actuator, respectively. The system

bandwidth is set as B = 1 MHz. Hence, the downlink transmission delay duration is calculated

as 100 us that meets a criterion of industrial standards [13]. The noise power spectral density is

-173 dBm/Hz. The decoding (packet) error probability requirement for the robot is set as 10−9.

The large-scale path loss model is 35.3 + 37.6 log10 dB [33]. The simulation section is divided

into two subsections. In the first subsection, we assume that the channel gain is only determined

by the path loss in order to obtain the insights of all the schemes. In the second subsection,

we consider the network availability performance [17] taking into account small-scale fading

obeying the Rayleigh distribution.

A. Only Large-scale Fading

In Fig. 2, we first study the impact of distance d1 on the decoding error probability. We

observe that relay-assisted transmission outperforms the other three schemes. It is interesting to

see that when the robot moves from the controller to the actuator, the decoding error probability

achieved by the OMA and NOMA schemes always decreases. The main reason is that the

channel gain from controller to robot decreases with increasing the distance, so the energy and

blocklength required for the robot to guarantee its error probability requirement increases. As a

result, the available energy and blocklength for the actuator will decrease. On the other hand,

the reliability performances achieved by the C-NOMA and relay-assisted schemes first increase

and then decrease when the robot moves in the line. This can be explained as follows. When the

robot moves from 50 m to 150 m for the C-NOMA and 200 m for relay-assisted scheme, the

channel gain from the robot to the actuator becomes weak, which is the performance bottleneck

that limits the decoding error probability of the actuator. However, when the robot continues

to move towards the actuator, the transmission link from the controller to the robot becomes

the bottleneck link. Hence, the distance d1 can be optimized to additionally improve the system

performance, which can be treated in the future work. It is interesting to observe that the C-

NOMA performs worse than the relay-assisted scheme, which is due to the larger feasible region

for the latter scheme as explained at the end of Section III.

In Fig. 3, we examine the impact of available blocklength M on the decoding error probability

of the actuator. As expected, larger M leads to much better reliability performance in all schemes,

and the decoding error probability achieved by the relay scheme decreases from 1 to 10−22 with



26

M increasing from 50 to 100. It is interesting to find that when the blocklength M is equal to

50 and 60, the NOMA scheme has the best reliability performance since the whole transmission

blocklength can be used for transmission in NOMA, while the whole blocklength should be

divided into two parts for the other schemes. Importantly, this provides insights for the system

designer that when the blocklength is very limited as in URLLC, relay may not be a good option

since some blocklengths needs to be reserved for the two-stage transmission. However, further

increasing M , the relay-assisted transmission and the C-NOMA start to perform better than

the NOMA scheme, and the performance gain monotonically increases with M . However, the

cross-point associated with the relay scheme is much lower than that of the C-NOMA scheme

due to the shrinking feasible region associated with the latter scheme. Furthermore, the curves

of both schemes have the same slope with different bias.
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Fig. 2: The decoding error probability of the actuator
versus the distance from the controller to the robot
under four schemes, when D = 100 bits, M = 100
symbols, Ẽtot = 5× 10−5 Joule.
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Fig. 3: The decoding error probability of the actuator
versus the number of symbols under four schemes,
when D = 100 bits, Ẽtot = 5× 10−5 Joule, d1 = 200
m, d2 = 500 m, and d3 = 300 m.

In Fig. 4, we study the impact of the packet size D on the decoding error probability. As

expected, a larger packet size leads to a higher error probability for all schemes. The performance

advantage of the relay-assisted scheme over the OMA and NOMA schemes shrinks with the

increase of D. It is interesting to find that the curves associated with the OMA and NOMA

schemes have almost the same slope, while those of the relay-assisted transmission and the

C-NOMA scheme are similar. The main reason may be that the latter two schemes apply

relay to assist the transmission. Similar to the observations in [24], the NOMA achieves better

performance than the OMA scheme. When D = 125 bits, the C-NOMA is even worse than the

NOMA since some blocklengths should be reserved for the two-stage transmission in the former

scheme.
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In Fig. 5, we study the impact of the total energy on the decoding error probability. It is

observed that more available energy leads to better reliability performance as expected. It is also

seen that the relay-assisted transmission has the best performance, and the performance gain

increases with the amount of available energy. It is shown that with sufficient energy, transmission

with the aid of relay (i.e., the relay-assisted transmission and the C-NOMA transmission) is

beneficial for the system performance. When Ẽtot = 5×10−5 Joule, the decoding error probability

achieved by the relay-assisted transmission is extremely low.
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Fig. 4: The decoding error probability of the actuator
versus packet size under four schemes, when M = 100
sysmbols, Ẽtot = 5 × 10−5 Joule, d1 = 200 m, d2 =
500 m, and d3 = 300 m.
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Fig. 5: The decoding error probability of the actuator
versus the energy constraint under four schemes, when
D = 100 bits, M = 100 symbols, d1 = 200 m, d2 =
500 m, and d3 = 300 m.

In Fig. 6, we study the performance comparison between the OMA scheme in Section III and

the general OMA in Section IV. Denote the number of devices as K. If K = 2, both the OMA

scheme and the general OMA scheme are applicable. However, for the case with K > 2, only

the general OMA scheme is applicable. For the first K − 1th devices, the distance of the kth
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Fig. 6: The decoding error probability of the actuator
versus the number of symbols for the OMA scheme
the general OMA scheme, when D = 100 bits, and
Ẽtot = 5× 10−5 Joule.
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Fig. 7: The network availability percentage versus the
packet size D under four schemes, when Ẽtot = 5 ×
10−4 Joule, M = 100 symbols.
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device to the controller is set as 50× k m, while the distance of the last device to the controller

is set as 500 m. The other parameters are the same as the previous figures. It is interesting to

find that the decoding error probability achieved by the OMA scheme and the general OMA

scheme is almost the same when K = 2, which implies that the general OMA can achieve

almost the globally optimal solution in this setup. However, the general OMA scheme has lower

complexity than the OMA scheme. It is also noted from this figure that the decoding error

probability achieved by the Kth device increases when the number of total devices increases.

This can be explained as follows. When the number of total devices increases, the total resource

such as energy and channel blocklength allocated to the first K − 1 devices will increase. Then,

the left resource allocated for the Kth device decreases, leading to its sworse decoding error

probability performance.

B. Network Availability Performance (Channel Generation Times=1000)

In this subsection, the small-scale fading channel is taken into consideration in the channel

gain, and we study the network availability performance, which is defined as the ratio of the

number of channel generations, where the decoding error probability achieved by both devices is

no larger than 10−9, to the total number of channel generations [2]. In the following simulations,

the total number of channel generations is set as 1000. The distances are set as d1 = 200 m,

d2 = 500 m, and d3 = 300 m, respectively.

Fig. 7 illustrates the network availability performance versus the packet size D for all schemes.

As expected, the network availability performance achieved by all schemes decreases with D. The

relay-assisted transmission has the best network availability performance over the whole region of

D. It is observed that when D = 100 bits, the network availability percentage of the relay-assisted

scheme and the C-NOMA scheme is almost the same, as high as 98%. However, the performance

gap of these two schemes increases rapidly with D due to the shrinking feasible region of the

C-NOMA scheme compared to the relay-assisted transmission. However, the network availability

performance for both the OMA scheme and the NOMA scheme are lower than that of relay-

assisted scheme and C-NOMA scheme, and the network availability percentage is as low as 87%

for NOMA scheme even when D = 100 bits.

Fig. 8 shows the network availability performance versus the number of symbols for four

schemes. As expected, the network availability performance increases with M for all schemes.

The NOMA scheme performs slightly better than the relay scheme when M = 50. It is interesting

to note that the C-NOMA scheme has the worst performance when M = 50, which means
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Fig. 8: The network availability percentage versus the
number of symbols M under four schemes, when
Ẽtot = 5× 10−4 Joule, D = 100 bits.
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Fig. 9: The network availability percentage versus
energy limit under four schemes, when D = 100 bits,
M = 100 symbols.

that this scheme is not a good option when there is stringent latency requirement. However, the

network availability percentage of the C-NOMA increases rapidly with M , and finally converges

to almost the same value as that of the relay-assisted scheme, that is equal to 97% when M = 100.

It is also noted that the OMA scheme converges to almost the same performance as that of the

NOMA scheme, and is low (86% when M = 100). It is interesting to find that the network

availability performance of all the schemes saturates in the high region of M , which indicates

that the number of available blocklength is not necessary to be very large. This can be explained

by using the result in [29]: The dispersion of quasi-static fading channels converges to zero,

which implies that the maximum achievable data rate converges quickly to the outage capacity.

Finally, Fig. 9 depicts the network availability performance versus the energy limit Ẽtot for

all schemes. As expected, the network performance achieved by all schemes increases with Ẽtot.

It is also observed that relay-assisted scheme has the best network availability performance.

However, the performance gain over the C-NOMA scheme decreases with Ẽtot and both curves

coincide in the high regime of Ẽtot, where both schemes can achieve the network availability

percentage of 98%. On the other hand, both the NOMA scheme and OMA scheme have very

low network availability percentage, e.g., 86% when Ẽtot = 5 × 10−4 Joule. The performance

gap between the relay-assisted scheme and NOMA is significant, up to 30%.

VI. CONCLUSIONS

This work studied the resource allocation of short packet transmission for mission-critical

IoT to achieve low latency and high reliability under fundamental transmission schemes, which

include OMA, NOMA, relay-assisted transmission and C-NOMA transmission. We formulated
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an optimization problem to minimize the decoding error probability for the actuator with lower

channel gain while guaranteeing that the robot achieved a low error probability target. To facilitate

the optimal design of the blocklength and power allocation, we derived the tight bounds on the

blocklength and the transmit power for all schemes. Simulation results demonstrated that relay-

assisted transmission significantly outperforms the other schemes for most cases in terms of

packet error probability as well as network availability percentage performance. It was also

noted that the NOMA scheme performs well when the delay requirement is very stringent.

For the C-NOMA and relay-assisted schemes, there exists one optimal transmission distance

between the central controller and the robot. We also observed that the general OMA scheme

can achieve almost the same performance as the OMA scheme, while the former scheme has a

lower complexity.

Concerning our future work, we will consider a more general scenario with more than two

devices for the other three schemes.

APPENDIX A

PROOF OF LEMMA 1

We prove it by using contradiction. In the following, we first prove that constraint (7b) holds

with equality at the optimum solution. The second one can be proved similarly.

Denote the optimal solution of Problem (7) as s? = {m?
1,m

?
2, p

?
1, p

?
2} and the corresponding

ε1 and ε2 are denoted as ε?1 and ε?2, respectively. Suppose that ε?1 is strictly smaller than εmax
1 ,

i.e., ε?1 < εmax
1 . In Proposition 1 of [24], the author proved that Q (f (γ1,m1, D)) monotonically

decreases with γ1. Then, we can construct a new solution s# = {m?
1,m

?
2, p

#
1 , p

#
2 }, where p#

1 =

p?1−∆p and p#
2 = p?2 +

m?
1∆p

m?
2

with ∆p > 0. It can be verified that the following equation holds,

m?
1p

#
1 +m?

2p
#
2 = m?

1p
?
1 +m?

2p
?
2 ≤ Etot. (73)

Hence, the new constructed solution s# still satisfies the energy constraint (7c). In addition,

we can always find a proper positive ∆p such that the new ε#
1 with the new solution s# is equal

to εmax
1 , i.e., ε#

1 = εmax
1 , which satisfies constraint (7b). Hence, the new constructed solution s#

is a feasible solution of Problem (7). Since p#
2 > p?2, we have ε#

2 < ε?2. This contradicts with

the assumption that s? is an optimal solution. The same method is applicable to the proof of the

second conclusion.
APPENDIX B

PROOF OF THEOREM 1

The first and second derivative of function g̃(m2) w.r.t. m2 can be calculated as
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g̃′(m2) =
1

2 ln 2

1√
m2

ln

(
1 +

E2h2

m2

)
− 1

ln 2

1√
m2

E2h2

m2 + E2h2

+
D

2
m
− 3

2
2

g̃′′(m2) = − 1

4 ln 2

ln
(

1 + E2h2
m2

)
m2

√
m2

+
E2h2

ln 2
√
m2(m2 + E2h2)2︸ ︷︷ ︸

?

−3

4
Dm

− 5
2

2︸ ︷︷ ︸
<0

.

Obviously, the last term of g′′(m2) is negative, we only need to prove that the sum of the first

two terms is negative under the condition of E2h2
M−m1

≥ e− 1.

Since mlb
2 ≤ m2 ≤M −m1, we have

E2h2

m2

≥ E2h2

M −m1

≥ e− 1. (74)

Then, the following inequality follows:

4 ≤
(
E2h2

m2

+ 2 +
m2

E2h2

)
ln

(
1 +

E2h2

m2

)
. (75)

By rearranging the terms of the above inequality, we can prove that the sum of the first two

terms is negative, which completes the proof.

APPENDIX C

PROOF OF THEOREM 2

We prove this theorem by using the method of contradiction. Denote the optimal p1 of Problem

(27) as p?1 and the corresponding decoding error probability is given by ε̄1(p?1). Suppose that

ε̄1(p?1) is strictly less than εmax
1 , i.e., ε̄1(p?1) < εmax

1 . Since ε̂1(plb
1 ) > ε1(plb

1 ), we have

ε̄1(plb
1 ) = ε1(plb

1 ) + (ε̂1(plb
1 )− ε1(plb

1 ))ε1
2(plb

1 ) = εmax
1 + (ε̂1(plb

1 )− ε1(plb
1 ))ε1

2(plb
1 ) > εmax

1 , (76)

where ε1(plb
1 ) = εmax

1 is used in the second equality. As ε̄1(p1) is a continuous function, there must

exist a value p&
1 within the range of plb

1 < p&
1 < p?1 such that ε̄1(p&

1 ) = εmax
1 . On the other hand,

the objective value ε2(p1) is a monotonically increasing function of p1 since p2 = Etot/m− p1.

Hence, we have ε2(p&
1 ) < ε2(p?1), which contradicts the assumption that p?1 is an optimal solution.

APPENDIX D

PROOF OF THEOREM 3

We first prove its convexity. Define function

J(mk)
∆
= mk2

D
mk

+
Ak√
mk . (77)
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Then, g (mk) can be rewritten as g (mk) = (J(mk)−mk)/hk. Then, if J(mk) is convex, function

g (mk) is also convex. Hence, in the following, we prove that J(mk) is a convex function. Define

function J̃(mk) as

J̃(mk)
∆
= ln (J(mk)) = ln(mk) +

(
D

mk

+
Ak√
mk

)
ln 2. (78)

The second-order derivative of J̃(mk) w.r.t. mk is given by

J̃ ′′(mk) =
1

m3
k

(
2D ln 2−mk +

3

4
Ak
√
mk ln 2

)
. (79)

Note that the denominator of (79) is a quadratic function of
√
mk. Hence, if the inequality in

(60) is satisfied, J̃ ′′(mk) is always positive, which means J̃(mk) is a convex function of mk.

Since J(mk) = eJ̃(mk), according to the composition rule in [31], we can show that J(mk) is

also a convex function. Hence, g (mk) is a convex function of mk when the inequality in (60)

is satisfied.

Now, we proceed to prove that g (mk) is a monotonically decreasing function of mk. The

first-order derivative of g (mk) w.r.t. mk is given by

g′ (mk) =
1

hk

[
2

D
mk

+
Ak√
mk

(
− D

mk

ln 2− ln 2

2

Ak√
mk

+ 1

)
− 1

]
. (80)

Since g (mk) is a convex function, we have g′′ (mk) ≥ 0, which means g′ (mk) is a monotonically

increasing function. Hence, we have

g′ (mk) < g′ (∞) = 0. (81)

Hence, g (mk) is a monotonically decreasing function of mk when the inequality in (60) holds.
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