156 research outputs found

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    UAV-Enabled Multi-Pair Massive MIMO-NOMA Relay Systems With Low-Resolution ADCs/DACs

    Get PDF
    In this article, we consider an unmanned aerial vehicle (UAV)-enabled massive multiple-input multiple-out (MIMO) non-orthogonal multiple access (NOMA) full-duplex (FD) two-way relay (TWR) system with low-resolution analog-to-digital converters/digital-to-analog converters (ADCs/DACs), where the UAV provide services for multi-pair ground users (GUs). By employing maximum ratio combining/maximum ratio transmission (MRC/MRT), the approximate closed-form expressions for sum spectrum/energy efficiency (SE/EE) with imperfect channel state information (CSI), imperfect successive interference cancellation (SIC) and quantization noise are derived. To evaluate the effects of the parameters on system performance, the asymptotic analysis and the power scaling laws are further provided. Finally, an optimization scheme is proposed to maximize the SE of the considered system. The numerical results verify the accuracy of theoretical analysis and show that the interference and noise can be effectively eliminated by deploying large-scale antennas and applying proper power scaling law. We also demonstrate that the proposed system can obtain better SE by adjusting the height of the UAV. Moreover, the system performance is related to the ADCs/DACs quantization bits, where the SE saturation values increase by increasing number of quantization bits, while the EE first increases and then decreases. Finally, the SE/EE trade-off at low precision ADCs/DACs can be achieved by choosing the appropriate number of quantization bits, and the trade-off region grows as Rician factor increases

    Hardware-Impaired Rician-Faded Cell-Free Massive MIMO Systems With Channel Aging

    Full text link
    We study the impact of channel aging on the uplink of a cell-free (CF) massive multiple-input multiple-output (mMIMO) system by considering i) spatially-correlated Rician-faded channels; ii) hardware impairments at the access points and user equipments (UEs); and iii) two-layer large-scale fading decoding (LSFD). We first derive a closed-form spectral efficiency (SE) expression for this system, and later propose two novel optimization techniques to optimize the non-convex SE metric by exploiting the minorization-maximization (MM) method. The first one requires a numerical optimization solver, and has a high computation complexity. The second one with closed-form transmit power updates, has a trivial computation complexity. We numerically show that i) the two-layer LSFD scheme effectively mitigates the interference due to channel aging for both low- and high-velocity UEs; and ii) increasing the number of AP antennas does not mitigate the SE deterioration due to channel aging. We numerically characterize the optimal pilot length required to maximize the SE for various UE speeds. We also numerically show that the proposed closed-form MM optimization yields the same SE as that of the first technique, which requires numerical solver, and that too with a much reduced time-complexity.Comment: This work has been submitted to the IEEE Transactions on Communications for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible, 32 pages, 14 figure

    Spectral Efficiency of Mixed-ADC Massive MIMO

    Full text link
    We study the spectral efficiency (SE) of a mixed-ADC massive MIMO system in which K single-antenna users communicate with a base station (BS) equipped with M antennas connected to N high-resolution ADCs and M-N one-bit ADCs. This architecture has been proposed as an approach for realizing massive MIMO systems with reasonable power consumption. First, we investigate the effectiveness of mixed-ADC architectures in overcoming the channel estimation error caused by coarse quantization. For the channel estimation phase, we study to what extent one can combat the SE loss by exploiting just N << M pairs of high-resolution ADCs. We extend the round-robin training scheme for mixed-ADC systems to include both high-resolution and one-bit quantized observations. Then, we analyze the impact of the resulting channel estimation error in the data detection phase. We consider random high-resolution ADC assignment and also analyze a simple antenna selection scheme to increase the SE. Analytical expressions are derived for the SE for maximum ratio combining (MRC) and numerical results are presented for zero-forcing (ZF) detection. Performance comparisons are made against systems with uniform ADC resolution and against mixed-ADC systems without round-robin training to illustrate under what conditions each approach provides the greatest benefit.Comment: To appear in IEEE Transactions on Signal Processin

    Massive MIMO Systems With Low-Resolution ADCs: Baseband Energy Consumption vs. Symbol Detection Performance

    Get PDF
    In massive multiple-input multiple-output (MIMO) systems using a large number of antennas, it would be difficult to connect high-resolution analog-to-digital converters (ADCs) to each antenna component due to high cost and energy consumption problems. To resolve these issues, there has been much work on implementing symbol detectors and channel estimators using low-resolution ADCs for massive MIMO systems. Although it is intuitively true that using low-resolution ADCs makes it possible to save a large amount of energy consumption in massive MIMO systems, the relationship between energy consumption using low-resolution ADCs and detection performance has not been properly analyzed yet. In this paper, the tradeoff between different detectors and total baseband energy consumption including flexible ADCs is thoroughly analyzed taking the optimal fixed-point operations performed during the detection processes into account. In order to minimize the energy consumption for the given channel condition, the proposed scheme selects the best mode among various processing options while supporting the target frame error rate. The numerous case studies reveal that the proposed work remarkably saves the energy consumption of the massive MIMO processing compared with the existing schemes.11Ysciescopu
    corecore