3,889 research outputs found

    An ABS control logic based on wheel force measurement

    Get PDF
    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficien

    Experimental investigation of an accelerometer controlled automatic braking system

    Get PDF
    An investigation was made to determine the feasibility of an automatic braking system for arresting the motion of an airplane by sensing and controlling braked wheel decelerations. The system was tested on a rotating drum dynamometer by using an automotive tire, wheel, and disk-brake assembly under conditions which included two tire loadings, wet and dry surfaces, and a range of ground speeds up to 70 knots. The controlling parameters were the rates at which brake pressure was applied and released and the Command Deceleration Level which governed the wheel deceleration by controlling the brake operation. Limited tests were also made with the automatic braking system installed on a ground vehicle in an effort to provide a more realistic proof of its feasibility. The results of this investigation indicate that a braking system which utilizes wheel decelerations as the control variable to restrict tire slip is feasible and capable of adapting to rapidly changing surface conditions

    Three axis attitude control system

    Get PDF
    A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing

    Design and Characterization of a Single Lever Bicycle Brake with Hydraulic Pressure Proportioning

    Get PDF
    Featured Application: The work described here aims to design and characterize a more efficient bicycle braking system. In 2019, the Centers for Disease Control and Prevention estimated that 329,000 Americans were injured in cycling-related incidents. Since the first bicycle brake in 1817, there has been an individual brake lever for decelerating each wheel, while on cars, there has been a single control lever for decelerating multiple wheels since 1921. To perform an emergency stop on a bicycle, the rider must proportion hand pressure on each brake lever and simultaneously vary hand pressure throughout the duration of the maneuver to match the variations of normal force on each tire. Only highly skilled riders, with years of training and practice, can correctly proportion brake pressure to maximize available traction and thus minimize stopping distances. The objective of this study is to simulate and prototype a hydraulic, single-lever bicycle brake system, integrating front and rear brake proportioning, which minimizes stopping distance compared to dual-lever simulations. A design is developed to address the brake proportioning issue. Based on the simulations and physical model, the prototype proportioning valve decreased simulated stopping distances up to 18%. Exploring a range of bike types and scenarios, stopping distances were decreased between 13% and 26%. Simulating an ideal proportioning valve, stopping distances were further decreased between 4% and 40%. These results show that there can be an advantage to brake proportioning technologies in bicycles

    A unique concept for automatically controlling the braking action of wheeled vehicles during minimum distance stops

    Get PDF
    Test results of a unique automatic brake control system are outlined and a comparison is made of its mode of operation to that of an existing skid control system. The purpose of the test system is to provide automatic control of braking action such that hydraulic brake pressure is maintained at a near constant, optimum value during minimum distance stops

    Force sensors for active safety, stability enhancement and lightweight construction of road vehicles

    Get PDF
    Force and moment measurement at different locations within road vehicles is a multifaceted, comprehensive and forthcoming technology that might play a breakthrough role in automotive engineering. The paper aims to describe why such technology seems so promising. A literature review is accomplished on which forces can be measured and what can be obtained with force and moment data. Additionally, attention is devoted to where–and how–force and moments can be measured effectively. Force and moment measurement technology is also studied with an historical perspective, briefly analysing the past applications. Active safety systems (ADAS up to full automated driving) and automotive stability enhancement systems are expected to be impacted by the measurement of forces and moments at the wheels. Friction potential evaluation and driver model development and monitoring have been–and are expected to be–major field of research. Force and moment measurement technology may also be exploited for lightweight construction purposes with remarkable synergistic effects with active safety and stability enhancement systems. Possible innovations on lightweight construction and sustainable mobility are to be expected thanks to force and moment measurement

    Traction drive system design considerations for a lunar roving vehicle

    Get PDF
    Optimum design considerations of traction drive for lunar roving vehicl

    Design of an atmospheric sounding radiometer for the GOES meteorological satellite system

    Get PDF
    An advanced version of the visible infrared spin scan radiometer onboard U.S. geostationary operational environmental satellites was developed to add a vertical dimension to the instrument's infrared atmospheric images. Through the addition of twelve selectable narrow band filters and more precise in-flight calibration of the infrared detectors, the VISSR atmospheric sounder (VAS) will provide increased data to help determine the Earth's atmospheric temperature and water vapor distribution. The radiometer design, filter wheel, calibration shutter mechanisms, and their preflight test performance are discussed

    Joint Technical Conference on Slush Drag and Braking Problems

    Get PDF
    No abstract availabl
    • …
    corecore