5 research outputs found

    On trip planning queries in spatial databases

    Full text link
    In this paper we discuss a new type of query in Spatial Databases, called Trip Planning Query (TPQ). Given a set of points P in space, where each point belongs to a category, and given two points s and e, TPQ asks for the best trip that starts at s, passes through exactly one point from each category, and ends at e. An example of a TPQ is when a user wants to visit a set of different places and at the same time minimize the total travelling cost, e.g. what is the shortest travelling plan for me to visit an automobile shop, a CVS pharmacy outlet, and a Best Buy shop along my trip from A to B? The trip planning query is an extension of the well-known TSP problem and therefore is NP-hard. The difficulty of this query lies in the existence of multiple choices for each category. In this paper, we first study fast approximation algorithms for the trip planning query in a metric space, assuming that the data set fits in main memory, and give the theory analysis of their approximation bounds. Then, the trip planning query is examined for data sets that do not fit in main memory and must be stored on disk. For the disk-resident data, we consider two cases. In one case, we assume that the points are located in Euclidean space and indexed with an Rtree. In the other case, we consider the problem of points that lie on the edges of a spatial network (e.g. road network) and the distance between two points is defined using the shortest distance over the network. Finally, we give an experimental evaluation of the proposed algorithms using synthetic data sets generated on real road networks

    On trip planning queries in spatial databases

    Full text link
    In this paper we discuss a new type of query in Spatial Databases, called Trip Planning Query (TPQ). Given a set of points P in space, where each point belongs to a category, and given two points s and e, TPQ asks for the best trip that starts at s, passes through exactly one point from each category, and ends at e. An example of a TPQ is when a user wants to visit a set of different places and at the same time minimize the total travelling cost, e.g. what is the shortest travelling plan for me to visit an automobile shop, a CVS pharmacy outlet, and a Best Buy shop along my trip from A to B? The trip planning query is an extension of the well-known TSP problem and therefore is NP-hard. The difficulty of this query lies in the existence of multiple choices for each category. In this paper, we first study fast approximation algorithms for the trip planning query in a metric space, assuming that the data set fits in main memory, and give the theory analysis of their approximation bounds. Then, the trip planning query is examined for data sets that do not fit in main memory and must be stored on disk. For the disk-resident data, we consider two cases. In one case, we assume that the points are located in Euclidean space and indexed with an Rtree. In the other case, we consider the problem of points that lie on the edges of a spatial network (e.g. road network) and the distance between two points is defined using the shortest distance over the network. Finally, we give an experimental evaluation of the proposed algorithms using synthetic data sets generated on real road networks

    13/9-approximation for Graphic TSP

    Get PDF
    The Travelling Salesman Problem is one the most fundamental and most studied problems in approximation algorithms. For more than 30 years, the best algorithm known for general metrics has been Christofides's algorithm with approximation factor of 3/2, even though the so-called Held-Karp LP relaxation of the problem is conjectured to have the integrality gap of only 4/3. Very recently, significant progress has been made for the important special case of graphic metrics, first by Oveis Gharan et al., and then by Momke and Svensson. In this paper, we provide an improved analysis for the approach introduced by Momke and Svensson yielding a bound of 13/9 on the approximation factor, as well as a bound of 19/12+epsilon for any epsilon>0 for a more general Travelling Salesman Path Problem in graphic metrics

    -Approximation for Graphic TSP

    Get PDF

    A Swarm of Salesmen: Algorithmic Approaches to Multiagent Modeling

    Get PDF
    This honors thesis describes the algorithmic abstraction of a problem modeling a swarm of Mars rovers, where many agents must together achieve a goal. The algorithmic formulation of this problem is based on the traveling salesman problem (TSP), and so in this thesis I offer a review of the mathematical technique of linear programming in the context of its application to the TSP, an overview of some variations of the TSP and algorithms for approximating and solving them, and formulations without solutions of two novel TSP variations which are useful for modeling the original problem
    corecore