6 research outputs found

    On the Optimality of Treating Inter-Cell Interference as Noise in Uplink Cellular Networks

    Get PDF
    In this paper, we explore the information-theoretic optimality of treating interference as noise (TIN) in cellular networks. We focus on uplink scenarios modeled by the Gaussian interfering multiple access channel (IMAC), comprising KK mutually interfering multiple access channels (MACs), each formed by an arbitrary number of transmitters communicating independent messages to one receiver. We define TIN for this setting as a scheme in which each MAC (or cell) performs a power-controlled version of its capacity-achieving strategy, with Gaussian codebooks and successive decoding, while treating interference from all other MACs (i.e. inter-cell interference) as noise. We characterize the generalized degrees-of-freedom (GDoF) region achieved through the proposed TIN scheme, and then identify conditions under which this achievable region is convex without the need for time-sharing. We then tighten these convexity conditions and identify a regime in which the proposed TIN scheme achieves the entire GDoF region of the IMAC and is within a constant gap of the entire capacity region.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Cellular Networks With Finite Precision CSIT: GDoF Optimality of Multi-Cell TIN and Extremal Gains of Multi-Cell Cooperation

    Full text link
    We study the generalized degrees-of-freedom (GDoF) of cellular networks under finite precision channel state information at the transmitters (CSIT). We consider downlink settings modeled by the interfering broadcast channel (IBC) under no multi-cell cooperation, and the overloaded multiple-input-single-output broadcast channel (MISO-BC) under full multi-cell cooperation. We focus on three regimes of interest: the mc-TIN regime, where a scheme based on treating inter-cell interference as noise (mc-TIN) was shown to be GDoF optimal for the IBC; the mc-CTIN regime, where the GDoF region achievable by mc-TIN is convex without the need for time-sharing; and the mc-SLS regime which extends a previously identified regime, where a simple layered superposition (SLS) scheme is optimal for the 3-transmitter-3-user MISO-BC, to overloaded cellular-type networks with more users than transmitters. We first show that the optimality of mc-TIN for the IBC extends to the entire mc-CTIN regime when CSIT is limited to finite precision. The converse proof of this result relies on a new application of aligned images bounds. We then extend the IBC converse proof to the counterpart overloaded MISO-BC, obtained by enabling full transmitter cooperation. This, in turn, is utilized to show that a multi-cell variant of the SLS scheme is optimal in the mc-SLS regime under full multi-cell cooperation, albeit only for 2-cell networks. The overwhelming combinatorial complexity of the GDoF region stands in the way of extending this result to larger networks. Alternatively, we appeal to extremal network analysis, recently introduced by Chan et al., and study the GDoF gain of multi-cell cooperation over mc-TIN in the three regimes of interest. We show that this extremal GDoF gain is bounded by small constants in the mc-TIN and mc-CTIN regimes, yet scales logarithmically with the number of cells in the mc-SLS regime.Comment: Accepted for publication in the IEEE Transactions on Information Theor

    On the optimality of treating inter-cell interference as noise in uplink cellular networks

    No full text
    In this paper, we explore the information-theoretic optimality of treating interference as noise (TIN) in cellular networks. We focus on uplink scenarios modeled by the Gaussian interfering multiple access channel (IMAC), comprising K mutually interfering multiple access channels (MACs), each formed by an arbitrary number of transmitters communicating independent messages to one receiver. We define TIN for this setting as a scheme in which each MAC (or cell) performs a power-controlled version of its capacity-achieving strategy, with Gaussian codebooks and successive decoding, while treating interference from all other MACs (i.e. inter-cell interference) as noise. We characterize the generalized degrees-of-freedom (GDoF) region achieved through the proposed TIN scheme, and then identify conditions under which this achievable region is convex without the need for time-sharing. We then tighten these convexity conditions and identify a regime in which the proposed TIN scheme achieves the entire GDoF region of the IMAC and is within a constant gap of the entire capacity region
    corecore