
1

On the Optimality of Treating Inter-Cell
Interference as Noise in Uplink Cellular Networks

Hamdi Joudeh and Bruno Clerckx

Abstract—In this paper, we explore the information-theoretic
optimality of treating interference as noise (TIN) in cellular
networks. We focus on uplink scenarios modeled by the Gaus-
sian interfering multiple access channel (IMAC), comprising
K mutually interfering multiple access channels (MACs), each
formed by an arbitrary number of transmitters communicating
independent messages to one receiver. We define TIN for this
setting as a scheme in which each MAC (or cell) performs
a power-controlled version of its capacity-achieving strategy,
with Gaussian codebooks and successive decoding, while treating
interference from all other MACs (i.e. inter-cell interference)
as noise. We characterize the generalized degrees-of-freedom
(GDoF) region achieved through the proposed TIN scheme, and
then identify conditions under which this achievable region is
convex without the need for time-sharing. We then tighten these
convexity conditions and identify a regime in which the proposed
TIN scheme achieves the entire GDoF region of the IMAC and
is within a constant gap of the entire capacity region.

Index Terms—Treating interference as noise (TIN), generalized
degrees-of-freedom (GDoF), interfering multiple access channel
(IMAC), Gaussian networks, capacity region.

I. INTRODUCTION

Transmitter power control in conjunction with treating in-
terference as noise (TIN) at the receivers is a key principle
for interference management in wireless networks. Schemes
based on TIN are attractive in practice due to their relative
simplicity and robustness. From a theoretical point of view,
TIN received considerable research attention mainly due to
its information-theoretic optimality (and near-optimality) in
several settings and regimes. This is best exemplified by the 2-
user Gaussian interference channel (IC), for which the capacity
region remains one of the longest standing open problems in
network information theory. The 2-user IC capacity question,
while formidable in its generality, has been settled for few
special cases; see for example [2, Ch. 6]. One such special
case is the noisy interference regime, in which interference is
sufficiently weak such that a simple TIN scheme, where each
transmitter uses its full power, achieves the exact sum-capacity
[3]–[5].

Beyond the sum-capacity of the 2-user IC, e.g. for the entire
capacity region or K-user ICs, the problem of identifying
regimes in which TIN is optimal from an exact capacity
viewpoint becomes significantly more difficult. In such cases,
power control and time-sharing play a pivotal role in achieving
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different rate trade-offs; transmitting at full power is generally
not optimal when TIN is in use, while time-sharing between
different power control strategies generally convexifies (and
enlarges) TIN-achievable rate regions [6]. This resource al-
location problem is known to be hard in general [7], giv-
ing rise to intricate TIN-achievable rate regions which are
difficult to analyse [6], let alone characterizing regimes in
which such regions coincide with corresponding information-
theoretic outer bounds. Nevertheless, it was shown by Geng et
al. [8] that the above challenges can be circumvented by taking
a step away from the exact capacity and instead, pursuing
approximate solutions based on the generalized degrees-of-
freedom (GDoF).

Geng et al.’s approach to the K-user IC TIN-optimality
problem rests on three main cornerstones: 1) relaxing time-
sharing for tractability and relying solely on power control to
achieve different GDoF trade-offs1, 2) focusing on a convex
sub-region of the GDoF region achieved through TIN and
power control, referred to as the polyhedral TIN-achievable
GDoF region, which is explicitly characterized by eliminating
power control variables with the aid of a combinatorial tool
named the potential graph, and 3) establishing optimality of
the polyhedral TIN-achievable GDoF region in the regime of
interest by matching it to a genie-aided outer bound. This
approach proved very successful, leading to the character-
ization of a broad regime of channel parameters in which
TIN achieves the entire GDoF region of the general fully-
connected, fully-asymmetric K-user IC, and is within a con-
stant gap of the entire capacity region [8]. The success of
this GDoF-based TIN-optimality pursuit called for further
investigation, resulting in extensions and generalizations to
other settings including: channels with general message sets
(or X channels) [10], [11], parallel channels [12], multi-state
(or compound) channels [13] and multi-state channels with
opportunistic decoding capabilities [14]. Moreover, Yi and
Caire gave a fresh combinatorial perspective on the original
K-user IC TIN-optimality problem considered in [8] and
identified a new class of partially connected networks for
which TIN achieves the entire GDoF region [15].

A. TIN in Cellular Networks

The optimality of TIN in cellular-like networks has been
considered through the lens of the general X channel [10],
[11]. In [10], the authors showed that under the TIN-optimality
condition identified in [8], operating the X channel as a

1Note that this is a key step in simplifying the Han-Kobayashi achievable
region and establishing the “capacity to one bit” result for the 2-user IC in
[9], which also implicitly includes a TIN-optimal characterization.
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Fig. 1. An uplink cellular network consisting of K = 3 cells and
L1 = 2, L2 = 1 and L3 = 3 users (transmitters) in cells 1,
2 and 3, respectively. Direct links (between transmitters and their
corresponding receivers) are marked in black and interference links
(between transmitters and non-corresponding receivers) are marked
in red. Note that although cell 2 in the above network is a point-to-
point link and not a MAC, we still refer to such network as an IMAC
as the two remaining cells are interfering MACs.

regular IC and treating interference as noise is optimal from a
sum-GDoF perspective and achieves the sum-capacity up to a
constant gap — for M×N channels with arbitrary M and N ,
some nodes are switched off and a cyclic modification of the
condition in [8] is used. Building upon this result, the authors
of [11] considered the sum-GDoF of the M × 2 channel and
expanded the TIN-optimal regime of [10] for this special case.
Nevertheless, for the purpose of understanding the optimality
of TIN in cellular networks, the setting and results in [10]
and [11] offer a high degree of generality, perhaps more than
needed, in one aspect and less generality in another. Specifi-
cally, on one hand, the X channel allows each transmitter to
communicate an independent message to each receiver, e.g. a
cellular scenario where all users transmit independent steams
to all base stations. On the other hand, restricting the analysis
to the sum-GDoF (and sum-capacity) gives limited insights
into the different trade-offs that can be achieved and reveals
little about special cases of the X channel that resemble more
realistic settings, e.g. a classical cellular scenario where each
user associates with the closest base station. In this paper,
we make progress towards a comprehensive and crystalized
understanding of TIN in cellular networks by constraining the
former of the two above aspects and relaxing the latter.

We consider a cellular network in the classical sense,
consisting of an arbitrary number of cells, where each cell
is formed by one base station and an arbitrary number of
users. We further focus on uplink scenarios, in which each
user wishes to communicate an independent message to the
corresponding base station. Such uplink cellular scenarios are
captured by the Gaussian interfering multiple access channel
(IMAC) [16], as illustrated in Fig. 1. Moreover, we seek a
general TIN strategy for the IMAC that achieves the entire
GDoF region (and capacity region up to a constant gap), as

opposed to the sum-GDoF only, under specific TIN-optimality
conditions. The optimality of TIN for a special case of this
channel, named the PIMAC and consisting of a point-to-
point link and a 2-user multiple access channel (MAC) that
mutually interfere, was studied by Gherekhloo et al. in [17]. In
particular, Gherekhloo et al. identified regimes for the PIMAC
in which a simple time-sharing-TIN scheme is sum-GDoF
optimal and achieves the sum-capacity within a constant gap.
However, the specificity of the results and analysis in [17]
to the sum-GDoF of this 2-cell, 3-user network hinders their
extension to more general IMAC scenarios.

A crucial initial step before commencing the pursuit of TIN-
optimality results for the IMAC is establishing an adequate
definition of TIN for such channel. By viewing the K-user
IC as a cellular network with one user in each cell, TIN can
be interpreted as the employment of a single-cell, capacity-
achieving transmission strategy in each cell, while treating all
inter-cell interference as noise. This definition of TIN naturally
extends to the cellular setting at hand. More importantly, a TIN
strategy for the IMAC, in accordance with the above definition,
satisfies the requirement for robustness, as capacity-achieving
strategies for the MAC do not demand channel knowledge
at the transmitters beyond the coarse level assumed to be
available in known TIN schemes.

Next, we move on to presenting an overview of this work’s
main results and contributions. A detailed exposition of such
results, with insights and examples, is given in Section III.

B. Main Results and Contributions

1) TIN-achievable GDoF region for the IMAC: We propose
a TIN scheme for the IMAC in which a MAC-type, capacity-
achieving strategy, with Gaussian codebooks and successive
decoding, is employed in each cell while treating all inter-
cell interference as noise2. This scheme is complemented with
power control to manage inter-cell interference and achieve
different GDoF (or rate) trade-offs. We follow the tradition of
disallowing time-sharing for the sake of tractability [8]–[15].
The resulting achievable GDoF region is therefore obtained by
considering all feasible power control strategies and successive
decoding orders in each cell. To distinguish this region from
different restricted versions that appear throughout the work,
we refer to it as the general TIN-achievable GDoF region
henceforth.

To obtain an explicit characterization of the general TIN-
achievable GDoF region, that does not depend on power
control variables, we focus on sub-regions achieved with
fixed decoding orders. We then seek to characterize restricted
(smaller) achievable sub-regions, known as polyhedral TIN-
achievable regions, through a non-trivial application of the po-
tential graph approach in [8], [10]. Polyhedral TIN-achievable
regions are then employed as building blocks in characterizing
the general TIN-achievable GDoF region, which in turn is
shown to be a finite union of polyhedra.

2We focus on TIN schemes that employ unstructured random Gaussian
codes throughout this work. This excludes schemes that use codes with (some)
structure, e.g. the TIN scheme with mixed inputs in [18].
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One major challenge in applying the potential graph ap-
proach compared to [8], [10] is identifying and eliminating
redundant directed circuits (and their corresponding GDoF
inequalities), which arise due to the special structure of the
IMAC under the proposed TIN scheme (see Section IV-A).
This step proves crucial for matching the achievable region
with the outer bound derived later on to establish the GDoF
optimality of the proposed TIN scheme in the regime of
interest.

2) Conditions for TIN-Convexity: After establishing a TIN-
achievable GDoF region for the IMAC, the natural question
to ask next is: under what conditions is this achievable region
optimal? As an intermediate step towards answering this
question, we consider the closely related issue of determining
conditions under which this TIN-achievable GDoF region is
a polyhedron3, and hence convex, in its own right without
requiring time-sharing. We identify a regime for which this
holds that is characterized by two conditions referred to as the
TIN-convexity conditions (see Theorem 3 in Section III-C).

The first of the two conditions guarantees that one succes-
sive decoding order for each cell dominates all others in a
GDoF sense, such that it is sufficient to only consider this
decoding order to achieve the entire general TIN-achievable
GDoF region. The second condition is essentially the TIN-
convexity condition of the K-user IC, identified by Yi and
Caire in [15], applied to all possible K-user IC subnetworks
of the considered IMAC. This condition guarantees that the
TIN region achieved through the dominant decoding order is
in itself convex.

3) Conditions for TIN-Optimality: We further strengthen
the TIN-convexity conditions and obtain a set of TIN-
optimality conditions under which the general TIN-achievable
GDoF region is also optimal (see Theorem 4 in Section III-D).
The TIN-optimality conditions are merely stronger versions of
the two aforementioned TIN-convexity conditions and include
the TIN-optimality condition of Geng et al. [8], applied to all
possible K-user IC subnetworks of the considered IMAC.

We prove the TIN-optimality result by deriving an outer
bound which coincides with the general TIN-achievable GDoF
region in the regime of interest. We recall that in the converse
used to establish the TIN-optimality condition for the K-
user IC in [8], each bound featuring more than one user is
obtained by first reducing the channel to a cyclic (sub)network
and then directly applying the Etkin-Tse-Wang (ETW) genie
[9] (see also [19] where the cyclic IC is considered). We
follow in the same general footsteps by first considering cyclic
(sub)networks, where cyclicity is taken with respect to partic-
ipating cells. We then use a non-trivial genie-aided argument
which extends the ETW genie to cope with the multi-user
per-cell setting at hand. In particularly, the genie signal given
for each cell is taken as a noisy linear combination of in-cell
signals, where the weights of such linear combinations (i.e.
the genie channels) are carefully designed to yield the desired
bounds in the regime of interest (see Section VI-B for details).
This outer bound also directly lends itself to showing that

3By a polyhedron, we are referring to a convex set given by the intersection
of a finite number of half spaces. Since we are dealing with GDoF regions,
we only encounter bounded polyhedra which are therefore convex polytopes.

under the identified TIN-optimality conditions, the proposed
TIN scheme achieves the entire capacity region of the IMAC
up to a constant gap.

C. Notation

For any positive integers z1 and z2, where z1 ≤ z2, the sets
{1, 2, . . . , z1} and {z1, z1 + 1, . . . , z2} are denoted by 〈z1〉
and 〈z1 : z2〉 respectively. For any real number a, (a)+ =
max{0, a}. Bold lowercase symbols denote tuples, e.g. a =
(a1, . . . , aZ). For A = {a1, . . . ,aK}, Σ(A) is the set of all
cyclic sequences formed by any number of elements in A
without repetitions, e.g.

Σ
(
{a1,a2,a3}

)
=
{

(a1), (a2), (a3),

(a1,a2), (a1,a3), (a2,a3), (a1,a2,a3), (a1,a3,a2)
}
.

The complement of set A is denoted by A. The cardinality of
set A is denoted by |A|, where |∅| = 0. The indicator function
on set A is defined as

1A(a) =

{
1, if a ∈ A
0, if a /∈ A.

We sometimes use the alternative definition of the indicator
function given by

1(statement) =

{
1, if statement is true
0, otherwise.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a K-receiver Gaussian IMAC in which each
receiver k, k ∈ 〈K〉, is associated with Lk transmitters. The
k-th receiver is denoted by Rx-k and the lk-th transmitter, lk ∈
〈LK〉, associated with this receiver is denoted by Tx-(lk, k).
Using the terminology of cellular networks, a receiver and its
associated transmitters are referred to as a cell, operating in the
uplink mode. The set of tuples corresponding to transmitters
(or users) in cell k is given by Kk , {(lk, k) : lk ∈ 〈LK〉},
k ∈ 〈K〉, and the set of all users in the network is given by
K ,

⋃
k∈〈K〉Kk.

The input-output relationship at the t-th use of the channel,
t ∈ N, is described as

Yi(t) =

K∑
k=1

Lk∑
lk=1

h
[lk]
ki X̃

[lk]
k (t) + Zi(t), ∀i ∈ 〈K〉, (1)

where h[lk]
ki is the channel coefficient from Tx-(lk, k) to Rx-i,

X̃
[lk]
k (t) is the transmitted symbol of Tx-(lk, k) and Zi(t) ∼
NC(0, 1) is the additive white Gaussian noise (AWGN) at Rx-
i, which is i.i.d over channel uses (time). All symbols are
complex and each transmitter (lk, k) is subject to the power
constraint

1

n

n∑
t=1

E

[∣∣X̃ [lk]
k (t)

∣∣2] ≤ P [lk]
k . (2)

Note that receivers are indexed by the subscript, transmitters
are indexed by the superscript in square parentheses and chan-
nel uses are indexed by the argument in the round parentheses.
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Following the standard reformulation in [8], the channel
model in (1) is transformed into

Yi(t) =

K∑
k=1

Lk∑
lk=1

√
Pα

[lk]

ki ejθ
[lk]

ki X
[lk]
k (t) + Zi(t), i ∈ 〈K〉,

(3)
where P > 0 is a nominal power value and X

[lk]
k (t) ,

X̃
[lk]
k (t)/

√
P

[lk]
k is the normalized transmit symbol of Tx-

(lk, k) with power constraint

1

n

n∑
t=1

E

[∣∣X [lk]
k (t)

∣∣2] ≤ 1. (4)

In (3),
√
Pα

[lk]

ki and θ[lk]
ki are the magnitude and phase of the

link between Tx-(lk, k) and Rx-i. The exponent α[lk]
ki , known

as the channel strength level, is defined as

α
[lk]
ki ,

log
(
max

{
1, |h[lk]

ki |2P
[lk]
k

})
logP

,∀(lk, k)∈K, i∈〈K〉. (5)

As shown in [8], avoiding negative channel strength levels
has no impact on the GDoF or the constant gap results.
Therefore, we focus on the equivalent channel model in (3)
henceforth. Furthermore, without loss of generality, we assume
the following order of direct link strength levels

α
[1]
kk ≤ α

[2]
kk ≤ · · · ≤ α

[Lk]
kk , ∀k ∈ 〈K〉. (6)

A. Messages, Rates, Capacity and GDoF

Transmitters Tx-(1, k), . . . ,Tx-(Lk, k) have the messages
W

[1]
k , . . . ,W

[Lk]
k , respectively, intended to receiver Rx-k. All

messages are independent and |W [lk]
k | denotes the size of the

corresponding message set. For codewords spanning n channel

uses, the rates R[lk]
k =

log |W [lk]

k |
n , ∀(lk, k) ∈ K, are achievable

if all messages can be decoded simultaneously with arbitrarily
small error probability as n grows sufficiently large. A rate tu-
ple is denoted by R =

(
R

[1]
1 , . . . , R

[L1]
1 , . . . , R

[1]
K , . . . , R

[LK ]
K

)
and the channel capacity region C is the closure of the
set of all achievable rate tuples. A GDoF tuple is denoted
by d =

(
d

[1]
1 , . . . , d

[L1]
1 , . . . , d

[1]
K , . . . , d

[LK ]
K

)
and the GDoF

region is defined as

D ,

{
d : d

[lk]
k = lim

P→∞

R
[lk]
k

logP
, ∀(lk, k) ∈ K, R ∈ C

}
.

(7)

B. Treating (Inter-cell) Interference as Noise

For a single Gaussian MAC, it is well known that the
capacity region is a polyhedron, where the corner points
are achieved using independent Gaussian codebooks with
successive decoding at the receiver, while the remaining points
are achieved by further incorporating time-sharing [20]. In the
TIN scheme proposed for the IMAC, a MAC-type capacity-
achieving strategy with Gaussian codebooks and successive
decoding is employed in each cell, while all inter-cell in-
terference is treated as noise. Furthermore, power control is
employed by transmitters to manage inter-cell interference

levels and achieve various tradeoffs4. Nevertheless, keeping to
the tradition followed in [8]–[15], we prohibit time-sharing.
Although this restriction is mainly motivated by tractability, it
remarkably has no influence on the results in the regimes of
interest as explained in detail further on.

To formalize the above TIN scheme, let P r
[lk]

k be the
(controlled) transmit power of Tx-(lk, k), where r

[lk]
k ≤ 0

denotes the transmit power exponent (or power allocation vari-
able). The tuple of all power allocation variables is given by
r =

(
r

[1]
1 , . . . , r

[L1]
1 , . . . , r

[1]
K , . . . , r

[LK ]
K

)
. On the other hand,

the order in which Rx-k successively decodes its in-cell signals
is given by the permutation function πk : 〈Lk〉 → 〈Lk〉,
such that X [πk(Lk)]

k is decoded and cancelled before decoding
X

[πk(Lk−1)]
k and so on. The decoding order across the network

is given by the tuple π , (π1, . . . , πK), which is drawn from
the set Π comprising all possible

∏K
i=1(Li!) network decoding

orders.
For given π and r, Tx-

(
πk(lk), k

)
achieves any rate sat-

isfying (8). In the GDoF sense, the achievable rate in (8)
translates to (9). Note that both (8) and (9) are given at the
top of the next page. For a fixed π ∈ Π, the TIN-achievable
GDoF region, denoted by P?π , is the set of all GDoF tuples
d with components satisfying (9) for some feasible power
allocation vector r ≤ 0. The general TIN-achievable GDoF
region, denoted by P?, is obtained by taking the union over
all possible decoding orders in Π and is defined as

P? ,
⋃
π∈Π

P?π. (10)

Note that since time-sharing is not allowed, each GDoF tuple
d ∈ P? is achieved through a strategy identified by a decoding
order and a power allocation tuple, i.e. (π, r).

Before we proceed, we highlight that we often work with
the identity order π = id in the following sections, where
id , (id1, . . . , idK) and idi(li) = li, ∀(li, i) ∈ K.

C. Polyhedral TIN-Achievable GDoF Regions

In this part we introduce a polyhedral TIN scheme for
the IMAC from which we obtain polyhedral TIN-achievable
GDoF regions, which form the main building blocks of GDoF
characterizations obtained in this work. For any decoding
order π ∈ Π, the polyhedral TIN scheme is a restricted
version of the TIN scheme described in Section II-B in which
r is chosen such that the second argument of the outmost
max{0, ·} in (9) is non-negative. The resulting polyhedral TIN
region, denoted by Pπ , is hence described by all GDoF tuples
d that satisfy (11)–(13), where it can be seen from (13) that
the outmost max{0, ·} in (9) has been dropped. It follows
from this restriction that Pπ ⊆ P?π and therefore we have⋃

π∈Π Pπ ⊆ P?. This inner bound of P? can be further
tightened in general by following along the lines of [8, Th.
5], i.e. taking the union of polyhedral TIN-achievable regions
that correspond to all subnetworks of the original IMAC.

To facilitate the above, we define the more general collec-
tion of polyhedral TIN-achievable regions that correspond to

4Note that such power control is not required to achieve the capacity region
for a single Gaussian MAC [20].
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0 ≤ R[πk(lk)]
k ≤ log

(
1 +

P r
[πk(lk)]

k +α
[πk(lk)]

kk

1 +
∑lk−1
l′k=1 P

r
[πk(l′

k
)]

k +α
[πk(l′

k
)]

kk +
∑
j 6=k

∑Lj
lj=1 P

r
[lj ]

j +α
[lj ]

jk

)
. (8)

0 ≤ d[πk(lk)]
k ≤ max

{
0, r

[πk(lk)]
k + α

[πk(lk)]
kk −

(
max

{
max
l′k<lk

{r[πk(l′k)]
k + α

[πk(l′k)]
kk },max

j 6=k
max
lj
{r[lj ]
j + α

[lj ]
jk }

})+
}
. (9)

r
[πk(lk)]
k ≤ 0, ∀(lk, k) ∈ K (11)

d
[πk(lk)]
k ≥ 0, ∀(lk, k) ∈ K (12)

d
[πk(lk)]
k ≤ r[πk(lk)]

k + α
[πk(lk)]
kk −

(
max

{
max
l′k<lk

{r[πk(l′k)]
k + α

[πk(l′k)]
kk },max

j 6=k
max
lj
{r[lj ]
j + α

[lj ]
jk }

})+

, ∀(lk, k) ∈ K. (13)

subnetworks of the IMAC. For instance, consider a subnetwork
comprising the subset of users S ⊆ K, where S , K\S is the
set of all remaining users in the original IMAC. We apply the
polyhedral TIN scheme to the subnetwork S while deactivating
all users in S, i.e. by setting r

[li]
i = −∞, ∀(li, i) ∈ S, from

which we obtain d
[li]
i = 0, ∀(li, i) ∈ S. The corresponding

polyhedral TIN region for decoding order π ∈ Π is denoted by
Pπ(S). Note that the polyhedral TIN region described in (11)–
(13) is obtained by activating all users, i.e. Pπ = Pπ(K). On
the other hand, by deactivating all users we obtain Pπ(∅) = 0.

It is easily seen that Pπ(S) ⊆ P?π , ∀S ⊆ K, as the
polyhedral TIN scheme over any subnetwork S is a special
case of the original TIN scheme with the same decoding order.
By taking the union over all possible decoding orders, we
establish an inner bound on P? given by

P? ⊇
⋃
π∈Π

⋃
S⊆K

Pπ(S). (14)

By swapping the order of the union operators in the above
inner bound, we reveal redundancies in its representation as
shown through the following remark.

Remark 1. Consider a subset of users S ⊆ K and the
corresponding family of polyhedral TIN-achievable GDoF
regions given by

{
Pπ(S) : π ∈ Π

}
. Some decoding orders

π ∈ Π are redundant, in the sense that they yield the same
polyhedral TIN regions, since varying the order of users in S,
which are inactive, has no influence on Pπ(S). This type of
redundancy is eliminated by considering the set of decoding
orders for subnetwork S only, which we denote by Π(S), and
slightly modifying the definition of Pπ(S) into Pπ′(S), where
π′ ∈ Π(K), in which the order of users in S is irrelevant5.
By employing these definitions, we can then easily show that
(14) is equivalent to P? ⊇

⋃
S⊆K

⋃
π′∈Π(S) Pπ′(S). ♦

III. MAIN RESULTS AND INSIGHTS

In this section, we present the primary results of this work
with insights and illustrative examples. The proofs are deferred
to subsequent sections.

5Suppose that S = ∪i∈MSi for some M⊆ 〈K〉 and Si ⊆ Ki, i ∈ M.
Each decoding order π′ ∈ Π(S) is given by (π′

i : i ∈ M), where π′
i :

〈|Si|〉 → Si maps the order si ∈ 〈|Si|〉 to user π′
i(si) ∈ Si. By definition,

we have Π = Π(K).

A. Characterization of Polyhedral TIN-Achievable Regions

We start by characterizing the polyhedral TIN-achievable
GDoF region Pπ for any π ∈ Π. This polyhedral characteri-
zation is at the heart of all subsequent GDoF characterizations.

Theorem 1. For the IMAC described in Section II, the achiev-
able GDoF region through polyhedral TIN with decoding
order π ∈ Π, denoted by Pπ , is given by all tuples d ∈ R|K|+

that satisfy
li∑

si=1

d
[πi(si)]
i ≤ α[πi(li)]

ii , ∀(li, i) ∈ K (15)

m∑
j=1

lij∑
sij=1

d
[πij (sij )]

ij
≤

m∑
j=1

α
[πij (lij )]

ijij
− α

[πij (lij )]

ijij−1
,

∀lij ∈ 〈Lij 〉, (i1, . . ., im) ∈ Σ
(
〈K〉

)
,m ∈ 〈2 : K〉, (16)

where Σ
(
〈K〉

)
is the set of all cyclic sequences of all subsets6

of 〈K〉 and a modulo-m operation is implicitly used on cell
indices when dealing with cyclic sequences, i.e. i0 = im.

The characterization in the above theorem, given in terms
of the channel strength levels only, is obtained by eliminating
the power control variables in (11)–(13). This elimination in
turn is accomplished through the potential theorem [21] and
builds upon the arguments employed in [8], [13]. Full details
of this procedure are presented in Section IV-A.

From the characterization in Theorem 1, it is evident that
Pπ is a polyhedron, which hence justifies the name of the
polyhedral TIN scheme and the corresponding regions. For
the MAC special case, recovered by setting K = 1, this
characterization reduces to a MAC achievable GDoF region
under a decoding order π ∈ Π. On the other hand, for the
K-user IC special case recovered when Li = 1, ∀i ∈ 〈K〉,
the characterization reduces to the polyhedral TIN-achievable
region in [8, Th. 2]. In general, the characterization in Theorem
1 inherits features from both the MAC and IC special cases
which are further elaborated in the following remarks.

Remark 2. From the characterization of Pπ in Theorem 1,
it can be seen that any GDoF inequality that includes d[πi(li)]

i

also includes d[πi(l
′
i)]

i , for all l′i < li. This is due to the MAC-
type successive decoding in which Rx-i decodes the signal of

6See the definition and example in the notation part.
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Tx-
(
πi(li), i

)
before decoding the signals of Tx-

(
πi(l

′
i), i
)
, for

all l′i < li. This in turn bounds the maximum achievable sum-
GDoF of such users, i.e.

∑
si≤li d

[πi(si)]
i , by Tx-

(
πi(li), i

)
’s

maximum achievable GDoF. ♦

Remark 3. The cyclic feature exhibited in (16) is a product
of the power-controlled TIN strategy and has its roots in the
regular IC [8]. From the observation in Remark 2, we may
treat the sum-GDoF d̂

[πi(li)]
i =

∑
si≤li d

[πi(si)]
i as the GDoF

of a single user Tx-
(
πi(li), i

)
. With this treatment in mind,

consider a subnetwork of the IMAC which constitutes a K-
user IC. Such subnetwork must consist of one transmitter from
each cell, e.g. Tx-

(
πi(li), i

)
for all i ∈ 〈K〉. From [8, Th. 1],

the polyhedral TIN-achievable GDoF region of this K-user IC
has the following cyclic inequalities

m∑
j=1

d̂
[πij (lij )]

ij
≤

m∑
j=1

α
[πij (lij )]

ijij
− α

[πij (lij )]

ijij−1
,

(i1, . . . , im) ∈ Σ
(
〈K〉

)
,m ∈ 〈2 : K〉

which are included in (16). In fact, it can be seen that (16)
consists of all cyclic GDoF inequalities resulting from the
polyhedral TIN regions of all possible subnetworks of the
IMAC that constitute K-user ICs, while retaining the above
GDoF treatment of d̂[πi(li)]

i =
∑
si≤li d

[πi(si)]
i . ♦

Next, we turn our attention to the role of the decoding order
π. First, it can be easily checked that the optimal GDoF region
of the MAC special case is obtained by fixing the decoding
order7 to π = id. In this case, the signal of a stronger user
Tx-(li, i) is received by Rx-i at a higher power level compared
to the signal of a weaker user Tx-(l′i, i), l′i < li. Therefore, it is
preferable from a GDoF perspective to decode the signal from
Tx-(li, i) first while treating all signals from Tx-(l′i, i), l′i <
li, as noise. Contrary to the MAC special case however, the
decoding order id does not always yield the largest polyhedral
TIN-achievable GDoF region for the IMAC, i.e. Pπ ⊆ Pid

does not hold in general for all π ∈ Π. For example, a stronger
user Tx-(li, i) may also have stronger cross links compared to
a weaker user Tx-(l′i, i), l′i < li, causing significantly more
inter-cell interference. Tx-(li, i) may be required to control its
power to an extent that its signal is now received by Rx-i at
a lower power level compared to the signal of Tx-(l′i, i). In
this case, some GDoF points may only be achieved through
a decoding order in which the signal of Tx-(l′i, i) is decoded
before that of Tx-(li, i). To further illustrate the influence of
π, we consider the following simple example.

Example 1. Consider a network of K = 2 cells, where cell
1 and cell 2 comprise L1 = 2 and L2 = 1 users, respectively.
This 2-cell, 3-user network, referred to as the PIMAC in [17],
is used as a running example throughout this section as it
captures some of the IMAC’s main features and allows for
GDoF regions that can be visualized. According to Theorem

7Note that this is in contrast to the MAC capacity region, which requires
changing the successive decoding order to achieve different corner points in
general [20]. This difference is highlighted in [22, Fig. 4] for the 2-user MAC
through the linear deterministic model, which shares many features with the
GDoF model.

1, the region Pid for this network is the set of all tuples(
d

[1]
1 , d

[2]
1 , d

[1]
2

)
∈ R3

+ that satisfy

d
[1]
1 ≤ α

[1]
11 (17)

d
[2]
1 + d

[1]
1 ≤ α

[2]
11 (18)

d
[1]
2 ≤ α

[1]
22 (19)

d
[1]
1 + d

[1]
2 ≤ α

[1]
11 − α

[1]
12 + α

[1]
22 − α

[1]
21 (20)

d
[2]
1 + d

[1]
1 + d

[1]
2 ≤ α

[2]
11 − α

[2]
12 + α

[1]
22 − α

[1]
21 . (21)

In addition to the decoding order id, we have one more
decoding order denoted by id for which Rx-1 decodes the
signal of Tx-(1, 1) before decoding the signal of Tx-(2, 1).
From Theorem 1, the corresponding polyhedral region Pid is
the set of all

(
d

[1]
1 , d

[2]
1 , d

[1]
2

)
∈ R3

+ satisfying

d
[2]
1 ≤ α

[2]
11 (22)

d
[1]
1 + d

[2]
1 ≤ α

[1]
11 (23)

d
[1]
2 ≤ α

[1]
22 (24)

d
[2]
1 + d

[1]
2 ≤ α

[2]
11 − α

[2]
12 + α

[1]
22 − α

[1]
21 (25)

d
[2]
1 + d

[1]
1 + d

[1]
2 ≤ α

[1]
11 − α

[1]
12 + α

[1]
22 − α

[1]
21 (26)

where inequality (22) is clearly redundant. Now let us assume
that the following condition holds

α
[1]
21 ≤ α

[2]
11 − α

[2]
12 < α

[1]
11 − α

[1]
12 . (27)

It can be easily verified that under the condition in (27), the
GDoF tuple given by(

d
[1]
1 , d

[2]
1 , d

[1]
2

)
=(

(α
[1]
11 − α

[1]
12)− (α

[2]
11 − α

[2]
12), (α

[2]
11 − α

[2]
12)− α[1]

21 , α
[1]
22

)
(28)

lies in the region Pid. For this tuple, Tx-(1, 2) of cell 2

achieves its full interference-free GDoF of α[1]
22 , and hence

Tx-(1, 1) and Tx-(2, 1) of cell 1 have to lower their transmit
powers hence limiting their sum-GDoF to (α

[1]
11 −α

[1]
12)−α[1]

21 .
It can also be checked that the GDoF tuple in (28) is not in the
region Pid, as the inequality (21) is violated under condition
(27). In particular, for decoding order id, the sum-GDoF of
cell 1 is bounded by (α

[2]
11 −α

[2]
12)−α[1]

21 < (α
[1]
11 −α

[1]
12)−α[1]

21

when cell 2 achieves its interference-free GDoF of α[1]
22 . An

illustration of Pid and Pid for an instance of the above
network that satisfies (27) is shown in Fig. 2(c). ♦

The result in Theorem 1 can be easily adapted to charac-
terize the general polyhedral TIN region for any subnetwork
S ⊆ K as shown in the following remark.

Remark 4. For any subnetwork S = ∪i∈MSi, where M ⊆
〈K〉 and Si ⊆ Ki for all i ∈ M, the polyhedral TIN region
Pπ′(S), where π′ ∈ Π(S), is described by all tuples d ∈ R|K|+

that satisfy

d
[lj ]
j = 0, ∀(lj , j) ∈ S (29)

li∑
si=1

d
[π′i(si)]
i ≤ α[π′i(li)]

ii , ∀li ∈ 〈|Si|〉, i ∈M (30)
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Fig. 2. Polyhedral TIN-achievable GDoF regions for the 2-cell, 3-user network from the running example. The regions Pid and Pid are
illustrated in red and blue, respectively. For the instances in (a) and (b), we have Pid ⊆ Pid. For (c), we have Pid * Pid and Pid * Pid.

m∑
j=1

lij∑
sij=1

d
[π′ij (sij )]

ij
≤

m∑
j=1

α
[π′ij (lij )]

ijij
− α

[π′ij (lij )]

ijij−1
,

∀lij ∈ 〈|Si|〉, (i1, . . . , im) ∈ Σ
(
M
)
,m ∈ 〈2 : |M|〉. (31)

Note that the definitions of π′ and Π(S) are given in Remark
1 (see also footnote 5). ♦

B. Characterization of General TIN-Achievable GDoF Region
Following the characterization of polyhedral TIN-achievable

GDoF regions, the natural question to ask next is whether we
can characterize the general TIN-achievable GDoF region P?.
This is settled in the following theorem which makes use of
the results in Theorem 1 and Remark 4.

Theorem 2. For the IMAC described in Section II, the general
TIN-achievable region is equal to

P? =
⋃
π∈Π

⋃
S⊆K

Pπ(S). (32)

The above theorem is proved by essentially showing that
the inclusion in (14) also holds in the opposite direction. Full
details are given in Section IV-B.

The general TIN-achievable region P?, as seen from (32), is
a finite union of polyhedra. While the order of the two union
operators in (32) is set in this manner by construction (see
(14)), and also used in this fashion in the proof (see Section
IV-B), we may swap the order of the operators to eliminate
redundancies as suggested by Remark 1. It follows that (32)
is equivalent to

P? =
⋃
S⊆K

⋃
π′∈Π(S)

Pπ′(S). (33)

We observe that there is a total of 2|K|−1 non-empty subnet-
works of K (including K itself) and each such subnetwork may
be expressed as S = ∪i∈KSi = ∪i∈MSi, where M ⊆ 〈K〉,
Si ⊆ Ki and Si = ∅ for all i ∈ K \ M. Therefore, S
admits |Π(S)| =

∏
i∈K(|Si|!) different decoding orders8. It

follows from the representation in (33) that P? is the union of∑
S1⊆K1

· · ·
∑
SK⊆KK

∏
i∈K(|Si|!) polyhedral TIN-achievable

regions in general.
From the above characterizations, we conclude that when

time-sharing is not allowed, the GDoF region P?, which is
achieved through power control and TIN, is not convex in
general as it is given by a finite union of polyhedra. This is
further illustrated by revisiting our running example.

Example 2. Consider the 2-cell, 3-user network from Example
1. For each of the instances of this network given in Fig.
2, it can easily checked that the polyhedral TIN-achievable
GDoF regions for all subnetworks are included in the 3-user
polyhedral regions Pid and Pid. Therefore, it follows that P?
coincides with Pid ∪ Pid for the examples in Fig. 2, from
which we observe that P? is convex for the instances in (a)
and (b), and non-convex for the instance in (c). ♦

The observation that P? is non-convex in general is key in
guiding the path towards establishing conditions under which
P? is optimal as we show in the following parts of this section.

C. Conditions for TIN-Convexity

Capacity regions of synchronous channels, and therefore
their GDoF counterparts, are known to be convex by virtue of

8Note that we use the conventions |∅| = 0 and 0! = 1.
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time-sharing [2]. Hence, for the general TIN-achievable GDoF
region P? to be optimal, it must necessarily also be convex.
Here we identify conditions under which the latter holds, i.e.
where P? is convex in its own right without the need for
time-sharing. This serves as a first step towards establishing
conditions under which P? is also optimal.

From the characterization in (32), it can be seen that the
polyhedrality (and hence convexity) of P? is guaranteed when
at least one of the polyhedral TIN regions in the union contains
all others, i.e. if there exists π? ∈ Π and S? ⊆ K such that
the following holds:

Pπ?(S?) ⊇ Pπ(S), ∀π ∈ Π and S ⊆ K. (34)

In the following result, we identify conditions under which
such π? and S? exist.

Theorem 3. For the IMAC described in Section II, if for all
(li, i) ∈ K and (l′i, i) ∈ K, such that li > l′i, the following
conditions are satisfied

α
[li]
ii ≥ α

[l′i]
ii + max

j:j 6=i

{
α

[li]
ij − α

[l′i]
ij

}
(35)

α
[li]
ii ≥ max

j,(lk,k):j 6=i,k 6=i

{
α

[li]
ij + α

[lk]
ki − α

[lk]
kj 1

(
k 6= j

)}
, (36)

then the general TIN-achievable GDoF region P? is a polyhe-
dron and it is given by P? = Pid. This region, achieved with
a fixed decoding order π = id, is described by (15) and (16)
in Theorem 1 while setting πi(li) = li for all (li, i) ∈ K.

We refer to the conditions identified in Theorem 3 as the
TIN-convexity conditions. To gain insight into these conditions,
we first consider (35) which is equivalently expressed as

α
[li]
ii − α

[li]
ij ≥ α

[l′i]
ii − α

[l′i]
ij ,

∀i, j ∈ 〈K〉, i 6= j, l′i, li ∈ 〈Li〉, l′i < li. (37)

Now consider users Tx-(li, i) and Tx-(l′i, i) from cell i with
the former being the stronger MAC user, i.e. α[li]

ii ≥ α
[l′i]
ii .

Moreover, we focus on the interference caused by these two
users to some cell j. The condition in (37) implies that even
after attenuating the powers of Tx-(li, i) and Tx-(l′i, i) such
that they cause no interference to cell j above noise level, i.e.
r

[li]
i = −α[li]

ij and r
[l′i]
i = −α[l′i]

ij , Tx-(li, i) remains stronger
compared to Tx-(l′i, i) in the sense that its signal is still
received by Rx-i at a higher power level. This extends to all
users such that the MAC order of users in each cell is preserved
under the constraint of reducing inter-cell interference caused
to any subset of cells to noise level. As a wider implication,
we see through the proof of Theorem 3 in Section V that
the condition in (37) is sufficient to guarantee that id is the
dominant order, i.e. for any subnetwork S ⊆ K, we have
Pπ(S) ⊆ Pid(S) for all π ∈ Π.

In addition to order preservation within each MAC, the
following step in establishing Theorem 3 is to show that
Pid(S) ⊆ Pid(K) holds for all subnetworks S ⊆ K. To
this end, we note that (36) is essentially the TIN-convexity
condition for the K-user IC, identified by Yi and Caire in
[15, Th. 4], applied to all possible K-user IC subnetworks of
the considered IMAC. This condition in conjunction with the

one in (35) are sufficient to guarantee a monotonic behaviour
of Pid(S) in S , i.e. S ′ ⊆ S ⊆ K implies Pid(S ′) ⊆ Pid(S) ⊆
Pid(K). Full details are relegated to Section V.

Example 3. Consider the 2-cell, 3-user network from the
running example. The TIN-convexity condition in (35) of
Theorem 3 is expressed for this network as

α
[2]
11 − α

[1]
11 ≥ α

[2]
12 − α

[1]
12 . (38)

On the other hand, the IC-type TIN-convexity condition in (36)
is given for this network by the following set of inequalities9:

α
[1]
11 ≥ α

[1]
12 + α

[1]
21 (39)

α
[1]
22 ≥ α

[1]
12 + α

[1]
21 (40)

α
[2]
11 ≥ α

[2]
12 + α

[1]
21 (41)

α
[1]
22 ≥ α

[2]
12 + α

[1]
21 . (42)

It can be verified that the instances of this network given
in (a) and (b) of Fig. 2 satisfy the above TIN-convexity
conditions. This in turn leads to Pid ⊆ Pid and P? being
a polyhedron, and hence convex, as seen in the illustrations.
On the other hand, the instance given in (c) of Fig. 2 violates
these conditions and has a region P? which is non-convex.
This example, however, is far from enough for proving that
the TIN-convexity conditions identified in Theorem 3 are also
necessarily for the convexity of P?. This issue of necessity and
sufficiency of TIN conditions in this work, as well as related
works, is revisited at the end of the section in Remark 8. ♦

Knowing that the convexity of an achievable GDoF region
is a necessary condition for it to be optimal, the main question
that comes to mind at this point is whether the TIN-convexity
conditions identified in Theorem 3, under which the TIN
region P? is convex, also imply the optimality of P?. This
issue is further explored in Remark 7, after presenting the
final main result of this work next.

D. Conditions for TIN-Optimality

In the following theorem, we obtain TIN-optimality condi-
tions under which the TIN scheme proposed in Section II-B,
with power control, successive decoding and no time-sharing,
achieves the entire GDoF region of the IMAC, denoted by D.

Theorem 4. For the IMAC described in Section II, if for all
(li, i) ∈ K and (l′i, i) ∈ K, such that li > l′i, the following
conditions are satisfied

α
[li]
ii ≥ α

[l′i]
ii + max

j:j 6=i

{
min

{
α

[li]
ij , 2α

[li]
ij − α

[l′i]
ij

}}
(43)

α
[li]
ii ≥ max

j:j 6=i

{
α

[li]
ij

}
+ max

(lk,k):k 6=i

{
α

[lk]
ki

}
, (44)

then the optimal GDoF region is given by D = P? = Pid.
This region, achieved with a fixed decoding order π = id, is
described by (15) and (16) in Theorem 1 while setting πi(li) =
li for all (li, i) ∈ K.

9Note that these are essentially the TIN-optimality conditions of Geng et al.
[8] applied to each 2-user IC subnetwork of the IMAC in Fig. 2. This holds
since the IC-type TIN-optimality and TIN-convexity conditions are identical
in 2-cell networks (see Theorem 4 and Example 4 in the following part).
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In the proof of Theorem 4, we derive an outer bound for
the capacity region C under the assumption that the conditions
in (43) and (44) hold (see Theorem 5 in Section VI). It
turns out that the corresponding GDoF region outer bound,
obtained from the capacity region outer bound, coincides with
the polyhedral TIN-achievable region Pid when (43) and (44)
hold, from which optimality is established. The full details of
the proof are given in Section VI.

We turn our attention now to understanding the TIN-
optimality conditions in Theorem 4. It can be seen that the
condition (43) is equivalently expressed by the following
inequalities:

α
[li]
ii − α

[li]
ij ≥ α

[l′i]
ii or α

[li]
ii − α

[li]
ij ≥ α

[l′i]
ii − α

[l′i]
ij + α

[li]
ij ,

∀i, j ∈ 〈K〉, i 6= j, l′i, li ∈ 〈Li〉, l′i < li. (45)

The TIN-optimality condition in (43) is reminiscent of the
TIN-convexity condition in (35) in the sense that it provisions
the power level gains of stronger users against weaker users
in each MAC. On the other hand, the IC-type TIN-optimality
condition in (44) is the condition identified by Geng et al.
in [8], applied to all possible K-user IC subnetworks of the
IMAC. By comparing (35) and (43) (for instance through (37)
and (45) respectively), we can see that the latter is stricter than
the former. Moreover, we know from [15, Rem. 4] that (44)
is a stricter version of (36). These observations lead to the
following remark.

Remark 5. The TIN-convexity conditions in Theorem 3 are a
relaxed version of the TIN-optimality conditions in Theorem
4. Therefore, if the TIN-optimality conditions (43) and (44)
hold then the TIN-convexity conditions (35) and (36) are
automatically satisfied. ♦

To gain more insights, we revisit our running example in
the light of the newly established conditions. This is followed
by further remarks and observations.

Example 4. For the 2-cell, 3-user network in previous ex-
amples, the TIN-optimality condition in (43) is given by the
inequalities:

α
[2]
11 − α

[1]
11 ≥ α

[2]
12 or (46a)

α
[2]
11 − α

[1]
11 ≥ 2α

[2]
12 − α

[1]
12 . (46b)

Moreover, it can be easily checked that the IC-type TIN-
optimality condition in (44) for this network is identical to
the IC-type TIN-convexity conditions in (39)–(42).

Next, we look at the regimes of channel strength levels
described by the conditions in Theorem 4 and Theorem 3. To
facilitate this, we fix all direct link strength levels α[1]

11 , α[2]
11

and α[1]
22 and the cross link strength level α[1]

21 (i.e. interference
caused to cell 1), such that α[1]

11 , α[2]
11 , α

[1]
22 > α

[1]
21 is satisfied.

We consider the influence of varying the cross link strengths
α

[1]
12 and α[2]

12 (i.e. interference caused to cell 2), while assuming
that the IC-type TIN-optimality conditions in (39)–(42) hold. It
can be seen that (39)–(42) confine the set of allowed strengths(
α

[1]
12 , α

[2]
12

)
∈ R2

+ to the box given by

0 ≤ α[1]
12 ≤ min

{
α

[1]
22 , α

[1]
11

}
− α[1]

21 (47)

α
[2]
11

− α
[2]
12

= α
[1]
11

α
[2]
11

− 2α
[2]
12

= α
[1]
11

− α
[1]
12

α
[2]
11

− α
[2]
12

= α
[1]
11

− α
[1]
12

α
[2]
12

α
[1]
12

a
[1]
12

a
[2]
12

Fig. 3. TIN-optimality and TIN-convexity regimes for the 2-cell, 3-
user network of Fig. 2 in terms of cross link strengths

(
α
[1]
12 , α

[2]
12

)
,

as explained in Example 4. The constants a[1]12 and a
[2]
12 are given

by a[l]12 = min
{
α
[1]
22 , α

[l]
11

}
− α[1]

21 , l ∈ {1, 2}. Different regimes are
highlighted as follows:A′

o in light blue,A′′
o\A′

o in dark blue,Ap\Ao

in light red and A is the entire box.

0 ≤ α[2]
12 ≤ min

{
α

[1]
22 , α

[2]
11

}
− α[1]

21 (48)

which we denote by A (see Fig. 3). We further define the
following sub-regimes of A:
• A′o and A′′o are given by the intersection of A with (46a)

and (46b) respectively.
• Ap is given by the intersection of A with (38).

The above sub-regimes are illustrated in Fig. 3. It is readily
seen that Ao = A′o ∪ A′′o is the TIN-optimality regime
identified in Theorem 4, while Ap is the TIN-convexity regime
identified in Theorem 3. Furthermore, the instances of the 2-
cell, 3-user network in Fig. 2(a), (b) and (c) are in the regimes
Ao, Ap \ Ao and A \ Ap respectively. ♦

Beyond the 2-cell, 3-user network considered above, to gain
further insights into the broadness of the TIN-convexity and
TIN-optimality regimes in cellular settings with more cells
and users, we resort to numerical simulations. These results
are presented in Appendix A.

Next, in light of Example 4, we explore the relationship be-
tween the TIN-optimality regime in Theorem 4 and the regime
identified in [17] for the 2-cell, 3-user network (PIMAC).

Remark 6. To make the connection between Example 4 and
the results in [17] more apparent, we express the regime A in
terms of the notation and sub-regimes in [17]. In particular, A
here corresponds to the union of sub-regimes (2A), (2B), (2C),
(3C) and (αd3 − αc3 = αd1 − αc1) in [17], while imposing
an additional order constraint of αd3 ≥ αd1 (see [17, Fig.
8]). It follows that the TIN-optimality regime here, i.e. Ao,
corresponds to the union of (2A), (2B) and part of (2C).

Through a direct comparison, it is evident that we arrive
at a smaller TIN-optimality regime compared to the one in
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[17]. This is not surprising, since we consider the entire
GDoF region as opposed to only the sum-GDoF considered
in [17]. From the GDoF region perspective, which is more
restrictive, the TIN-optimality regime specified here requires
each transmitter-receiver pair to satisfy the IC-type TIN-
optimality conditions, i.e. (39)–(42), known to be necessary
for the 2-user IC and conjectured to be necessary for the
K-user IC10 [8]. On the other hand, the sum-GDoF TIN-
optimal regime in [17] allows for some of the IC-type TIN-
optimality conditions in (39)–(42) to be violated. For example,
in parts of sub-regime (1B), the weaker MAC user, i.e. Tx-
(1, 1), may be causing significant interference to Rx-2 such
that α[1]

12 > α
[1]
22 −α

[1]
21 (i.e. αc3 > αd2−αc2 ), yet TIN is still

sum-GDoF optimal. In this scenario, which is not in Ao or A,
the optimal sum-GDoF is attained by switching off Tx-(1, 1),
hence operating the network as a TIN-optimal 2-user IC. This
luxury of excluding bad transmitters cannot be afforded when
considering the entire GDoF region. ♦

Remark 7. For instances of the 2-cell, 3-user network that fall
within the regime A identified in Example 4, the sum-GDoF
achieved through TIN is bounded above as

d
[1]
1 +d

[2]
1 +d

[1]
2 ≤ max{α[1]

11−α
[1]
12 , α

[2]
11−α

[2]
12}+α

[1]
22−α

[1]
21 ,

∀
(
d

[1]
1 , d

[2]
1 , d

[1]
2

)
∈ P?. (49)

This holds since (39)–(42) and P? = Pid∪Pid hold through-
out A. Interestingly, it has been demonstrated by Gherekhloo
et al. in [17] that for the sub-regimeA\Ao, the TIN-achievable
sum-GDoF upper bound in (49) can be strictly surpassed,
almost surely, using schemes that employ interference align-
ment with common and private signalling11. Since Ap \Ao is
contained both in the TIN-convexity regime and in A \ Ao,
the above observation confirms that the convexity of the TIN
region P? does not necessarily imply its optimality. ♦

We conclude this section with the two further remarks.

Remark 8. As pointed out in [13, Rem. 1], whether we look
through the lens of the GDoF or the exact capacity, existing
TIN-optimality results are “primarily in the form of sufficient
conditions” and the necessity of such conditions “remains
undetermined in most cases”. The TIN-optimality result in
Theorem 4 is no exception to most existing results in that
regards. Similarly, the TIN-convexity conditions in Theorem
3 are also sufficient and there is no claim of necessity. ♦

Remark 9. Assuming that the TIN-optimality conditions in
Theorem 4 hold, then it is not difficult to show that the TIN
scheme proposed in this paper achieves the whole capacity
region of the IMAC to within a constant gap of ∆ + log(|K|)
bits at any finite SNR, where ∆ > 0 is fixed. This can be
shown using the capacity outer bound obtained in Theorem 5

10Except for a set of channel gain values of measure zero.
11In the notation and sub-regimes of [17], A\Ao defined here corresponds

to the intersection of αd3 ≥ αd1 with the union of sub-regimes (3C) and
(αd3−αc3 = αd1−αc1). It is noteworthy that for αd3−αc3 = αd1−αc1

(i.e. α[2]
11 − α

[2]
12 = α

[1]
11 − α

[1]
12 here), the strict superiority of interference

alignment holds except for a subset of channel coefficients of measure zero.
For details, readers are referred to [17, Corollaries 6 and 7] and their proofs.

of Section VI in conjunction with the rate bounding techniques
in [8], [10]. Moreover, the constant ∆ can be explicitly
calculated, e.g. see [23, Th. 4] where ∆ is characterized for
an IMAC with K cells and L1, . . . , LK = 2 users per cell.
This calculation can be easily extended to arbitrary numbers
of users in different cells. ♦

IV. PROOFS OF ACHIEVABILITY

In this section, we provide proofs for the achievability
results, i.e. Theorem 1 and Theorem 2.

A. Proof of Theorem 1

We prove Theorem 1 by constructing a potential graph
[8], [13] for the considered IMAC and invoking the potential
theorem [21]. To avoid cumbersome notation, we work with
Pid. All derivations extend to Pπ by replacing each superscript
lk with the corresponding πk(lk).

The first step towards applying the potential theorem is to
derive the conditions of feasible power allocation. To this end,
we rewrite (13) as

d
[lk]
k ≤min

{
r

[lk]
k +α

[lk]
kk ,min

j 6=k
min
lj

{
r

[lk]
k −r

[lj ]
j +α

[lk]
kk −α

[lj ]
jk

}
,

min
l′k<lk

{
r

[lk]
k − r[l′k]

k + α
[lk]
kk − α

[l′k]
kk

}}
(50)

where the three terms inside the outmost minimization in-
corporate no interference, inter-cell interference and intra-
cell interference, respectively. From (50), it follows that the
polyhedral TIN region Pid, described by the inequalities in
(11)–(13) while setting π = id, is equivalently described by
the following inequalities

r
[lk]
k ≤ 0, ∀(lk, k) ∈ K (51)

d
[lk]
k ≥ 0, ∀(lk, k) ∈ K (52)

d
[lk]
k ≤ α[lk]

kk + r
[lk]
k , ∀(lk, k) ∈ K (53)

d
[lk]
k ≤ r[lk]

k − r[lj ]
j + α

[lk]
kk − α

[lj ]
jk ,

∀(lk, k), (lj , j) ∈ K, j 6= k (54)

d
[lk]
k ≤ r[lk]

k − r[l′k]
k + α

[lk]
kk − α

[l′k]
kk ,

∀(lk, k) ∈ K, l′k ∈ 〈Lk〉, l′k < lk. (55)

After rearranging (51)–(55), we obtain

d
[lk]
k ≥ 0, ∀(lk, k) ∈ K (56)

r
[lk]
k ≤ 0, ∀(lk, k) ∈ K (57)

−r[lk]
k ≤ α[lk]

kk − d
[lk]
k , ∀(lk, k) ∈ K (58)

r
[lj ]
j − r

[lk]
k ≤ α[lk]

kk − α
[lj ]
jk − d

[lk]
k ,

∀(lk, k), (lj , j) ∈ K, j 6= k (59)

r
[l′k]
k − r[lk]

k ≤ α[lk]
kk − α

[l′k]
kk − d

[lk]
k ,

∀(lk, k) ∈ K, l′k ∈ 〈Lk〉, l′k < lk. (60)

Hence, a GDoF tuple d ∈ R|K|+ is in the polyhedral TIN region
Pid if and only if there exists a power allocation tuple r ∈ R|K|
such that (57)–(60) hold.
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1) Potential Graph and Potential Theorem: We construct
a directed graph (digraph) Gp = (V, E) with vertices and
directed edges given by

V =
{
v

[0]
0

}
∪
{
v

[lk]
k : (lk, k) ∈ K

}
(61)

E = E ′1 ∪ E ′′1 ∪ E2 ∪ E ′3 ∪ E ′′3 (62)

E ′1 =
{(
v

[l′k]
k , v

[lk]
k

)
: k ∈ 〈K〉, l′k, lk ∈ 〈Lk〉, l′k < lk

}
(63)

E ′′1 =
{(
v

[lk]
k , v

[l′k]
k

)
: k ∈ 〈K〉, l′k, lk ∈ 〈Lk〉, l′k < lk

}
(64)

E2 =
{(
v

[lk]
k , v

[lj ]
j

)
: (lk, k), (lj , j) ∈ K, k 6= j

}
(65)

E ′3 =
{(
v

[0]
0 , v

[lk]
k

)
: (lk, k) ∈ K

}
(66)

E ′′3 =
{(
v

[lk]
k , v

[0]
0

)
: (lk, k) ∈ K

}
. (67)

The above digraph, known as the potential graph, consists of
|V| = 1 + |K| vertices: a ground node v[0]

0 and one node v[li]
i

for each user (or message) indexed by (li, i) ∈ K. An example
is given in Fig. 4. Each pair of distinct vertices is connected
by a pair of edges, and different edges are assigned different
lengths, capturing desired and interfering signal power levels
as we see next.

We define the functions d : E → R+, α : E → R+ and
w : E → R+ such that for any edge

(
v

[li]
i , v

[lj ]
j

)
∈ E , these

functions take the following values

d
(
v

[li]
i , v

[lj ]
j

)
= d

[li]
i (68)

α
(
v

[li]
i , v

[lj ]
j

)
= α

[li]
ii (69)

w
(
v

[li]
i , v

[lj ]
j

)
= α

[lj ]
ji 1E′1

(
(v

[li]
i , v

[lj ]
j )
)

(70)

where d[0]
0 , α

[0]
00 , α

[lj ]
j0 , α

[0]
0j are all equal to zero, ∀(lj , j) ∈ K,

while 1E′1

(
(v

[li]
i , v

[lj ]
j )
)

= 0, ∀i = j and li < lj , and 1

otherwise. The length function is defined as l : E → R, such
that the lengths assigned to different edges of Gp are given by

l(e) = α(e)− w(e)− d(e), e ∈ E . (71)

Such lengths are explicitly expressed, for each subset of edges
in (63)–(67), as

l
(
v

[l′k]
k , v

[lk]
k

)
= α

[l′k]
kk − d

[l′k]
k ,

∀k ∈ 〈K〉, l′k, lk ∈ 〈Lk〉, l′k < lk (72)

l
(
v

[lk]
k , v

[l′k]
k

)
= α

[lk]
kk − α

[l′k]
kk − d

[lk]
k ,

∀k ∈ 〈K〉, l′k, lk ∈ 〈Lk〉, l′k < lk (73)

l
(
v

[lk]
k , v

[lj ]
j

)
= α

[lk]
kk − α

[lj ]
jk − d

[lk]
k ,

∀(lk, k), (lj , j) ∈ K, k 6= j (74)

l
(
v

[lk]
k , v

[0]
0

)
= α

[lk]
kk − d

[lk]
k , ∀(lk, k) ∈ K (75)

l
(
v

[0]
0 , v

[lk]
k

)
= 0, ∀(lk, k) ∈ K. (76)

From the above assignment of lengths and the potential
theorem we obtain the following result.

Lemma 1. The GDoF tuple d ∈ R|K|+ is in the polyhedral
region Pid if and only if the length of each directed circuit in
the potential graph Gp is non-negative.

Proof: Note that the length of a directed circuit is the sum
of its traversed edges’ lengths. By definition [21], the function
p : V → R is called a potential if for any pair of vertices
a, b ∈ V such that (a, b) ∈ E , we have l(a, b) ≥ p(b) − p(a).
These conditions depend only on the difference between
potential function values. Therefore, if there exists a valid
potential function, we may assume without loss of generality
that the ground node has zero potential, i.e. p

(
v

[0]
0

)
= 0.

Moreover, the potential theorem (see [21, Th. 8.2]) states that:
there exists a potential function for a digraph Gp if and only
if each directed circuit in Gp has a non-negative length.

Now for the digraph Gp, we set the value of the potential
function as p

(
v

[lk]
k

)
= r

[lk]
k , (lk, k) ∈ K. By definition, the

potential function values should satisfy

r
[lk]
k − r[l′k]

k ≤ α[l′k]
kk − d

[l′k]
k ,

∀k ∈ 〈K〉, l′k, lk ∈ 〈Lk〉, l′k < lk (77)

r
[l′k]
k − r[lk]

k ≤ α[lk]
kk − α

[l′k]
kk − d

[lk]
k ,

∀k ∈ 〈K〉, l′k, lk ∈ 〈Lk〉, l′k < lk (78)

r
[lj ]
j − r

[lk]
k ≤ α[lk]

kk − α
[lj ]
jk − d

[lk]
k ,

∀(lk, k), (lj , j) ∈ K, j 6= k (79)

−r[lk]
k ≤ α[lk]

kk − d
[lk]
k , ∀(lk, k) ∈ K (80)

r
[lk]
k ≤ 0, ∀(lk, k) ∈ K. (81)

The inequalities in (78)–(81) are equivalent to the ones in
(57)–(60). Moreover, the inequality in (77) is redundant as it is
obtained by adding the inequalities in (57) and (58). It follows
that d ∈ R|K|+ is in Pid if and only if there exists a valid
potential function for Gp. Combining this with the potential
theorem stated above, we conclude that the tuple d ∈ R|K|+ is
in Pid if and only if the length of each directed circuit in Gp

is non-negative.
Equipped with Lemma 1, it remains to interpret the non-

negative length conditions as GDoF inequalities. In particular,
each directed circuit in Gp is identified by a sequence of ver-
tices

(
v

[l1]
i1
, . . . , v

[ln]
in
, v

[ln+1]
in+1

)
, where12

{
v

[l1]
i1
, . . . , v

[ln]
in

}
⊆ V ,

(ln+1, in+1) = (l1, i1) and n ≥ 2. Alternatively, we may
express a directed circuit in terms of its traversed edges as
(e1, . . . , en), where ej =

(
v

[lj ]
ij
, v

[lj+1]
ij+1

)
, j ∈ 〈n〉. For each

such circuit, the non-negative length condition of Lemma 1
yields a GDoF inequality given by

n∑
j=1

l(ej) ≥ 0⇔
n∑
j=1

d(ej) ≤
n∑
j=1

[
α(ej)− w(ej)

]
. (82)

Next, we closely examine all directed circuits of Gp to
obtain an explicit characterization of the GDoF inequalities
describing Pid while eliminating circuits which are necessarily
redundant. We often refer to a vertex of the type v

[lk]
k ,

(lk, k) ∈ K, as a user in what follows.
2) From Directed Circuits to GDoF Inequalities: A Simple

Example: We start with the simple example in Fig. 4 and
derive insights which prove useful for addressing the general

12In a slight abuse of notation, we use n here as the length of directed
circuits. This should not be confused with the number of channel uses n
defined in Section II-A and used later on in the converse.
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𝑣1
1

 𝑣1
2

 

𝑣2
1  

𝑣0
0

 

𝑣2
2  

(a) (b) 

Tx-(1,1) 

Tx-(2,1) 

Tx-(1,2) 

Tx-(2,2) 

Rx-1 

Rx-2 

Fig. 4. A 2-cell IMAC with 2 users in each cell (a) and its potential graph (b). The potential graph consists of 5 vertices, one for each user
and a ground node, in addition to the sets of edges: E ′1 in orange, E ′′1 in green, E2 in red, E ′3 in dashed black and E ′′3 in dashed blue.

case. We categorize directed circuits of Gp in Fig. 4 into the
following classes:
• Single-user circuits: such circuits take the simple form of(

v
[0]
0 , v

[li]
i , v

[0]
0

)
, (li, i) ∈ {1, 2}2. From the non-negative

length condition in (82), each circuit in the class yields an
inequality l

(
v

[0]
0 , v

[li]
i

)
+ l
(
v

[li]
i , v

[0]
0

)
= α

[li]
ii − d

[li]
i ≥ 0.

This is rewritten as

d
[li]
i ≤ α

[li]
ii , (li, i) ∈ {1, 2}2. (83)

We obtain 4 inequalities from this class of circuits.
• Multi-user circuits traversing v

[0]
0 : these are given by(

v
[0]
0 , v

[l1]
i1
, . . . , v

[ln]
in
, v

[0]
0

)
, (lj , ij) ∈ {1, 2}2, j ∈ 〈n〉 and

n ≥ 2. GDoF inequalities obtained from this class of
circuits are all redundant. This follows by comparing the
inequality obtained from

(
v

[0]
0 , v

[l1]
i1
, . . . , v

[ln]
in
, v

[0]
0

)
, using

the non-negative length condition (as shown above), to
the inequality obtained from the corresponding circuits
given by

(
v

[l1]
i1
, . . . , v

[ln]
in
, v

[l1]
i1

)
. Both inequalities bound

the sum-GDoF of the same set of users. However, the
latter is tighter since it has an extra (negative) interference
term w

(
v

[ln]
in
, v

[l1]
i1

)
on its right-hand-side compared to

w
(
v

[ln]
in
, v

[0]
0

)
= 0 for the former. Henceforth, we only

consider multi-user circuits that do not traverse v[0]
0 .

• 2-user circuits (same cell): these circuits take the form(
v

[1]
i , v

[2]
i , v

[1]
i

)
, i ∈ {1, 2}. From the non-negative length

condition, we obtain 2 inequalities described as

d
[2]
i + d

[1]
i ≤ α

[2]
ii , i ∈ {1, 2}. (84)

Note that given i ∈ {1, 2}, the single-user inequality in
(83) with li = 2, i.e. d[2]

i ≤ α
[2]
ii , is implied by (84), hence

making the former redundant.
• 2-user circuits (different cells): such circuits have the

form
(
v

[l1]
1 , v

[l2]
2 , v

[l1]
1

)
, (l1, l2) ∈ {1, 2}2. From the non-

negative length condition, we obtain 4 distinct inequalities
given by

d
[l1]
1 +d

[l2]
2 ≤ α[l1]

11 −α
[l2]
21 +α

[l2]
22 −α

[l1]
12 , (l1, l2) ∈ {1, 2}2.

(85)

• 3-user circuits (2 users from cell 1): these take the form(
v

[l11]
1 , v

[l21]
1 , v

[l2]
2 , v

[l11]
1

)
, (l11, l

2
1, l2) ∈ {1, 2}3 and l11 6= l21.

We start with the case where (l11, l
2
1) = (2, 1). From the

non-negative length condition, we obtain 2 inequalities
(one for each l2) given by

d
[1]
1 +d

[2]
1 +d

[l2]
2 ≤ α[2]

11 −α
[l2]
21 +α

[l2]
22 −α

[2]
12 , l2 ∈ {1, 2}.

(86)
Note that from the right-hand-side of (86), users v[1]

1 and
v

[2]
1 appear as a single user with desired signal strength
α

[2]
11 and received interference α[l2]

21 . This is because v[2]
1

precedes user v[1]
1 in the cyclic order, from which we

have l
(
v

[2]
1 , v

[1]
1

)
+ l
(
v

[1]
1 , v

[l2]
2

)
= α

[2]
11−α

[l2]
21 −d

[2]
1 −d

[1]
1 .

Moreover, the 2-user inequality in (85) for l1 = 2, i.e.
d

[2]
1 +d

[l2]
2 ≤ α[2]

11−α
[l2]
21 +α

[l2]
22 −α

[2]
12 , is implied by (86),

which in turn makes the former redundant.
We move on to the case (l11, l

2
1) = (1, 2), for which we

obtain 2 more inequalities given by

d
[1]
1 +d

[2]
1 +d

[l2]
2 ≤α

[1]
11+α

[2]
11−α

[l2]
21 +α

[l2]
22 −α

[1]
12 , l2∈{1, 2}.

(87)
Note that since v[1]

1 precedes v[2]
1 for this case, the 2 users

do not appear as a single user as seen from the right-hand
side of (87). In fact, it turns out that for each l2, (87) is
redundant since it is obtained by adding d[2]

1 ≤ α
[2]
11 and

d
[1]
1 + d

[l2]
2 ≤ α

[1]
11 − α

[l2]
21 + α

[l2]
22 − α

[1]
12 , obtained from

(83) and (85) respectively.
• 3-user circuits (2 users from cell 2): these take the form(

v
[l12]
2 , v

[l22]
2 , v

[l1]
1 , v

[l12]
2

)
, (l12, l

2
2, l1) ∈ {1, 2}3 and l12 6= l22.

The inequalities are obtained as for the previous class
while swapping the cell subscripts. For the case where
(l12, l

2
2) = (2, 1), we obtain

d
[l1]
1 + d

[1]
2 + d

[2]
2 ≤ α

[l1]
11 − α

[2]
21 + α

[2]
22 − α

[l1]
12 , l1 ∈ {1, 2}

(88)
from which we conclude that (85), with l2 = 2, is
redundant. For the second case where (l12, l

2
2) = (1, 2),

the resulting inequalities are redundant as shown for (87).
• 4-user circuits (adjacent same-cell users): these take

the form
(
v

[l11]
1 , v

[l21]
1 , v

[l12]
2 , v

[l22]
2 , v

[l11]
1

)
, (l11, l

2
1, l

1
2, l

2
2) ∈
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{1, 2}4, l11 6= l21 and l12 6= l22, from which we obtain 4
inequalities. We start with the case where (l11, l

2
1, l

1
2, l

2
2) =

(2, 1, 2, 1), from which we obtain

d
[1]
1 + d

[2]
1 + d

[1]
2 + d

[2]
2 ≤ α

[2]
11 − α

[2]
21 + α

[2]
22 − α

[2]
12 .

(89)

Now consider the 3 remaining circuits obtained from
(l11, l

2
1, l

1
2, l

2
2), which are given by (1, 2, 2, 1), (2, 1, 1, 2)

and (1, 2, 1, 2). The resulting inequalities are given by

d
[1]
1 +d

[2]
1 +d

[1]
2 +d

[2]
2 ≤α

[1]
11 + α

[2]
11 − α

[2]
21 + α

[2]
22 − α

[1]
12

(90)

d
[1]
1 +d

[2]
1 +d

[1]
2 +d

[2]
2 ≤α

[2]
11 − α

[1]
21 + α

[1]
22 + α

[2]
22 − α

[2]
12

(91)

d
[1]
1 +d

[2]
1 +d

[1]
2 +d

[2]
2 ≤α

[1]
11 +α

[2]
11−α

[1]
21 +α

[1]
22 +α

[2]
22−α

[1]
12 .

(92)

As in the 3-user case, the inequalities in (90)–(92) have
additional signal strength terms on their right-hand-sides,
compared to (89), since v[1]

i precedes v[2]
i for at least one

i ∈ {1, 2}. Hence, the redundancy of (90)–(92) can be
easily shown by following the same argument used for
(87). Note that (92) is implied by 3 inequalities: d[2]

1 ≤
α

[2]
11 and d[2]

2 ≤ α
[2]
22 , obtained from (83), and d[1]

1 +d
[1]
2 ≤

α
[1]
11 − α

[1]
21 + α

[1]
22 − α

[1]
12 , obtained from (85).

• 4-user circuits (non-adjacent same-cell users): these take
the form

(
v

[1]
1 , v

[l12]
2 , v

[2]
1 , v

[l22]
2 , v

[1]
1

)
, (l12, l

2
2) ∈ {1, 2}2 and

l12 6= l22. We obtain 2 inequalities, each given by

d
[1]
1 + d

[2]
1 + d

[1]
2 + d

[2]
2 ≤ α

[1]
11 − α

[l12]
21 + α

[l12]
22 − α

[2]
12+

α
[2]
11 − α

[l22]
21 + α

[l22]
22 − α

[1]
12 . (93)

The above is redundant as it is implied by d[1]
1 + d

[l12]
2 ≤

α
[1]
11 −α

[l12]
21 +α

[l12]
22 −α

[1]
12 and d[2]

1 + d
[l22]
2 ≤ α[2]

11 −α
[l22]
21 +

α
[l22]
22 − α

[2]
12 , where both are obtained from (85).

After removing all redundant inequalities identified above, we
are left with

d
[1]
1 ≤ α

[1]
11 (94)

d
[1]
2 ≤ α

[1]
22 (95)

d
[2]
1 + d

[1]
1 ≤ α

[2]
11 (96)

d
[2]
2 + d

[1]
2 ≤ α

[2]
22 (97)

d
[1]
1 + d

[1]
2 ≤ α

[1]
11 − α

[1]
21 + α

[1]
22 − α

[1]
12 (98)

d
[2]
1 + d

[1]
1 + d

[1]
2 ≤ α

[2]
11 − α

[1]
21 + α

[1]
22 − α

[2]
12 (99)

d
[1]
1 + d

[2]
2 + d

[1]
2 ≤ α

[1]
11 − α

[2]
21 + α

[2]
22 − α

[1]
12 (100)

d
[2]
1 + d

[1]
1 + d

[2]
2 + d

[1]
2 ≤ α

[2]
11 − α

[2]
21 + α

[2]
22 − α

[2]
12 . (101)

By further including d[li]
i ≥ 0, (li, i) ∈ {1, 2}2, we obtain the

polyhedral TIN region Pid for the example in Fig. 4, which
coincides with the characterization in Theorem 1.

To summarize the result of the above procedure, the follow-
ing (sub)classes of circuits give rise to redundant inequalities:
• single-user circuits involving a stronger MAC user (i.e. v[2]

k ),
• all multi-user circuits traversing the ground node, • 2-user

circuits (different cells) which involve any of the stronger
MAC users, • 3-user circuits (2 users from cell k) in which
the weaker MAC user from cell k precedes the stronger MAC
user from the same cell in the cyclic order, or the participating
user from cell (3− k) is the stronger MAC user, • all 4-user
circuits (adjacent same-cell users), except for the circuit in
which the stronger MAC user precedes the weaker MAC user
from the same cell in the cyclic order, • all 4-user circuits
(non-adjacent same-cell users).

One may also translate the above findings into more succinct
and general principles, which are given as follows: 1) multi-
user circuits that traverse the ground node v[0]

0 are not useful,
2) users belonging to the same cell must be cyclicly adjacent
in 4-user circuits (this holds automatically for 3-user circuits),
3) a circuit traversing v[2]

i must also traverse v[1]
i , where v[2]

i

should precede v
[1]
i in the cyclic order. Next, we carry out

redundancy elimination for the general case by building upon,
and further generalizing, the above principles.

3) From Directed Circuits to GDoF Inequalities: The Gen-
eral Case: We start by introducing some notation employed in
showing the general case, particularly in the proof of Lemma
2 given in the appendix. We denote each vertex v

[lk]
k ∈ V

in this part by its index tuple (lk, k) to avoid cumbersome
subscript-superscript notation. Let sn ∈ Σ(K) be a cyclicly
ordered sequence of n distinct users. sn can be partitioned
into m single-cell subsequences as

sn =
(
sn1

1 , . . . , snmm
)
, such that (102)

s
nj
j =

(
(l1j , ij), . . . , (l

nj
j , ij)

)
∈ Σ(Kij ),

ij ∈ 〈K〉, ij 6= ij+1, ∀j ∈ 〈m〉 (103)

where a modulo arithmetic is implicitly used on cell indices,
i.e. im+1 = i1. It is readily seen that nj ≤ Lij and∑m
j=1 nj = n. Moreover, while two cyclicly adjacent single-

cell subsequences in (102) cannot have the same cell index,
this is not necessary for nonadjacent subsequence. Note that
the partition in (102)–(103) is cyclicly unique (i.e. unique up
to a cyclic shift). Therefore, we always assume that sn ∈ Σ(K)
is given in terms of its cyclicly unique single-cell partition.

Sequences in Σ(K) map into two types of circuits in Gp.
The first type is given by

c(sn) ,
(
e1

1, . . . , e
n1
1 , . . . , e1

m, . . . , e
nm
m

)
,

sn =
(
sn1

1 , . . . , snmm
)
∈ Σ(K), n ≥ 2 (104)

where each edge esj ∈ E ′1∪E ′′1 ∪E2 connects a pair of cyclicly
consecutive users such that

esj ,

{(
(lsj , ij), (l

s+1
j , ij)

)
, s ∈ 〈nj − 1〉, j ∈ 〈m〉(

(l
nj
j , ij), (l

1
j+1, ij+1)

)
, s = nj , j ∈ 〈m〉

(105)

and (l1m+1, im+1) = (l11, i1) is implicitly assumed. The second
type of directed circuits is defined as

c0(sn) ,
(
e′0, e

1
1, . . . , e

n1
1 , . . . , e1

m, . . . , e
nm−1
m , e′′0

)
,

sn =
(
sn1

1 , . . . , snmm
)
∈ Σ(K) (106)
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where e′0 ,
(
v

[0]
0 , (l11, i1)

)
∈ E ′3 and e′′0 ,

(
(lnmm , im), v

[0]
0

)
∈

E ′′3 , while the remaining edges are as in (105). We further
categorize circuits in (104) and (106) as follows:
• Single-user circuits: given by c0

(
(li, i)

)
= (e′0, e

′′
0),

(li, i) ∈ K. As in the example of Section IV-A2, from
non-negative length condition we obtain

d
[li]
i ≤ α

[li]
ii , (li, i) ∈ K. (107)

• Multi-user circuits traversing v
[0]
0 : such circuits take the

form c0(sn), sn ∈ Σ(K) and n ≥ 2. As in the simple
example, it can be easily shown that these circuits are
redundant since circuits of the type c(sn) yield tighter
GDoF inequalities in general.

• Multi-user circuits not traversing v
[0]
0 : these are the re-

maining circuits which take the form c(sn), sn ∈ Σ(K)
and n ≥ 2. Some of these circuits turn out to be redundant
as shown through the following lemma, which proof is
given in Appendix B.
Lemma 2. For any multi-user circuit c(sn), where sn =(
sn1

1 , . . . , snmm
)
∈ Σ(K) and n ≥ 2, the corresponding

GDoF inequality obtained from the non-negative length
condition is necessarily redundant if the circuit fails to
satisfy the two following conditions:

C.1 The sequence of cells (i1, . . . , im), associated with the
cyclicly unique single-cell partition

(
sn1

1 , . . . , snmm
)
,

should include no repetitions.
C.2 The sequence of users associated with each single-cell

subsequence s
nj
j =

(
(l1j , ij), . . . , (l

nj
j , ij)

)
∈ Σ(Kij ),

for all j ∈ 〈m〉, must take the descending form
(l1j , . . . , l

nj
j ) = (nj , nj − 1, . . . , 1).

From Lemma 2, it follows that each non-necessarily
redundant multi-user circuit of the form c(sn) is uniquely
identified (up to a cyclic order) by two sequences:

1) (i1, . . . , im) ∈ Σ
(
〈K〉

)
, m ∈ 〈K〉, which identifies

participating cells and their cyclic order.
2) (li1 , . . . , lim) ∈ 〈Li1〉 × · · · × 〈Lim〉, which identifies

the number (and identity due to the order in C.2) of
participating users in each of the participating cells.

Taking all possible such sequences and specializing the
non-negative length condition in (82), we obtain the
GDoF inequalities given by∑

si∈〈li〉

d
[si]
i ≤ α[li]

ii , li ≥ 2, i ∈ 〈K〉 (108)

whenever the cycle c(sn) traverses only m = 1 cell,
while for m ≥ 2 cells we obtain∑

j∈〈m〉

∑
sij∈〈lij 〉

d
[sij ]

ij
≤
∑
j∈〈m〉

α
[lij ]

ijij
− α

[lij+1
]

ij+1ij

(a)
=
∑
j∈〈m〉

α
[lij ]

ijij
− α

[lij ]

ijij−1
, ∀lij ∈ 〈Lij 〉,

(i1, . . . , im) ∈ Σ
(
〈K〉

)
, m ∈ 〈2 : K〉 (109)

where a modulo arithmetic is implicitly used on cell
indices, i.e. im+1 = i1 and i0 = im, and (a) follows by
rearranging the terms while exploiting the cyclic ordering.

It is notable that the single-user GDoF inequalities in (107)
with li ≥ 2 are redundant as they are included in the
single-cell multi-user inequalities in (108). After removing
these redundancies, the remaining inequalities, in addition
to the non-negativity constraints d

[li]
i ≥ 0, ∀(li, i) ∈ K,

describe the polyhedral TIN region Pid and coincide with the
characterization in Theorem 1.

B. Proof of Theorem 2

In this part, we turn to the characterization of the general
TIN-achievable GDoF region. To prove the equality in (32),
it is sufficient to show that

P? =
⋃
π∈Π

P?π ⊆
⋃
π∈Π

⋃
S⊆K

Pπ(S) (110)

as inclusion in the other direction is given in (14). The above
is shown by proving that for any decoding order π ∈ Π, the
inclusion given by P?π ⊆ ∪S⊆KPπ(S) holds. Therefore, we
focus on a fixed arbitrary decoding order π ∈ Π henceforth.

Consider an arbitrary GDoF tuple d in the TIN-achievable
GDoF region P?π . We wish to show that there exists S ⊆ K
such that d is also in Pπ(S). By definition, there exists a
feasible power allocation r ≤ 0 such that the components of
d satisfy (9). For such tuple d, we may partition K into S
and S = K\S, such that d[πk(lk)]

k > 0 for all
(
πk(lk), k

)
∈ S

and d[πj(lj)]
j = 0 for all

(
πj(lj), j

)
∈ S. It follows that for all(

πk(lk), k
)
∈ S, we must have

0 < d
[πk(lk)]
k ≤ r[πk(lk)]

k + α
[πk(lk)]
kk

−
(
max

{
max
l′k<lk

{r[πk(l′k)]
k +α

[πk(l′k)]
kk },max

j 6=k
max
lj
{r[lj ]
j +α

[lj ]
jk }
})+

(111)

where the outmost max{0, ·} in (9) is inactive, and hence
removed, since d[πk(lk)]

k > 0 for such users.
Next, we define a new feasible power allocation tuple r̃ ≤ 0

such that

r̃
[li]
i =

{
r

[li]
i , (li, i) ∈ S
−∞, (li, i) ∈ S.

(112)

With this power allocation, the TIN scheme of Section II-B
achieves all GDoF tuples d̃ that satisfy (113)–(115), obtained
by plugging r̃, as defined in (112), into (9). As in (111),
we note that the outmost max{0, ·} of (9) has also been
relaxed in (115). This follows because the right-hand-side of
the inequality in (115) is no less than the rightmost-side of
the compound inequality (111). Consequently, the GDoF tuple
d̃ = d is also achieved with the power allocation r̃.

As a final step, we note that any GDoF tuple d̃ = d achieved
with the power allocation r̃ is also in Pπ(S). This holds as r̃
is feasible and (113)–(115) are the inequalities that define the
polyhedral TIN region Pπ(S) (see Section II-C). Therefore,
we have d ∈ Pπ(S) which completes the proof.

V. PROOF OF CONVEXITY

In this section, we present a proof for Theorem 3. We
assume that the TIN-convexity conditions in (35) and (36)
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d̃
[πj(lj)]
j = 0,

(
πj(lj), j

)
∈ S (113)

d̃
[πk(lk)]
k ≥ 0,

(
πk(lk), k

)
∈ S (114)

d̃
[πk(lk)]
k ≤ r̃[πk(lk)]

k + α
[πk(lk)]
kk −

(
max

{
max(

πk(l′k),k
)
∈S:l′k<lk

{r̃[πk(l′k)]
k + α

[πk(l′k)]
kk }, max(

πj(lj),j
)
∈S:j 6=k

{r̃[πj(lj)]
j + α

[πj(lj)]
jk }

})+

,

∀
(
πk(lk), k

)
∈ S (115)

always hold throughout this section. For ease of exposition,
we divide the proof of Theorem 3 into three steps as follows:
• Step 1: We show that under the conditions of Theorem

3 and for any S ⊆ K, we have Pπ(S) ⊆ Pid(S) for all
π ∈ Π. Hence, the general TIN-achievable region in (32)
becomes

P? =
⋃
S⊆K

Pid(S).

• Step 2: We show that for any S ⊆ K, we have Pid(S) ⊆
Pid

(
∪i∈M Ki

)
for some M⊆ 〈K〉. Hence, the general

TIN-achievable region now becomes

P? =
⋃

M⊆〈K〉

Pid

(
∪i∈M Ki

)
.

• Step 3: We show that for any M ⊆ 〈K〉, we have
Pid

(
∪i∈MKi

)
⊆ Pid(K). Hence, we have P? = Pid(K)

as stated in Theorem 3.
Before we proceed, we introduce some definitions and notation
that facilitate the proof.

A. Compact Representation of Polyhedral TIN-Achievable
GDoF Regions

For any given decoding order π ∈ Π, we define Fπ(K)
as a family of subsets of K where each member of Fπ(K),
denoted by Sπ , takes the form13

Sπ =
{(
πi(si), i

)
: si ∈ 〈li〉, i ∈M

}
,

for some M⊆ 〈K〉 and lj ∈ 〈Lj〉, j ∈M. (116)

Moreover, for a GDoF tuple d, we use d(Sπ) to denote
the sum-GDoF

∑
(li,i)∈Sπ d

[li]
i , where d(∅) = 0. The char-

acterization of Pπ in Theorem 1 is given in terms of sum-
GDoF inequalities for all possible subsets of users Sπ such
that Sπ ∈ Fπ(K). Hence, Pπ in (15) and (16) can be
represented compactly (yet less informatively) by all GDoF
tuples d ∈ R|K|+ that satisfy

d(Sπ) ≤ fπ(Sπ), Sπ ∈ Fπ(K) (117)

13Considering the 2-cell, 3-user network from the running example of
Section III for instance, the corresponding family of subsets is given by

Fπ
({

(1, 1), (2, 1), (1, 2)
})

=
{{

(π1(1), 1)
}
,
{

(π1(1), 1), (π1(2), 1)
}
,{

(1, 2)
}
,
{

(π1(1), 1), (1, 2)
}
,
{

(π1(1), 1), (π1(2), 1), (1, 2)
}}
.

where fπ : Fπ(K) → R+ is a normalized set function (i.e.
fπ(∅) = 0) given by

fπ(Sπ) =


α

[πi(li)]
ii , Sπ with |M| = 1

min
(i1,...,i|M|)∈Σ(M)

|M|∑
j=1

α
[πij (lij )]

ijij
− α

[πij (lij )]

ijij−1
,

Sπ with |M| ≥ 2.
(118)

More generally, we may define the family Fπ(S) over any
subnetwork S ⊆ K. In particular, suppose that S ⊆ K is given
by S = ∪i∈MSi for someM⊆ 〈K〉 and Si ⊆ Ki, i ∈M. We
define Fπ(S) as the family of all subsets of S which take the
form Sπ =

{(
πi(si), i

)
∈ S : si ≤ li, i ∈M′

}
, whereM′ ⊆

M and li ∈ 〈|Si|〉, i ∈ M′. This in turn allows us to have
a similar compact representation for general polyhedral TIN
regions Pπ(S) for any S ⊆ K.

B. The 3-Step Proof of Convexity

Now we proceed to show the three steps stated above.
Step 1: First, we consider S = K and we show that under the

conditions of Theorem 3, we have Pπ ⊆ Pid for all π ∈ Π.
Consider a GDoF tuple d′ ∈ Pπ for some π ∈ Π. Since
d′ ≥ 0, to prove that d′ is also in Pid, it is sufficient to show
that the set of inequalities given by

d′(Sid) ≤ fid(Sid), Sid ∈ Fid(K).

Consider some subset of users Sid ∈ Fid(K) where
Sid = {(si, i) : si ∈ 〈l′i〉, i ∈M}. We define Sπ(Sid) ={(
πi(si), i

)
: si ∈ 〈li〉, i ∈M

}
as the smallest member of

the family Fπ(K), in terms of cardinality, such that Sid ⊆
Sπ(Sid) holds. This set has the following property.

Remark 10. For Sid and Sπ(Sid) as defined above, where(
πi(li), i

)
is the user of cell i to be decoded first in Sπ(Sid),

we must have
(
πi(li), i

)
∈ Sid for all i ∈ M. This holds as

the contrary implies that we can choose a smaller Sπ(Sid)
which satisfies Sid ⊆ Sπ(Sid). ♦

The above observations lead directly to the following result.

Lemma 3. For Sid ∈ Fid(K) and Sπ(Sid) as defined above,
the following inequality holds

fπ
(
Sπ(Sid)

)
≤ fid(Sid).

Proof: For the case where M = {i} (i.e. |M| = 1), we
have the following

fπ
(
Sπ(Sid)

)
= α

[πi(li)]
ii ≤ α[l′i]

ii = fid(Sid) (119)
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where (119) holds due to
(
πi(li), i

)
∈ Sid, as shown in

Remark 10, and the order of direct link strength levels in (6).
On the other hand, for |M| ≥ 2 we have

fπ
(
Sπ(Sid)

)
= min

(i1,...,i|M|)∈Σ(M)

|M|∑
j=1

α
[πij (lij )]

ijij
− α

[πij (lij )]

ijij−1

≤ min
(i1,...,i|M|)∈Σ(M)

|M|∑
j=1

α
[l′ij ]

ijij
− α

[l′ij ]

ijij−1
(120)

= fid(Sid)

where the inequality in (120) follows from
(
πi(li), i

)
∈ Sid

and the condition in (35) of Theorem 3 (see also the equivalent
representation in (37)).

Equipped with Lemma 3, we obtain the following inequal-
ities

d′(Sid) ≤ d′
(
Sπ(Sid)

)
≤ fπ

(
Sπ(Sid)

)
≤ fid(Sid).

By applying the above to every Sid ∈ Fid(K), we conclude
that d′ ∈ Pid and hence Pπ ⊆ Pid.

Following the same steps above, it can be shown that under
the conditions of Theorem 3 and for any subnetwork S ⊆ K,
we have Pπ(S) ⊆ Pid(S), for all π. This completes this step.

Step 2: Consider an arbitrary subnetwork S ⊆ K and let
S = ∪i∈MSi for some M ⊆ 〈K〉 and Si ⊆ Ki, i ∈ M.
Moreover, let S̃ be obtained by augmenting S such that S̃ =
∪i∈MKi. Using the compact representation in Section V-A,
the corresponding polyhedral TIN regions are given by

Pid(S) =
{
d ∈ R|K|+ : d(S ′) ≤ fid(S ′),S ′ ∈ Fid(S),

d(s) = 0,∀s ∈ K \ S
}

(121)

Pid(S̃) =
{
d ∈ R|K|+ : d(S̃ ′) ≤ fid(S̃ ′), S̃ ′ ∈ Fid(S̃),

d(s) = 0,∀s ∈ K \ S̃
}

(122)

To show that Pid(S) ⊆ Pid(S̃) holds, consider a GDoF tuple
d′ ∈ Pid(S). It follows that d′ ≥ 0 and d′(s) = 0,∀s ∈ K\S̃,
where the latter holds due to {K \ S̃} ⊆ {K \ S} and the
equalities in (121). It remains to show that d′ satisfies the rest
of the inequalities in (122).

For any S̃ ′ ∈ Fid(S̃), let S ′(S̃ ′) be the largest set in Fid(S)
such that S ′(S̃ ′) ⊆ S̃ ′. Note that S ′(S̃ ′) exists and is non-
empty as S̃ is obtained by augmenting S. We denote S ′(S̃ ′)
by S ′ henceforth for brevity. With these definitions in mind,
we present the following lemma.

Lemma 4. For any S̃ ′ ∈ Fid(S̃) and S ′ as defined above, the
following inequality holds

fid(S ′) ≤ fid(S̃ ′).

Proof: We start by expressing S̃ ′ as

S̃ ′ =
{

(si, i) : si ∈ 〈li〉, i ∈M′
}
,

for some M′ ⊆M and li ∈ 〈Li〉, i ∈M′.

Since S ′ ⊆ S̃ ′ ∩ S , it follows that S ′ can be expressed as

S ′=
{

(s′i, i)∈S : s′i≤ l′i, i ∈M′
}
, for some l′i ≤ li, i ∈M′.

For M′ = {i} (i.e. |M′| = 1), we have fid(S̃ ′) = α
[li]
ii ≥

α
[l′i]
ii = fid(S ′) which is due to l′i ≤ li (see the order in (6)).

On the other hand, for |M′| ≥ 2, we have

fid(S̃ ′) = min
(i1,...,i|M′|)∈Σ(M′)

|M′|∑
j=1

α
[lij ]

ijij
− α

[lij ]

ijij−1

≥ min
(i1,...,i|M′|)∈Σ(M′)

|M′|∑
j=1

α
[l′ij ]

ijij
− α

[l′ij ]

ijij−1
(123)

= fid(S ′)

where the inequality in (123) follows from l′i ≤ li and the
condition in (35) of Theorem 3.

Next, we observe that if S ′ ⊂ S̃ ′ (strict inclusion), then any
user in the non-empty set S̃ ′ \ S ′ is not in S . This holds as
the contrary implies the existence of a set S ′′ ∈ Fid(S) such
that S ′ ⊂ S ′′ ⊆ S̃ ′, hence contradicting the maximality of S ′.
It follows that d′(S̃ ′ \ S ′) = 0 (see the equalities in (121)).
This observation together with Lemma 4 lead to

d′(S̃ ′) = d′(S ′) + d′(S̃ ′ \ S ′) ≤ fid(S ′) ≤ fid(S̃ ′).

The above holds for all S̃ ′ ∈ Fid(S̃) and therefore Pid(S) ⊆
Pid(S̃), which completes this step.

Step 3: In this step we show that Pid

(
∪i∈MKi

)
⊆ Pid(K),

for any M⊆ 〈K〉, by proving that the set Pid

(
∪i∈M Ki

)
is

monotonically increasing in M, i.e. the following holds:

Pid

(
∪i∈M Ki

)
⊆Pid

(
∪i∈M∪{k} Ki

)
, for any M⊆〈K〉.

(124)
We assume, without loss of generality, that M ⊂ 〈K〉 and
k ∈ 〈K〉 \ M. To demonstrate that (124) holds, consider a
GDoF tuple d′ ∈ Pid

(
∪i∈MKi

)
. Since d′ ≥ 0 and d′(s) = 0,

∀s /∈ ∪i∈M∪{k}Ki, we show that d′ satisfies the remaining
inequalities that describe Pid

(
∪i∈M∪{k} Ki

)
, i.e.

d′
(
Sid
)
≤ fid

(
Sid
)
, ∀Sid ∈ Fid

(
∪i∈M∪{k} Ki

)
. (125)

To this end, we present the following useful lemma.

Lemma 5. ConsiderM⊂ 〈K〉 and k ∈ 〈K〉 \M. Moreover,
for each i ∈ M ∪ {k}, consider the set Si =

{
(si, i) : si ∈

〈li〉
}

, where li ∈ 〈Li〉. The following inequality holds

fid
(
∪i∈M Si

)
≤ fid

(
∪i∈M∪{k} Si

)
.

Proof: For the case where |M| = 1, it is not difficult to
show that the above inequality holds. In particular, for any pair
of cells i, k ∈ 〈K〉, i 6= k, the condition in (36) of Theorem 3
implies the following inequality: α[li]

ii ≤ α
[li]
ii +α

[lk]
kk − (α

[li]
ik +

α
[lk]
ki ). Therefore, we focus on the case where |M| ≥ 2 in

what follows while implicitly assuming that K ≥ 3.
Let (i?1, . . . , i

?
|M∪{k}|) ∈ Σ

(
M∪{k}

)
be a cyclic sequence

that attains the minimum in the definition of fid
(
∪i∈M∪{k}

Si
)
, i.e. one that satisfies

fid
(
∪i∈M∪{k} Si

)
=

|M∪{k}|∑
j=1

α
[li?
j

]

i?j i
?
j
− α

[li?
j

]

i?j i
?
j−1

. (126)

Due to the cyclic nature, we may assume without loss of
generality that i?|M∪{k}| = k. Moreover, we denote the index



17

of the preceding cell i|M| and the following cell i1 by k′

and k′′, respectively. Now consider the cyclic sequence given
by (i?1, . . . , i

?
|M|) = (k′′, i?2, . . . , i

?
|M|−1, k

′). This sequence is
clearly in Σ

(
M
)
, from which we obtain an upper bound on

fid
(
∪i∈M Si

)
given by

fid
(
∪i∈MSi

)
≤
[ |M|∑
j=1

α
[li?
j

]

i?j i
?
j

]
−α[lk′′ ]

k′′k′−
[ |M|∑
j=2

α
[li?
j

]

i?j i
?
j−1

]
. (127)

From (126) and (127), we obtain

fid
(
∪i∈M∪{k} Si

)
− fid

(
∪i∈M Si

)
≥ α[lk]

kk −
[
α

[lk]
kk′ + α

[lk′′ ]
k′′k − α

[lk′′ ]
k′′k′

]
≥ α[lk]

kk − max
k′,(lk′′ ,k′′):k 6=k′′

{
α

[lk]
kk′ + α

[lk′′ ]
k′′k − α

[lk′′ ]
k′′k′1

(
k′′ 6= k′

)}
≥ 0 (128)

where the inequality in (128) follows from the condition in
(36) of Theorem 3.

Now to show that (125) holds, we observe that any Sid ∈
Fid

(
∪i∈M∪{k} Ki

)
can be expressed as

Sid = S ′id ∪ S ′′id,
for some S ′id ∈ Fid

(
∪i∈M Ki

)
and S ′′id ∈ Fid

(
Kk
)
,

where we highlight that S ′id or S ′′id may be equal to ∅. Since
d′ ∈ Pid

(
∪i∈M Ki

)
, we have d′(S ′′id) = 0. Combining this

with Lemma 5, we obtain

d′(Sid) = d′(S ′id) ≤ fid
(
S ′id
)
≤ fid

(
Sid
)
,

which in turn proves (124). Therefore, we have Pid

(
∪i∈M

Ki
)
⊆ Pid

(
K), for any M⊆ 〈K〉, which completes this step

and with it the proof of Theorem 3.

VI. PROOF OF OPTIMALITY

The TIN-optimality result in Theorem 4 follows directly
from the following outer bound.

Theorem 5. For the IMAC with input-output relationship in
(3), if the TIN-optimality conditions in (43) and (44) hold,
then the capacity region C is included in the set of rate tuples
satisfying∑
si∈〈li〉

R
[si]
i ≤ log

(
1 + liP

α
[li]

ii

)
, li ∈ 〈Li〉,∀i ∈ 〈K〉 (129)

∑
j∈〈m〉

∑
sij∈〈lij 〉

R
[sij ]

ij
≤ m(lij − 1) log(lij )

+
∑
j∈〈m〉

log

(
1 + (lij+1 + lij )P

α
[lij

]

ijij
−α

[lij
]

ijij−1

)
,

∀lij ∈ 〈Lij 〉, (i1, . . . , im) ∈ Σ
(
〈K〉

)
,m ∈ 〈2 : K〉. (130)

As noted in Remark 9, the above result leads to a constant-
gap characterization of the capacity region when the TIN-
optimality conditions hold. The remainder of this section is
dedicated to proving Theorem 5. To this end, we start by
presenting two instrumental lemmas.

A. Useful Lemmas

The first lemma is a generalization of [17, Lem. 8] to an
arbitrary number of input sequences.

Lemma 6. Let Xn
1 , . . . , X

n
l be l independent random se-

quences (input sequences) of length n each, where Xn
i =

Xi(1), . . . , Xi(n), i ∈ 〈l〉, satisfies the power constraint
1
n

∑n
t=1 E

[
|Xi(t)|2

]
≤ Pi. Moreover, let Y na and Y na be noisy

output sequences given by

Ya(t) = a1X1(t) + a2X2(t) + · · ·+ alXl(t) + Za(t) (131)
Yb(t) = b1X1(t) + b2X2(t) + · · ·+ blXl(t) + Zb(t) (132)

where ai, bi ∈ C, ∀i ∈ 〈l〉, are constants and Za(t), Zb(t) ∼
NC(0, 1) are AWGN terms. Given that

1 ≤ Pi|ai|2 ≤
Pi|bi|2

Pi+1|bi+1|2
, ∀i ∈ 〈l〉 (133)

where Pl+1|bl+1|2 = 1, the difference between the output
differential entropies is bounded as

h(Y na )− h(Y nb ) ≤ n(l − 1) log(l). (134)

The next lemma gives a variant of the TIN-optimality
condition in (43).

Lemma 7. Consider i, j ∈ 〈K〉, such that i 6= j, and the set
〈li〉, where li ∈ 〈Li〉. Moreover, consider the partition of 〈li〉
given by

〈li〉′′j ,
{
s′′i ∈ 〈li − 1〉 : α

[li]
ii − α

[li]
ij ≥ α

[s′′i ]
ii

}
(135)

〈li〉′j , 〈li〉 \ 〈li〉′′j . (136)

Given that the TIN condition in (43) holds, then we have

α
[li]
ii − α

[li]
ij ≥ α

[s′i]
ii − α

[s′i]
ij + α

[l′i]
ij ,

∀s′i, l′i ∈ 〈li〉′j \ {li}, s′i < l′i. (137)

The proofs of Lemma 6 and Lemma 7 are given in Appendix
C and Appendix D, respectively.

B. Proof of Theorem 5

In the following, we use the notation of the channel in (1)
and the channel in (3) interchangeably for convenience. While
doing so, we assume that

1 ≤ P [lk]
k

∣∣h[lk]
ki

∣∣2 = Pα
[lk]

ki , ∀(lk, k) ∈ K, i ∈ 〈K〉. (138)

For each cell i, (129) is a cut-set upper bound which follows
from the MAC capacity region [20] and the order of channel
strength levels in (6). Hence, we focus on the cyclic bounds
in (130). A modulo operation is implicitly used on receiver
indices such that i0 = im and im+1 = i1.

An arbitrary bound in (130) is identified by the two se-
quences (i1, . . . , im) ∈ Σ

(
〈K〉

)
and (li1 , . . . , lim) ∈ 〈Li1〉 ×

· · · × 〈Lim〉, describing the cyclic order of cells and the
number of participating users from each cell, respectively.
The corresponding set of participating users is given by{

(sij , ij) : sij ∈ 〈lij 〉, j ∈ 〈m〉
}

. For every j ∈ 〈m〉, we
partition 〈lij 〉 as in Lemma 7 into

〈lij 〉′′ ,
{
s′′ij ∈ 〈lij − 1〉 : α

[lij ]

ijij
− α

[lij ]

ijij−1
≥ α

[s′′ij ]

ijij

}
(139)
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〈lij 〉′ , 〈lij 〉 \ 〈lij 〉′′. (140)

where the subscript ij−1 is omitted from the subsets 〈lij 〉′′ and
〈lij 〉′ for brevity. Next, we go through the following steps:
• Eliminate all non-participating transmitters, i.e. (li, i) ∈
K\
{

(sij , ij) : sij ∈ 〈lij 〉, j ∈ 〈m〉
}

, all non-participating
receivers, i.e. i ∈ 〈K〉 \ {i1, . . . , im} and the correspond-
ing messages.

• For the remaining network, eliminate all interfering links
except for links from Tx-(s′ij , ij) to Rx-ij−1, for every
j ∈ 〈m〉 and s′ij ∈ 〈lij 〉

′.
We end up with a partially connected cyclic IMAC with input-
output relationship given by

Yij (t) =
∑

sij∈〈lij 〉

h
[sij ]

ijij
X̃

[sij ]

ij
(t)+

Uij+1
(t)︷ ︸︸ ︷∑

sij+1
∈〈lij+1

〉′
h

[sij+1
]

ij+1ij
X̃

[sij+1
]

ij+1
(t) + Zij (t) (141)

where Uij+1
(t) denotes the interference plus noise term at Rx-

ij . Since none of the above two steps hurts the rates of the
remaining messages, the partially-connected channel in (141)
is used for the outer bound.

Next, we define the side information intended to Rx-ij as

Sij (t) = gij
∑

sij∈〈lij 〉′
h

[sij ]

ijij
X̃

[sij ]

ij
(t) + Zij−1(t) (142)

where the gain gij is given by

gij =
h

[lij ]

ijij−1

h
[lij ]

ijij

. (143)

The side information sequence Snij is given to Rx-ij through
a genie, which cannot hurt the rates. Using Fano’s inequality,
we bound the sum rate of participating users associated with
cell ij as

n
∑

sij∈〈lij 〉

R
[sij ]

ij
− nε ≤ I

(
W

[1:lij ]

ij
;Y nij , S

n
ij

)
= I
(
W

[1:lij ]

ij
;Snij

)
+ I
(
W

[1:lij ]

ij
;Y nij |S

n
ij

)
= h

(
Snij
)
−h
(
Snij |W

[1:lij ]

ij

)
+h
(
Y nij |S

n
ij

)
−h
(
Y nij |S

n
ij ,W

[1:lij ]

ij

)
= h

(
Snij
)
− h
(
Znij−1

)
+ h
(
Y nij |S

n
ij

)
− h
(
Unij+1

)
(144)

where W
[1:lij ]

ij
,W [1]

ij
, . . . ,W

[lij ]

ij
. Taking the sum of bounds

in (144) for all j ∈ 〈m〉, we obtain a bound on the sum rate
of all participating users as

n
∑
j∈〈m〉

∑
sij∈〈lij 〉

R
[sij ]

ij
−mnε

≤
∑
j∈〈m〉

[
h
(
Snij
)
− h
(
Unij
)

+ h
(
Y nij |S

n
ij

)
− h
(
Znij
)]

≤ mn(lij − 1) log(lij ) +
∑
j∈〈m〉

[
h
(
Y nij |S

n
ij

)
− h
(
Znij
)]

(145)

where (145) follows by bounding each h
(
Snij
)
− h

(
Unij
)

as
explained next. For all ij with 〈lij 〉′ = {lij}, it is readily seen
that h

(
Snij
)
− h

(
Unij
)

= 0 as Snij = Unij . Otherwise, for ij
such that 〈lij 〉′ \ {lij} 6= ∅, we apply Lemma 6 by taking Snij
and Unij as the corresponding output sequences. It remains to
verify that the condition in (133) holds. From Lemma 7, the
following condition holds

α
[lij ]

ijij
− α

[lij ]

ijij−1
≥ α

[sij ]

ijij
− α

[sij ]

ijij−1
+ α

[l′ij ]

ijij−1
,

∀sij , l′ij ∈ 〈lij 〉
′, sij < l′ij . (146)

Moreover, from the definition of the partition in (139) and
(140), we have

α
[lij ]

ijij
− α

[lij ]

ijij−1
< α

[sij ]

ijij
, ∀sij ∈ 〈lij 〉′ \ {lij}. (147)

From (138), the conditions in (146) and (147) are rewritten as

0 < |gij |2P
[sij ]

ij

∣∣h[sij ]

ijij

∣∣2 ≤ P
[sij ]

ij

∣∣h[sij ]

ijij−1

∣∣2
P

[l′ij ]

ij

∣∣h[l′ij ]

ijij−1

∣∣2 ,
∀sij , l′ij ∈ 〈lij 〉

′, sij < l′ij . (148)

Note that (148) implies the condition in (133) of Lemma 6,
from which we obtain the upper bound h

(
Snij
)
− h

(
Unij
)
≤

n(lij − 1) log(lij ), which holds for all ij , j ∈ 〈m〉.
Now we turn our attention to h

(
Y nij |S

n
ij

)
−h
(
Znij
)

in (145).
For any j ∈ 〈m〉, we have

h
(
Y nij |S

n
ij

)
− h
(
Znij
)
≤
∑
t∈〈n〉

[
h
(
Yij (t)|Sij (t)

)
− h
(
Zij (t)

)]
≤ nh

(
Y G
ij |S

G
ij

)
− nh

(
Zij
)

(149)

= n log
(
σ2
Y G
ij
|SG
ij

)
(150)

where Y G
ij

and SG
ij

are the outputs in (141) and (142) respec-
tively for a single channel use when the inputs are drawn from
independent Gaussian distributions as X̃ [li]

i ∼ NC
(
0, P

[li]
i

)
.

The inequality in (149) follows by employing [3, Lem. 1] and
the i.i.d. noise assumption, where t is omitted from Zij for
brevity. The variance in (150) is given by

σ2
Y G
ij
|SG
ij

,E
[
|Y G
ij |

2
]
−E

[
Y G
ij S

G∗
ij

](
E
[
|SG
ij |

2
])−1

E
[
SG
ijY

G∗
ij

]
.

(151)
Next, we calculate each term in (151). We have

E
[
|Y G
ij |

2
]

=
∑

s′ij∈〈lij 〉
′

∣∣h[s′ij ]

ijij

∣∣2P [s′ij ]

ij
+
∑

s′′ij∈〈lij 〉
′′

∣∣h[s′′ij ]

ijij

∣∣2P [s′′ij ]

ij

+
∑

sij+1
∈〈lij+1

〉′

∣∣h[sij+1
]

ij+1ij

∣∣2P [sij+1
]

ij+1
+ 1 (152)

E
[
Y G
ij S

G∗
ij

]
=
(
E
[
SG
ijY

G∗
ij

])∗
= g∗ij

∑
sij∈〈lij 〉′

∣∣h[sij ]

ijij

∣∣2P [sij ]

ij

(153)
E
[
|SG
ij |

2
]

= |gij |2
∑

sij∈〈lij 〉′

∣∣h[sij ]

ijij

∣∣2P [sij ]

ij
+ 1. (154)

From the above, we obtain an upper bound for σ2
Y G
ij
|SG
ij

as

shown in (155), where the last inequality in (155) follows by
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σ2
Y G
ij
|SG
ij

= 1 +
∑

s′′ij∈〈lij 〉
′′

∣∣h[s′′ij ]

ijij

∣∣2P [s′′ij ]

ij
+

∑
sij+1

∈〈lij+1
〉′

∣∣h[sij+1
]

ij+1ij

∣∣2P [sij+1
]

ij+1
+

∑
sij∈〈lij 〉′

∣∣h[sij ]

ijij

∣∣2P [sij ]

ij

|gij |2
∑
sij∈〈lij 〉′

∣∣h[sij ]

ijij

∣∣2P [sij ]

ij
+ 1

≤ 1 +
∑

s′′ij∈〈lij 〉
′′

∣∣h[s′′ij ]

ijij

∣∣2P [s′′ij ]

ij
+

∑
sij+1

∈〈lij+1
〉′

∣∣h[sij+1
]

ij+1ij

∣∣2P [sij+1
]

ij+1
+
∣∣〈lij 〉′∣∣

∣∣h[lij ]

ijij

∣∣2P [lij ]

ij∣∣h[lij ]

ijij−1

∣∣2P [lij ]

ij

≤ 1 + (lij + lij+1)

∣∣h[lij ]

ijij

∣∣2P [lij ]

ij∣∣h[lij ]

ijij−1

∣∣2P [lij ]

ij

(155)

employing the TIN-optimality conditions in (43) and (44). In
particular, the condition in (44) gives us

α
[lij ]

ijij
≥ α

[lij ]

ijij−1
+ α

[sij+1
]

ij+1ij
⇔∣∣h[lij ]

ijij

∣∣2P [lij ]

ij∣∣h[lij ]

ijij−1

∣∣2P [lij ]

ij

≥
∣∣h[sij+1

]

ij+1ij

∣∣2P [sij+1
]

ij+1
(156)

while from the condition in (43), combined with the partition
in (139), we obtain

α
[lij ]

ijij
− α

[lij ]

ijij−1
≥ α

[s′′ij ]

ijij
⇔∣∣h[lij ]

ijij

∣∣2P [lij ]

ij∣∣h[lij ]

ijij−1

∣∣2P [lij ]

ij

≥
∣∣h[s′′ij ]

ijij

∣∣2P [s′′ij ]

ij
, ∀s′′ij ∈ 〈lij 〉

′′. (157)

Finally, by plugging the upper bound in (155) into (150),
which in turn, is plugged into (145), the bound in (130) is
obtained. This completes the proof.

VII. CONCLUSION AND FUTURE DIRECTIONS

We considered the problem of TIN-optimality in the Gaus-
sian IMAC, motivated by uplink scenarios in cellular networks.
We proposed an adequate definition of TIN for cellular net-
works in which each cell carries out a power-controlled version
of its capacity achieving strategy while treating all inter-cell
interference as noise. Under this definition of TIN, we derived
a TIN-achievable GDoF region for the IMAC through a novel
application of the potential graph approach. Then we identified
two regimes of interest: 1) a TIN-convexity regime in which
the proposed TIN-achievable GDoF region is convex without
the need for time-sharing, and 2) a TIN-optimality regime,
contained in the TIN-convexity regime, in which the TIN-
achievable GDoF region is optimal and leads to a constant-gap
characterization of the capacity region.

An interesting future direction is to employ the identi-
fied conditions and GDoF characterizations to design effi-
cient scheduling and power control algorithms. TIN-inspired
scheduling algorithms for device-to-device communications,
modeled by the regular K-user IC, were proposed in [15], [24].
Moreover, a number of GDoF-based, low-complexity power
allocation algorithms for TIN in the regular IC were proposed
in [13], [15], [25]. Finding similar efficient scheduling and
power allocation algorithms for the IMAC (and cellular sce-
narios in general) is of great practical importance.

Another interesting direction following this work is to
consider downlink scenarios. Such scenarios are modeled by
the Gaussian interfering broadcast channel (IBC). The TIN
definition proposed here for cellular settings extends to the
IBC, where superposition coding and successive decoding can
be employed in each cell while treating inter-cell interference
as noise. It is of interest to investigate the relationship between
the IMAC and IBC under TIN and whether a form of uplink-
downlink duality holds, from which solving one problem leads
directly to a solution for the other. Some progress along these
lines was recently reported in [26].

APPENDIX A
NUMERICAL EVALUATIONS IN SIMPLE CELLULAR

MODELS

In this appendix, we evaluate the probability that the TIN
conditions, identified in Theorem 3 and Theorem 4, are
satisfied in simple cellular scenarios with fixed base station
locations and random user locations. For simplicity, we restrict
our attention to the influence of distance-dependent path loss
while neglecting shadowing and small-scale fading effects. We
consider the two following cellular arrangements, which are
variants of the classical and modified Wyner models [27], [28]:
(a) Sectorized linear cell-array: In this model, cellular sites

are uniformly ordered in a linear array, where each site
covers a segment of length 2r and is placed at the center
of such segment. We assume sectorization where each
site consists of two base stations, each with a directional
antenna pointing in a distinct direction (left or right).
Hence, a base station covers a cell (or sector) of length
r in its corresponding direction, e.g. Fig. 5(a)-top.

(b) Circular cell-array: In this model, K sites are uniformly
ordered in a circular array. As in the above model,
each site is placed at the center of a 2r long segment.
Unlike the above model however, here we do not assume
sectorization. Instead, each site consists of one base
station with an omnidirectional antenna covering a cell
of length 2r, e.g. Fig. 5(b)-top.

For both arrangements, L users are randomly and indepen-
dently placed in each cell with locations drawn from a uniform
distribution over the cell segment, while excluding a segment
of length 2r0 about the center of each site. Under distance-
dependent path loss, strength levels of different links are
determined by the corresponding distances. Therefore, the
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(2,1) (1,1) 

BS-1 BS-2 BS-3 BS-4 

(2,2) (1,2) (2,3) (1,3) (2,4) (1,4) 

cell 1 cell 2 cell 3 cell 4 

(a) (b) 

cell 4 cell 1 

BS-1 BS-0 BS-3 BS-2 

(2,1) (1,1) (1,2) (2,2) (2,3) (1,3) (1,4) (1,0) (2,0) (1,-1) 

cell 0 cell 1 cell 2 cell 3 

⋯ cell -1 cell 4 ⋯  

(1,4) 

BS-1 BS-2 

BS-3 BS-4 

(1,1) (2,1) (2,2) 

(1,2) 
(2,3) 

(1,3) (2,4) 

cell 1 cell 2 

BS-1 BS-2 

(2,1) (1,1) (1,2) (2,2) 

cell 1 cell 2 

Fig. 5. Two simple cellular arrangements: a sectorized linear cell-array in (a) and a circular cell-array in (b). Original arrangements are
given in top figures, while bottom figures show equivalent arrangements sufficient to test for TIN conditions. Users are denoted by their
index tuples for brevity.

above arrangements enjoy the property that desired links are
stronger than interfering links. Moreover, it can be easily
verified that for the purpose of checking GDoF-based TIN
conditions in the above settings, there is no loss of generality
in making the common assumption that interference is limited
to adjacent cells.

In our numerical evaluations, we focus on 2 cells for the
sectorized linear model (see Fig. 5(a)-bottom), as each pair
of interfering cells can be treated as an independent network.
For the circular model, we consider a network with 4 cells
as shown in Fig. 5(b). The distance-dependent path loss is
modeled as PL(d) = 148.1 + 37.6 log10(d) in dB, where d
is the distance in kilometers. Each user has a transmit power
of 23 dBm, while the base station noise floor is given by
−102 dBm (i.e. noise power spectral density: −172 dBm/Hz,
receiver noise figure: 2 dB, and transmission bandwidth: 10
MHz). We set r0 to 35 meters, while r and L are varied.
The results of our numerical evaluations are shown in Fig. 6,
where each probability value is calculated from 104 random
user placements.

As a direct consequence of Remark 5, the probability that
the TIN-convexity conditions of Theorem 3 hold in a given
setting is no less than the probability that the TIN-optimality
conditions of Theorem 4 hold in the same setting, which is
clearly exhibited in Fig. 6. Such probabilities decrease with
an increased number of users per cell (i.e. L), which is not
surprising as more users induce more conditions to be satisfied.
We also observe that all probabilities increase with cell size
(determined by site radius r). This is due to the fact that
as the distance between adjacent cells increases, the effects
of inter-cell interference become less pronounced, making
the TIN-convexity and optimality conditions more likely to
hold (e.g. set cross link strengths to small values in (43) and
(44)). For example, under the adopted system parameters, the
cell-edge SNR is about 0 dB for r = 243 meters, enabling
both sets of TIN conditions to hold with probability 1 as
inter-cell interference remains below noise level. The results

in Fig. 6, albeit restricted to simple cellular models, show
the potential broadness of the regimes for which the TIN
conditions identified in Theorem 3 and Theorem 4 will hold
in more realistic cellular settings.

APPENDIX B
PROOF OF LEMMA 2

First, we observe that for any multi-user circuit c(sn), where
sn =

(
sn1

1 , . . . , snmm
)
∈ Σ(K) and n ≥ 2, the corresponding

GDoF inequality obtained from the non-negative length con-
dition of Lemma 1 is expressed in terms of the single-cell
partition as

m∑
j=1

nj∑
sj=1

d(e
sj
j ) ≤

m∑
j=1

nj∑
sj=1

[
α(e

sj
j )− w(e

sj
j )
]
. (158)

Moreover, it is useful to observe that for intra-cell directed
edges, i.e. edges connecting pairs of users belonging to the
same cell, we have

w(e
sj
j ) = α(e

sj+1
j )1E′1

(e
sj
j ), ∀sj ∈ 〈nj−1〉, j ∈ 〈m〉 (159)

which follows from (105), (69) and (70).
Necessity of C.1: To show this, consider a directed circuit

c(sn), as expressed in (104), and suppose that it violates C.1.
For this to hold, we must have n ≥ 4. Moreover, we assume
without loss of generality that i1 = ik, for some 2 < k <
n, and that lnkk > ln1

1 (otherwise we rename the indices).
The resulting GDoF inequality obtained from the non-negative
length condition for this circuit is given by (158). We show
that the same set of users traversed by c(sn) can be used to
construct two smaller directed circuits with GDoF inequalities
that imply (158). Let us define

n?1 , max
{
s1 ∈ 〈n1〉 : lnkk > ls11

}
(160)

which exists since lnkk > ln1
1 . The first constructed directed

circuit is given by

c′ =
(
e
n?1
1 , . . . , en1

1 , . . . , e1
k, . . . , e

nk−1
k , ẽnkk

)
(161)
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Fig. 6. Influence of cell size (determined by r) and number of users per cell (denoted by L) on the probabilities that the TIN-convexity
conditions (Theorem 3) and the TIN-optimality conditions (Theorem 4) hold in a sectorized linear cell-array with 2 cells (left) and a circular
cell-array with 4 cells (right).

where ẽnkk =
(
(lnkk , ik), (l

n?1
1 , i1)

)
. c′ is a valid circuit of Gp

which yields the inequality given by

n1∑
s1=n?1

d(es11 ) +

k∑
j=2

nj∑
sj=1

d(e
sj
j ) ≤

k−1∑
j=2

nj∑
sj=1

[
α(e

sj
j )− w(e

sj
j )
]

+

n1∑
s1=n?1

[
α(es11 )− w(es11 )

]

+

nk−1∑
sk=1

[
α(eskk )− w(eskk )

]
+
[
α(enkk )− α(e

n?1
1 )
]
. (162)

In the above inequality, we have used d(ẽnkk ) = d(enkk ) and
α(ẽnkk ) = α(enkk ), where enkk is traversed by the original
directed circuit c(sn), in addition to w(ẽnkk ) = α(e

n?1
1 ) which

follows from ik = i1, lnkk > l
n?1
1 and (159). The second

directed circuit is given by

c′′ =
(
e1

1, . . . , e
n?1−1
1 , ẽ

n?1
1 , e1

k+1, . . . , e
nk+1

k+1 , . . . , e
1
m, . . . , e

nm
m

)
(163)

where ẽ
n?1
1 =

(
(l
n?1
1 , i1), (l1k+1, ik+1)

)
. This is also a valid

directed circuit of Gp and its corresponding GDoF inequality
is given by

n?1∑
s1=1

d(es11 ) +

m∑
j=k+1

nj∑
sj=1

d(e
sj
j ) ≤

[
α(e

n?1
1 )− w(enkk )

]
+

n?1−1∑
s1=1

[
α(es11 )−w(es11 )

]
+

m∑
j=k+1

nj∑
sj=1

[
α(e

sj
j )−w(e

sj
j )
]

(164)

where we have used d(ẽ
n?1
1 ) = d(e

n?1
1 ) and α(ẽ

n?1
1 ) = α(e

n?1
1 ),

in addition to w(ẽ
n?1
1 ) = w(enkk ) which follows from ik = i1

and (70). By adding the inequalities in (162) and (164), we

obtain

d(e
n?1
1 )+

m∑
j=1

nj∑
sj=1

d(e
sj
j ) ≤

m∑
j=1

nj∑
sj=1

[
α(e

sj
j )−w(e

sj
j )
]
. (165)

Since d(e
n?1
1 ) ≥ 0, the inequality in (165) implies the in-

equality in (158), and hence c(sn) is redundant compared to
c′ and c′′. Note that users associated with cells i1 and ik
are now cyclicly adjacent in c′ and constitute one single-cell
subsequence, while ik does not appear in c′′. If any of c′ or
c′′ still violates C.1, we apply the above argument recursively
until all resulting circuits satisfy C.1.

Necessity of C.2: Now we proceed to show the necessity
of C.2 while assuming that the condition in C.1 is satisfied.
Consider an arbitrary subset of users S ⊆ K, where |S| = n ≥
2. Each directed circuit c(sn), induced by a cyclic sequence
sn ∈ Σ(S) spanning all users in S, gives a different inequality
for the same sum-GDoF

∑
(l,i)∈S d

[l]
i . Such inequalities take

the form in (158). As a first step, we show that a necessary
condition for the non-redundancy of c(sn) is

l2j > l3j > · · · > l
nj
j , ∀j ∈ 〈m〉. (166)

That is, apart from the first user in each single-cell sub-
sequence s

nj
j , all following users should be ordered in a

descending manner. Considering the right-hand-side of (158),
we have

m∑
j=1

nj∑
sj=1

[
α(e

sj
j )− w(e

sj
j )
]

=

m∑
j=1

nj−1∑
sj=2

[
α(e

sj+1
j )− w(e

sj
j )
]

+

m∑
j=1

[
α(e1

j )− w(e
nj
j ) + α(e2

j )1E′1(e1
j )
]

(167)

≥
m∑
j=1

[
α(e1

j )− w(e
nj
j ) + α(e2

j )1E′1(e1
j )
]
. (168)
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The equality in (167) uses α(e2
j ) − w(e1

j ) = α(e2
j )1E′1(e1

j ),
which is obtained from (159). Note that if nj = 1 for some
j ∈ 〈m〉, then α(e2

j )1E′1(e1
j ) = 0 by definition of 1E′1(·),

and j does not contribute to the double summation on the
right-hand side of (167). The inequality in (168) follows from
0 ≤ w(e

sj
j ) ≤ α(e

sj+1
j ), sj ≤ nj − 1, as seen from (159).

Note that (168) holds with equality when (166) is satisfied,
yielding a tighter GDoF inequality compared to when (166)
is violated.

We proceed by focusing on cyclic sequences sn ∈ Σ(S)
that satisfy both C.1 and (166). The next step is to show that
for any such sequence, if l1j < l2j for some j ∈ 〈m〉, then
the corresponding GDoF inequality is redundant. Suppose,
without loss of generality, that we have sn = (sn1

1 , . . . , snmm )
with n1 ≥ 2 and l11 < l21. The GDoF inequality obtained from
c(sn) is given by

m∑
j=1

nj∑
sj=1

d(e
sj
j ) ≤

[
α(e1

1)− w(en1
1 ) + α(e2

1)
]

+

m∑
j=2

[
α(e1

j )− w(e
nj
j ) + α(e2

j )1E′1(e1
j )
]

(169)

where we have used (168) in addition to l11 < l21. We construct
two smaller directed circuits from the users traversed by c(sn)
and show that their corresponding GDoF inequalities imply
(169). Consider the directed circuit given by

c̃′ =
(
ẽ1

1, e
1
2, . . . , e

n2
2 , . . . , e1

m, . . . , e
nm
m

)
(170)

where ẽ1
1 =

(
(l11, i1), (l12, i2)

)
. This directed circuit is valid for

Gp, satisfies C.1 and (166), and yields the GDoF inequality
given by

d(e1
1) +

m∑
j=2

nj∑
sj=1

d(e
sj
j ) ≤

[
α(e1

1)− w(en1
1 )
]

+

m∑
j=2

[
α(e1

j )− w(e
nj
j ) + α(e2

j )1E′1(e1
j )
]
. (171)

where d(ẽ1
1) = d(e1

1), α(ẽ1
1) = α(e1

1) and w(ẽ1
1) = w(en1

1 ) are
used in (171). Now consider a second directed circuits given
by

c̃′′ =
(
e2

1, . . . , e
n1−1
1 , ẽn1

1

)
(172)

where ẽn1
1 =

(
(ln1

1 , i1), (l21, i1)
)
. This is a single-cell circuit

with users ordered in a descending manner. The resulting
GDoF inequality is given by

n1∑
s1=2

d(es11 ) ≤ α(e2
1). (173)

It is readily seen that the inequality in (169) is retrieved
by adding the inequalities in (171) and (173), hence c(sn)
is redundant compared to c̃′ and c̃′′. If l1j < l2j for some
j ∈ 〈2 : m〉 in c̃′, we apply the same steps above recursively,
hence showing that non-redundancy necessitates

l1j > l2j > · · · > l
nj
j , ∀j ∈ 〈m〉. (174)

We are left with directed circuits c(sn) ∈ Σ(S) that satisfy
C.1 and (174), for which the corresponding GDoF inequalities
take the form

m∑
j=1

nj∑
sj=1

d(e
sj
j ) ≤

m∑
j=1

[
α(e1

j )− w(e
nj
j )
]
. (175)

The final step is to show that by including all users in
S̃ =

{
(lj , ij) : lj ∈ 〈l1j 〉 \ {l1j , . . . , l

nj
j }, j ∈ 〈m〉

}
, we

obtain a GDoF inequality that implies (175). In particular,
consider the cyclic sequence s̃ =

(
s̃n1

1 , . . . , s̃nmm
)
∈ Σ(S ∪ S̃),

obtained by augmenting each single-cell subsequence s
nj
j in

sn as s̃
nj
j =

(
(l1j , ij), (l

1
j − 1, ij), . . . , (1, ij)

)
, ∀j ∈ 〈m〉. The

corresponding directed circuit is given by

c(s̃) = (ẽ1
1, . . . , ẽ

l11
1 , . . . , ẽ

1
j , . . . , ẽ

l1j
j ) (176)

where edges are defined as in (105), but with respect to
the cyclic sequence s̃. From the non-negative circuit length
condition, c(s̃) yields the GDoF inequality given by

m∑
j=1

l1j∑
sj=1

d(ẽ
sj
j ) ≤

m∑
j=1

[
α(ẽ1

j )− w(ẽ
l1j
j )
]
. (177)

Note that every user traversed by c(sn) is also traversed by
c(s̃), which may also traverse additional users. On the other

hand, we have α(ẽ1
j )− w(ẽ

l1j
j ) = α(e1

j )− w(e
nj
j ), ∀j ∈ 〈m〉.

Therefore, (177) implies (175), hence showing the necessity
of C.2.

APPENDIX C
PROOF OF LEMMA 6

We start by finding an upper bound for h(Y na ) − h(Y nb )
through the steps given in (178)–(182), where (181) is due to
the independence of all input sequences and noise, and (182)
follows from the data processing inequality [20].

Next, we focus on the difference between the mutual
information terms in (182) for a given i ∈ 〈l〉. Defining
b̃i+1 ,

√
Pi+1bi+1, the mutual information term with the

negative sign is bounded below as shown in (183)–(188).
The inequality in (184) follows from |b̃i+1|2 ≥ 1 (see (133)
and Pl+1|bl+1|2 = 1), which makes the output in (183) less
noisy compared to the output in (184). The inequality in
(186) follows by conditioning the differential entropy with
the positive sign and the independence of input sequences
and noise. (188) follows from |ai|2 ≤ |bi|2

|b̃i+1|2
in (133); this is

similar to a Gaussian degraded broadcast channel with input
Xn
i and outputs aiXn

i + Znb and bi
b̃i+1

Xn
i + Znb [20].

By combining the bounds in (182) and (188), we proceed
as follows

h(Y na )− h(Y nb )

≤
l∑
i=1

I
(
Xn
i+1, . . . , X

n
l ;
bi+1

b̃i+1

Xn
i+1 + · · ·+ bl

b̃i+1

Xn
l + Znb

)
=

l∑
i=1

[
h

(
bi+1

b̃i+1

Xn
i+1 + · · ·+ bl

b̃i+1

Xn
l + Znb

)
− h
(
Znb
)]



23

h(Y na )− h(Y nb ) = h(Y na )− h(Y nb )− h(Zna ) + h(Znb ) (178)

= I
(
Xn

1 , . . . , X
n
l ;Y na

)
− I
(
Xn

1 , . . . , X
n
l ;Y nb

)
(179)

=

l∑
i=1

[
I
(
Xn
i ;Y na |Xn

1 , . . . , X
n
i−1

)
− I
(
Xn
i ;Y nb |Xn

1 , . . . , X
n
i−1

)]
(180)

=

l∑
i=1

[
I
(
Xn
i ; aiX

n
i + · · ·+ alX

n
l + Zna

)
− I
(
Xn
i ; biX

n
i + · · ·+ blX

n
l + Znb

)]
(181)

≤
l∑
i=1

[
I
(
Xn
i ; aiX

n
i + Zna

)
− I
(
Xn
i ; biX

n
i + · · ·+ blX

n
l + Znb

)]
(182)

I
(
Xn
i ; biX

n
i + · · ·+ blX

n
l + Znb

)
= I
(
Xn
i ;

bi

b̃i+1

Xn
i + · · ·+ bl

b̃i+1

Xn
l +

1

b̃i+1

Znb

)
(183)

≥ I
(
Xn
i ;

bi

b̃i+1

Xn
i + · · ·+ bl

b̃i+1

Xn
l + Znb

)
(184)

= h
( bi

b̃i+1

Xn
i + · · ·+ bl

b̃i+1

Xn
l + Znb

)
− h
(bi+1

b̃i+1

Xn
i+1 + · · ·+ bl

b̃i+1

Xn
l + Znb

)
(185)

≥ h
( bi

b̃i+1

Xn
i + Znb

)
− h
(bi+1

b̃i+1

Xn
i+1 + · · ·+ bl

b̃i+1

Xn
l + Znb

)
(186)

= I
(
Xn
i ;

bi

b̃i+1

Xn
i + Znb

)
− I
(
Xn
i+1, . . . , X

n
l ;
bi+1

b̃i+1

Xn
i+1 + · · ·+ bl

b̃i+1

Xn
l + Znb

)
(187)

≥ I
(
Xn
i ; aiX

n
i + Znb

)
− I
(
Xn
i+1, . . . , X

n
l ;
bi+1

b̃i+1

Xn
i+1 + · · ·+ bl

b̃i+1

Xn
l + Znb

)
. (188)

≤ n
l∑
i=1

log

(
1 +

l∑
j=i+1

Pj |bj |2

Pi+1|bi+1|2

)
(189)

≤ n
l∑
i=1

log(i). (190)

where (189) follows by a direct application of the inequality in
[2, (2.8)] and (190) holds because Pj |bj |2 ≤ Pk|bk|2,∀j ≥ k
(see (133)). Finally, (134) follows from (190), which com-
pletes the proof.

APPENDIX D
PROOF OF LEMMA 7

From the TIN condition in (43) and the definition of the
partition in (135) and (136), since α[li]

ii − α
[li]
ij < α

[s′i]
ii , ∀si ∈

〈li〉′j \ {li}, then we must have

α
[li]
ii − α

[li]
ij ≥ α

[si]
ii − α

[si]
ij + α

[li]
ij , ∀si ∈ 〈li〉

′
j \ {li}. (191)

As a first step of the proof, we show that (191) holds in a
more general sense, such that

α
[l′i]
ii − α

[l′i]
ij ≥ α

[s′i]
ii − α

[s′i]
ij + α

[l′i]
ij , ∀s

′
i, l
′
i ∈ 〈li〉′j , s′i < l′i.

(192)
Suppose that (192) does not hold for some s′i < l′i < li. The
TIN conditions in (43) dictates that we must have α[l′i]

ii −α
[l′i]
ij ≥

α
[s′i]
ii instead. Combining this with (191), we obtain

α
[li]
ii − α

[li]
ij ≥ α

[l′i]
ii − α

[l′i]
ij + α

[li]
ij

≥ α[s′i]
ii + α

[li]
ij

≥ α[s′i]
ii (193)

which yields a contradiction since s′i /∈ 〈li〉′′j , and hence (193)
must not hold. Therefore, (192) must hold and we have

α
[li]
ii − α

[li]
ij ≥ α

[l′i]
ii − α

[l′i]
ij + α

[li]
ij

≥ α[s′i]
ii − α

[s′i]
ij + α

[l′i]
ij + α

[li]
ij

≥ α[s′i]
ii − α

[s′i]
ij + α

[l′i]
ij

which completes the proof.
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