1,152 research outputs found

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page

    Infinitely many cyclic solutions to the Hamilton-Waterloo problem with odd length cycles

    Full text link
    It is conjectured that for every pair (,m)(\ell,m) of odd integers greater than 2 with m1  (mod)m \equiv 1\; \pmod{\ell}, there exists a cyclic two-factorization of KmK_{\ell m} having exactly (m1)/2(m-1)/2 factors of type m\ell^m and all the others of type mm^{\ell}. The authors prove the conjecture in the affirmative when 1  (mod4)\ell \equiv 1\; \pmod{4} and m2+1m \geq \ell^2 -\ell + 1.Comment: 31 page

    A Generalization of the Hamilton-Waterloo Problem on Complete Equipartite Graphs

    Full text link
    The Hamilton-Waterloo problem asks for which ss and rr the complete graph KnK_n can be decomposed into ss copies of a given 2-factor F1F_1 and rr copies of a given 2-factor F2F_2 (and one copy of a 1-factor if nn is even). In this paper we generalize the problem to complete equipartite graphs K(n:m)K_{(n:m)} and show that K(xyzw:m)K_{(xyzw:m)} can be decomposed into ss copies of a 2-factor consisting of cycles of length xzmxzm; and rr copies of a 2-factor consisting of cycles of length yzmyzm, whenever mm is odd, s,r1s,r\neq 1, gcd(x,z)=gcd(y,z)=1\gcd(x,z)=\gcd(y,z)=1 and xyz0(mod4)xyz\neq 0 \pmod 4. We also give some more general constructions where the cycles in a given two factor may have different lengths. We use these constructions to find solutions to the Hamilton-Waterloo problem for complete graphs

    A complete solution to the infinite Oberwolfach problem

    Full text link
    Let FF be a 22-regular graph of order vv. The Oberwolfach problem, OP(F)OP(F), asks for a 22-factorization of the complete graph on vv vertices in which each 22-factor is isomorphic to FF. In this paper, we give a complete solution to the Oberwolfach problem over infinite complete graphs, proving the existence of solutions that are regular under the action of a given involution free group GG. We will also consider the same problem in the more general contest of graphs FF that are spanning subgraphs of an infinite complete graph K\mathbb{K} and we provide a solution when FF is locally finite. Moreover, we characterize the infinite subgraphs LL of FF such that there exists a solution to OP(F)OP(F) containing a solution to OP(L)OP(L)
    corecore