18 research outputs found

    Multidimensional cellular automata and generalization of Fekete's lemma

    Get PDF
    Fekete's lemma is a well known combinatorial result on number sequences: we extend it to functions defined on dd-tuples of integers. As an application of the new variant, we show that nonsurjective dd-dimensional cellular automata are characterized by loss of arbitrarily much information on finite supports, at a growth rate greater than that of the support's boundary determined by the automaton's neighbourhood index.Comment: 6 pages, no figures, LaTeX. Improved some explanations; revised structure; added examples; renamed "hypercubes" into "right polytopes"; added references to Arratia's paper on EJC, Calude's book, Cook's proof of Rule 110 universality, and arXiv paper 0709.117

    Shape Avoiding Permutations

    Get PDF
    Permutations avoiding all patterns of a given shape (in the sense of Robinson-Schensted-Knuth) are considered. We show that the shapes of all such permutations are contained in a suitable thick hook, and deduce an exponential growth rate for their number.Comment: 16 pages; final form, to appear in J. Combin. Theory, Series

    Counting occurrences of 132 in an even permutation

    Full text link
    We study the generating function for the number of even (or odd) permutations on n letters containing exactly r\gs0 occurrences of 132. It is shown that finding this function for a given r amounts to a routine check of all permutations in S2rS_{2r}.Comment: 12 pages, 2 figure

    Pattern Avoidance in Poset Permutations

    Full text link
    We extend the concept of pattern avoidance in permutations on a totally ordered set to pattern avoidance in permutations on partially ordered sets. The number of permutations on PP that avoid the pattern π\pi is denoted AvP(π)Av_P(\pi). We extend a proof of Simion and Schmidt to show that AvP(132)≤AvP(123)Av_P(132) \leq Av_P(123) for any poset PP, and we exactly classify the posets for which equality holds.Comment: 13 pages, 1 figure; v2: corrected typos; v3: corrected typos and improved formatting; v4: to appear in Order; v5: corrected typos; v6: updated author email addresse

    Asymptotic enumeration of permutations avoiding generalized patterns

    Get PDF
    Motivated by the recent proof of the Stanley-Wilf conjecture, we study the asymptotic behavior of the number of permutations avoiding a generalized pattern. Generalized patterns allow the requirement that some pairs of letters must be adjacent in an occurrence of the pattern in the permutation, and consecutive patterns are a particular case of them. We determine the asymptotic behavior of the number of permutations avoiding a consecutive pattern, showing that they are an exponentially small proportion of the total number of permutations. For some other generalized patterns we give partial results, showing that the number of permutations avoiding them grows faster than for classical patterns but more slowly than for consecutive patterns.Comment: 14 pages, 3 figures, to be published in Adv. in Appl. Mat

    Improved bounds and new techniques for Davenport-Schinzel sequences and their generalizations

    Full text link
    Let lambda_s(n) denote the maximum length of a Davenport-Schinzel sequence of order s on n symbols. For s=3 it is known that lambda_3(n) = Theta(n alpha(n)) (Hart and Sharir, 1986). For general s>=4 there are almost-tight upper and lower bounds, both of the form n * 2^poly(alpha(n)) (Agarwal, Sharir, and Shor, 1989). Our first result is an improvement of the upper-bound technique of Agarwal et al. We obtain improved upper bounds for s>=6, which are tight for even s up to lower-order terms in the exponent. More importantly, we also present a new technique for deriving upper bounds for lambda_s(n). With this new technique we: (1) re-derive the upper bound of lambda_3(n) <= 2n alpha(n) + O(n sqrt alpha(n)) (first shown by Klazar, 1999); (2) re-derive our own new upper bounds for general s; and (3) obtain improved upper bounds for the generalized Davenport-Schinzel sequences considered by Adamec, Klazar, and Valtr (1992). Regarding lower bounds, we show that lambda_3(n) >= 2n alpha(n) - O(n), and therefore, the coefficient 2 is tight. We also present a simpler version of the construction of Agarwal, Sharir, and Shor that achieves the known lower bounds for even s>=4.Comment: To appear in Journal of the ACM. 48 pages, 3 figure

    Degrees of nonlinearity in forbidden 0–1 matrix problems

    Get PDF
    AbstractA 0–1 matrix A is said to avoid a forbidden 0–1 matrix (or pattern) P if no submatrix of A matches P, where a 0 in P matches either 0 or 1 in A. The theory of forbidden matrices subsumes many extremal problems in combinatorics and graph theory such as bounding the length of Davenport–Schinzel sequences and their generalizations, Stanley and Wilf’s permutation avoidance problem, and Turán-type subgraph avoidance problems. In addition, forbidden matrix theory has proved to be a powerful tool in discrete geometry and the analysis of both geometric and non-geometric algorithms.Clearly a 0–1 matrix can be interpreted as the incidence matrix of a bipartite graph in which vertices on each side of the partition are ordered. Füredi and Hajnal conjectured that if P corresponds to an acyclic graph then the maximum weight (number of 1s) in an n×n matrix avoiding P is O(nlogn). In the first part of the article we refute of this conjecture. We exhibit n×n matrices with weight Θ(nlognloglogn) that avoid a relatively small acyclic matrix. The matrices are constructed via two complementary composition operations for 0–1 matrices. In the second part of the article we simplify one aspect of Keszegh and Geneson’s proof that there are infinitely many minimal nonlinear forbidden 0–1 matrices. In the last part of the article we investigate the relationship between 0–1 matrices and generalized Davenport–Schinzel sequences. We prove that all forbidden subsequences formed by concatenating two permutations have a linear extremal function
    corecore