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Permutations avoiding all patterns of a given shape (in the sense of Robinson,
Schensted, and Knuth) are considered. We show that the shapes of all such permu-
tations are contained in a suitable thick hook and deduce an exponential growth
rate for their number. © 2002 Elsevier Science

1. INTRODUCTION

1.1. Outline

The Robinson–Schensted(–Knuth) correspondence is a bijection between
permutations in Sn and pairs of standard Young tableaux of the same
shape (and size n). This common shape is called the shape of the permuta-
tion.A permutationp=(p1, ..., pn) inSn avoids a permutations=(s1, ..., sm)
in Sm if there is no subsequence (pi1 , ..., pim ) of p such that pij > pik iff
sj > sk (-j, k). p avoids a shape m if it avoids all the permutations of shape m.
This paper deals with the relation between the property ‘‘p does not
avoid a given shape m’’ and the property ‘‘l=shape(p) contains m as a sub-
shape.’’ It turns out that, in general, neither of these properties implies or
contradicts the other; but in certain important cases, such implications do
hold. These cases include, e.g., rectangular shapes and hook shapes (either
for l or for m). These positive results are then applied to get asymptotic
bounds related to the Stanley–Wilf conjecture on pattern-avoiding permu-
tations (see Corollaries 4 and 5 in Section 1.2, and Section 7.2). Use
is made of the Berele–Regev asymptotic evaluation of the number of
standard Young tableaux contained in a ‘‘thick hook.’’



The rest of the paper is organized as follows. The main results are listed
in Section 1.2. Standard notations and necessary background are given in
Section 2. In Section 3 we motivate our investigation by a ‘‘false conjec-
ture.’’ In Section 4 we show that this ‘‘false conjecture’’ is correct for rec-
tangular shapes. Using this knowledge we consider the general case in
Section 5. Families of shapes, for which an exact evaluation may be
obtained, are presented in Section 6. Section 7 concludes the paper with
final remarks and open problems.

1.2. Main Results

For rectangular shapes the following holds.

Theorem 1. If p is a permutation of rectangular shape (mk), and m is an
arbitrary shape, then m is the shape of some subsequence of p if and only if
m ı (mk).

See Theorem 4.1 below.
Using Theorem 1 we prove the following general result.

Theorem 2. For any permutation p in Sn and any partition m=(m1, ..., mk)
of m, if (mk1) ı shape(p) then m is the shape of some subsequence of p.

See Theorem 5.1 below.
For hook shapes a stronger result is proved.

Theorem 3. Let m and k be positive integers and let n \ 4km. Then for
any hook m=(m, 1k−1) and any permutation p in Sn, p has a subsequence of
shape m if and only if m ı shape(p).

See Theorem 6.1 below.
Denote by avoid mn the size of the set of all m-avoiding permutations in Sn.
Combining Theorem 2 with the Berele–Regev asymptotic estimates [BR]
the following bounds are proved.

Corollary 4. For any fixed partition m=(m1, ..., mk),

max{ht(m), wd(m)} [ lim inf
nQ.

(avoid mn )
1/2n

and

lim sup
nQ.

(avoid mn )
1/2n [ ht(m)+wd(m),

where the height of m ht(m) :=k−1, and the width of m wd(m) :=m1−1.
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See Corollary 5.2 below. It should be noted that this result is related to
the Stanley–Wilf conjecture (see Subsection 7.2).
For hook shapes we have a sharper estimate.

Corollary 5. For any pair of positive integers m and k

lim
nQ.
(avoid (m, 1

k−1)
n )1/2n=max{m−1, k−1}.

See Corollary 6.5 below.

2. PRELIMINARIES

Two classical partial orders on the set of partitions are considered in this
paper. Let l=(l1, ...) and m=(m1, ...) be two partitions (not necessarily of
the same number).
We say that m is contained in l, denoted m ı l, if

mi [ li (-i).

We say that m is dominated by l, denoted mQ l, if

C
i

j=1
mj [ C

i

j=1
lj (-i).

Clearly, m ı lS mQ l.
The partition conjugate to l is lŒ=(l −1, ...), where l

−

i=max {j | lj \ i};
i.e., the conjugate partition is obtained by interchanging rows and columns
in l.

Lemma 2.1 [Md, Chap. I, (1.11)]. If l and m are partitions of the same
number n then

mQ lZ lŒQ mŒ.

Corollary 2.2. If l and m are partitions of the same number n, satisfying

mQ l and mŒQ lŒ

then l=m.

Define the shape of a sequence of integers to be the common shape of the
two tableaux obtained via the Robinson–Schensted–Knuth correspondence.
See [Sa, Sect. 3.3; St, Sect. 7.11]. The following theorem is well known.
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Schensted’s Theorem [Sc]. For any partition l and any permutation p
of shape l, the length of the longest increasing subsequence of p is equal to
l1, and the length of the longest decreasing subsequence of p is equal to l

−

1.

Schensted’s Theorem was generalized by Greene.

Greene’s Theorem [Gr]. Let p be a permutation of shape l=
(l1, ..., lt). Then, for all i,

C
i

j=1
lj= maximal size of a union of i increasing subsequences in p,

and

C
i

j=1
l −j= maximal size of a union of i decreasing subsequences in p.

3. MOTIVATION

Let m be a partition of m, and let Cm be the set of all permutations in Sm
of shape m. A permutation in Sn is a m-avoiding permutation if it avoids all
the permutations in Cm; denote the set of these permutations by Avoid mn .
The only permutation in Sm having shape (m) is the identity permuta-
tion, i.e., a monotone increasing sequence. Schensted’s Theorem, stated in
the previous section, is thus equivalent to the following statement.

Fact 3.1. For any pair of positive integers m [ n

Avoid (m)n = 0
{l * n | (m) ł l}

Cl,

and similarly for (1m) instead of (m).

In other words, the set of permutations in Sn avoiding (m) is the union of
all Knuth cells of shapes not containing (m). One may be tempted to think
that this is a general phenomenon.

‘‘False Conjecture’’ (First Version). For any pair of positive integers
m [ n and any partition m of m

Avoid mn= 0
{l * n | m ł l}

Cl.
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Equivalently,

‘‘False Conjecture’’ (Second Version). For any permutation p ¥ Sn of
shape l, the following two assertions hold:

(1) For any partition m ı l there exists a subsequence of p of shape m.
(2) The shape of any subsequence of p is contained in l.

Clearly, (1) is equivalent to the inclusion

Avoid mn ı 0
{l * n | m ł l}

Cl,

while (2) is equivalent to the reverse inclusion

0
{l * n | m ł l}

Cl ı Avoid mn .

Note that Greene’s Theorem implies the weaker result that the shape of
any subsequence of p is dominated by l.
Unfortunately, the following examples show that both parts of the
‘‘False Conjecture’’ are false in general.

Example 3.2. The permutation p=(65127843) has shape l=(4, 2, 12),
but has no subsequence of shape m=(4, 13).

Example 3.3. The permutation p=(25314) has shape l=(3, 12), but
has a subsequence of shape m=(22).
Both examples can be extended to shapes l of arbitrarily large size.
A central discovery in this paper is that the above ‘‘False Conjecture’’ is
nevertheless correct in some important cases. This will be used to deduce
asymptotic estimates.

4. RECTANGULAR SHAPES

A rectangular shape is a shape of the form (mk), where m and k are posi-
tive integers. In this section we show that the ‘‘False Conjecture’’ is true
whenever l is a rectangular shape.

Theorem 4.1. If p is a permutation of rectangular shape (mk), and m is
an arbitrary shape, then m is the shape of some subsequence of p if and only if
m ı (mk).
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In order to prove Theorem 4.1 we need the following consequence of
Greene’s Theorem.

Lemma 4.2. Let p be a permutation of shape l.

(a) If p contains a disjoint union of k increasing subsequences of
lengths a1 \ a2 \ · · · \ ak then (a1, ..., ak)Q l.

(b) If p contains a disjoint union of k decreasing subsequences of
lengths a1 \ a2 \ · · · \ ak then (a1, ..., ak)Q lŒ.

Proof. By Greene’s Theorem, for any 1 [ i [ k

C
i

j=1
aj [maximal size of a union of i increasing subsequences of p=C

i

j=1
lj.

The proof of the second part is similar. L

The following lemma characterizes permutations having rectangular
shape.

Lemma 4.3. (a) A permutation p has shape (mk) if and only if the
following two conditions are simultaneously satisfied:

(a1) p is a disjoint union of k increasing subsequences, each of
length m.

(a2) p is a disjoint union of m decreasing subsequences, each of
length k.

(b) If the above conditions hold, then each of the k increasing sub-
sequences intersects each of the m decreasing subsequences in exactly one
element.

Proof. (a) Assume that p has shape l and satisfies conditions (a1) and
(a2) of the Lemma. By (a1) and Lemma 4.2(a), (mk)Q l. By (a2) and
Lemma 4.2(b), (km)Q lŒ. Also |l|=|(mk)|=km, so by Corollary 2.2,
l=(mk).
In the other direction: By Greene’s Theorem, if p has shape (mk) then it
is the disjoint union of k increasing subsequences a1, ..., ak of total size km.
By Schensted’s Theorem, each increasing subsequence of p has size at most
m, and therefore |a1 |=· · ·=|ak |=m. Similarly, p is a disjoint union of m
decreasing subsequences b1, ..., bm satisfying |b1 |=· · ·=|bm |=k.
(b) Each increasing subsequence ai intersects each decreasing sub-

sequence bj in at most one element, and since these km intersections cover
all elements of p they are all nonempty. L
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Proof of Theorem 4.1. Let p be a sequence of shape l=(mk). If m is the
shape of some subsequence of p then this subsequence contains an increas-
ing subsequence of length m1. Therefore m1 [ l1=m. Similarly m

−

1 [ l
−

1=k,
so that m ı (mk).
In the other direction: By Lemma 4.3, p is a disjoint union of k increas-
ing subsequences, of length m each, say a1, ..., ak (enumerated arbitrarily).
Similarly, p is a disjoint union of m decreasing subsequences, say b1, ..., bm
(of length k each). Also, each ai intersects each bj in a unique element;
denote it by P(i, j). Now let m ı (mk), and define s to be the subsequence
of p consisting of all elementsP(i, j)with j [ mi. We claim that s has shape m.
Indeed, s intersects ai in mi elements, and therefore (by Lemma 4.2(a))
mQ shape(s). Similarly, s intersects bj in m

−

j elements, and therefore
(by Lemma 4.2(b)) mŒQ shape(s)Œ. Since |shape(s)|=|m| by definition,
Corollary 2.2 implies that shape(s)=m and the proof is complete. L

The following theorem is complementary.

Theorem 4.4. If p is a sequence of shape l and (mk) ı l, then there
exists a subsequence of p of shape (mk).

In other words, for any positive integers m and k

Avoid (m
k)

n ı 0
{l * n | (mk) ł l}

Cl.

Note that Example 3.3 shows that the converse of Theorem 4.4 is false.

Proof. Let p be a sequence of shape l. By Greene’s Theorem, p con-
tains a disjoint union of k increasing subsequences of total size ;k

j=1 lj.
Denote this union by p̄, and let m :=shape(p̄). Obviously, there are at most
k parts in m (i.e., m=(m1, ..., mk) with mk \ 0) and ;k

j=1 mj=;k
j=1 lj. By

Greene’s Theorem,

C
k−1

j=1
mj=maximal size of a union of k−1 increasing subsequences in p̄

[maximal size of a union of k−1 increasing subsequences in p

=C
k−1

j=1
lj.

Hence, mk \ lk. By assumption (mk) ı l, so that m [ lk. We conclude that
there are exactly k parts in m, and m1 \ · · · \ mk \ m. In other words,
m −1=k and (k

m) ı mŒ.

168 ADIN AND ROICHMAN



Now, by the second part of Greene’s Theorem, p̄ contains a disjoint
union of m decreasing subsequences of total size km. Denote this union by
p̂, and denote its shape by n. p̂ is a subsequence of p̄, hence,

n −1=length of maximal decreasing subsequence in p̂

[ length of maximal decreasing subsequence in p̄=m −1=k.

On the other hand,

|n|=n −1+·· ·+n
−

m=km.

This shows that the shape of the subsequence p̂ is n=(mk). L

5. GENERAL SHAPES

Theorem 5.1. For any partition m=(m1, ..., mk) of m and any positive
integer n,

Avoid mn ı 0
{l * n | (mk1) ł l}

Cl.(5.1)

Proof. Let l be a shape such that (mk1) ı l. By Theorem 4.4, any per-
mutation of shape l contains a subsequence of shape (mk1). By Theorem
4.1, this subsequence contains a subsequence of shape m. L

Let avoid mn be the size of the set Avoid
m
n . Theorem 5.1 implies the follow-

ing asymptotic estimates.

Corollary 5.2. For any fixed partition m=(m1, ..., mk),

lim sup
nQ.

(avoid mn )
1/2n [ ht(m)+wd(m)(5.2)

and

max{ht(m), wd(m)} [ lim inf
nQ.

(avoid mn )
1/2n,(5.3)

where the height of m ht(m) :=m −1−1, and the width of m wd(m) :=m1−1.

Proof. Let l be a partition of n, and let fl be the number of standard
Young tableaux of shape l. By the Robinson–Schensted correspondence

(fl)2=#{p ¥ Sn | shape (p)=l}.
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Combining this fact with Theorem 5.1 we obtain

avoidmn [ #{p ¥ Sn | (m
k
1) ł shape(p)}= C

l * nN (mk1) ł l
(fl)2.

The asymptotics of the sum on the right hand side was studied by Berele
and Regev [BR, Sect. 7]. By [BR, Theorem 7.21], for fixed m1 and k

C
l * nN (mk1) ł l

(fl)2 ’ c1(m1, k) · nc2(m1, k) · (m1+k−2)2n,(5.4)

when n tends to infinity. Here c1(m1, k) and c2(m1, k) are independent of n.
This proves the upper bound (5.2).
For the lower bound, note that by Schensted’s Theorem any permutation
avoiding (m1) also avoids m. Similarly, any permutation avoiding (1k) also
avoids m. Thus

Avoid (m1)n 2 Avoid (1
m−1

n
) ı Avoid mn .

This implies that (for n large enough; e.g., n > (m1−1)(m
−

1−1))

avoid (m1)n +avoid
(1m
−
1

n
) [ avoidmn .

Combining this inequality with (5.4) proves the lower bound (5.3). L

Note. For an evaluation of avoid (m)n for m [ 4 see [St, Exercise 7.16(e)].
An asymptotic evaluation of avoid (m)n for fixed m > 4 was first done in
[Re].

6. OTHER SPECIAL CASES

6.1. Hooks

In this subsection we show that for hook avoiding permutations and n
large enough the ‘‘False Conjecture’’ is correct.

Theorem 6.1. For any hook m=(m, 1k−1) and n > (2m−4)(2k−4)

Avoid (m, 1
k−1)

n = 0
{l * n | (m, 1k−1) ł l}

Cl.

Note. If either m [ 3 or k [ 3 then equality holds for all values of n.

The following analogue of Lemma 4.3 characterizes permutations of
hook shape.
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Lemma 6.2. A permutation p has shape (m, 1k−1) if and only if p is a
union of an increasing subsequence of length m and a decreasing subsequence
of length k, intersecting in a unique element.

Proof. By Schensted’s Theorem, a permutation p of shape (m, 1k−1)
contains an increasing subsequence a with |a|=m and a decreasing sub-
sequence b with |b|=k, where |a 2 b| [ |p|=m+k−1. Since necessarily
|a 5 b| [ 1, it follows that |a 5 b|=1.
The converse follows similarly from Schensted’s Theorem. L

Lemma 6.3. Let m and k be positive integers.

(a) If either m [ 3 or k [ 3 then every permutation whose shape con-
tains the hook (m, 1k−1) has a subsequence of shape (m, 1k−1).

(b) If m \ 4 and k \ 4 then every permutation whose shape contains
the hook (2m−3, 1k−1) or the hook (m, 12k−4) has a subsequence of shape
(m, 1k−1).
(c) For any m \ 4 and k \ 4 there exists a permutation whose shape

contains (2m−4, 12k−5), but it has no subsequence of shape (m, 1k−1).

Note. The results in (a) and (b) above are best possible, as far as the
assumed size of a hook contained in the shape is concerned. For (a) this is
clear, and for (b) this is the content of (c).

Proof. We shall prove (b); the proof of (a) is similar.
(b) Let p be a permutation whose shape contains the hook

(2m−3, 1k−1), with m, k \ 4. Then p has an increasing subsequence a of
length 2m−3 and a decreasing subsequence b of length k. If a and b inter-
sect (necessarily in a unique element), then by truncating a to m elements
we get by Lemma 6.2 a subsequence of shape (m, 1k−1). Otherwise (i.e.,
assuming that a and b do not intersect) we will show that the union of a
and b contains the required subsequence.
Let a=(a1, ..., a2m−3) and b=(b1, ..., bk), so that a1 < · · · < a2m−3 and
b1 > · · · > bk.
Let ind(ai) denote the index of ai in the union of a and b (as a sub-
sequence of p); similarly for ind(bj).
Concerning the element am−1 there are three possibilities:

(1) There is an index 1 [ j [ k−1 such that

ind(bj) < ind(am−1) < ind(bj+1).

(2) ind(am−1) < ind(b1).
(3) ind(am−1) > ind(bk).
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We shall deal with case (1); the other cases are similar. Since bj > bj+1,
there are now three subcases:

(1a) bj > am−1 > bj+1.
(1b) am−1 < bj+1.
(1c) am−1 > bj.

In case (1a), am−1 may be added to the decreasing subsequence b, to obtain
two intersecting monotone subsequences of lengths 2m−3 and k+1. By
truncating these subsequences we will get an increasing subsequence of
length m intersecting a decreasing subsequence of length k.
In case (1b), (a1, ..., am−1, bj+1) is an increasing subsequence of length m
intersecting b.
In case (1c), (bj, am−1, am, ..., a2m−3) is an increasing subsequence of
length m intersecting b.
By Lemma 6.2, in all cases we obtain a subsequence of p having shape
(m, 1k−1).
(c) The construction extends Example 3.2 (for which m=k=4):

take p=(c, a, d, b), where a and d are increasing sequences of length m−2
and b, c are decreasing sequences of length k−2:

a=(1, ..., m−2); b=(m+k−4, ..., m−1);

c=(m+2k−6, ..., m+k−3); d=(m+2k−5, ..., 2m+2k−8).

It is easy to see that an increasing subsequence of p intersecting c must be
contained (omitting the intersection element itself) in d, so that its total
length is at most m−1. Similar analysis of b shows that an increasing sub-
sequence of length m in p must be contained in (a, d). Analogously, a
decreasing subsequence of length k must be contained in (c, b). The two
subsequences cannot intersect. L

Proof of Theorem 6.1. By Schensted’s Theorem, if a permutation p has
a subsequence of shape (m, 1k−1) then it has an increasing subsequence of
length m and a decreasing subsequence of length k. On the other hand, a
permutation in 1{l * n | (m, 1k−1) ł l} Cl has either no increasing subsequence of
length m or no decreasing subsequence of length k. Thus,

0
{l * n | (m, 1k−1) ł l}

Cl ı Avoid (m, 1
k−1)

n .

For the other direction, assume that p ¥ Cl with (m, 1k−1) ı l. Hence,
l1 \ m and l

−

1 \ k. If either m [ 3 or k [ 3 then, by Lemma 6.3(a), p has a
subsequence of shape (m, 1k−1). Otherwise (i.e., if m \ 4 and k \ 4), by
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assumption (2m−4)(2k−4) < n=|l| [ l1 ·l
−

1, and therefore either l1 >
2m−4 or l −1 > 2k−4. We can now use Lemma 6.3(b). L

Corollary 6.4. For any pair of positive integers m and k, and for
n \ 4mk

avoid (m, 1
k−1)

n =avoid (m)n +avoid
(1k)
n = C

l * nNl1 < m
(fl)2+ C

l * nNlŒ1 < k
(fl)2,

where fl is the number of standard Young tableaux of shape l.

Combining Corollary 6.4 with (5.4) we obtain

Corollary 6.5. limnQ. (avoid
(m, 1k−1)
n )1/2n=max{m−1, k−1}.

6.2. Avoiding (22)

In this subsection we compute avoid (2
2)
n and show that

lim
nQ.
(avoid (2

2)
n )

1/2n=`2+`2 .

In particular, unlike the case of hooks, neither the lower bound nor the
upper bound of Corollary 5.2 gives the correct limit in this case.
Example 3.3 shows that for any n \ 5,

0
{l * n | (22) ł l}

Cl ł Avoid (2
2)
n .

However, the opposite inclusion does hold.

Proposition 6.6. For any positive n,

Avoid (2
2)
n ı 0

{l * n | (22) ł l}
Cl.

Proposition 6.6 is a special case of Theorem 4.4. Here we suggest an
independent and more informative proof of this result.

Proof. By induction on n. The claim obviously holds for n [ 4. Assume
that it holds for n−1, for some n \ 5.
For the induction step observe that C (2

2)={2143, 2413, 3142, 3412}
consists of all permutations in S4 for which 1 and 4 are in the ‘‘middle’’. It
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follows that for any permutation p in Sn, if p1 ¨ {1, n} and pn ¨ {1, n} then
p is not (22)-avoiding. Therefore, if p ¥ Sn is (22)-avoiding then either
p1 ¥ {1, n} or pn ¥ {1, n}. Assume that p1 ¥ {1, n}. By the induction
hypothesis the shape of the subsequence (p2, ..., pn) does not contain (22)
and is therefore a hook (r, 1n−r−1) for some 1 [ r [ n−1. Adding p1=1
increases the size of the longest increasing subsequence by 1; thus, by
Schensted’s Theorem the resulting shape is (r+1, 1n−r−1). Adding p1=n
increases the size of the longest decreasing subsequence by 1; again, by
Schensted’s Theorem the resulting shape is (r, 1n−r). The case pn ¥ {1, n} is
similar. L

Corollary 6.7. For any positive integer n

avoid (2
2)
n =

1
2 (2+`2 )

n−1+12 (2−`2 )
n−1.

Proof. It follows from the proof of Proposition 6.6 that

avoid (2
2)
n =4·avoid

(22)
n−1−2 ·avoid

(22)
n−2.

The solution of this linear recursion (with appropriate initial values) gives
the desired result. L

7. FINAL REMARKS AND OPEN PROBLEMS

7.1. Algebraic Structure

Let R be the set of all representatives of minimal length of left cosets of
Sm in Sn (length here, as usual, is in terms of the Coxeter generators, i.e.,
adjacent transpositions). For any partition m of m, the set Cm of all permu-
tations of shape m is a two-sided Kazhdan–Lusztig cell in Sm. For any
n \ m the set of all permutations in Sn which are not m-avoiding coincides
with the set RCmR−1. Theorem 5.1 claims that for hook shapes the set
RCmR−1 is a union of two-sided Kazhdan–Lusztig cells. This phenomenon
generalizes a beautiful well-known fact: The set RCm (or CmR−1) is a union
of Kazhdan–Lusztig left (resp. right) cells [Sr; BV, Proposition 3.15]. See
also [GaR, Ro]. Barbasch and Vogan gave an algebraic proof of this fact
by associating the set RCm to induced representations. An algebraic
interpretation for the results in this paper is required. These and other
relations with representation theory deserve further study.

7.2. Asymptotics

Regev calculated, by considering Schensted’s Theorem, the exact asymp-
totics of avoid (m)n [Re]. In this paper we have generalized this ‘‘RSK
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approach’’ to prove that for any partition m there exists a constant c(m)
such that, for any n,

avoidmn [ c(m)
n.

Note that from Corollary 5.2 and Corollary 6.7 it also follows that, for m
not strictly contained in (22), there exists a constant c̃(m) > 1 such that
avoid mn \ c̃(m)

n for n large enough.
A far reaching generalization was conjectured by Stanley and Wilf
[Bo1].

The Stanley–Wilf Conjecture. For any fixed permutation s there exists
a constant c(s) such that, for any n

avoidn(s) [ c(s)n,

where avoid n(s) is the number of all s-avoiding permutations in Sn.

By a result of Arratia [Ar], if this conjecture holds then actually the
limit limnQ. avoid n(s)1/n always exists (and is finite).
The Stanley–Wilf conjecture holds for all s ¥ S3 [K, p. 238] and all
s ¥ S4 [Bo1, Bo2], as well as for many other cases (see [SSi, Bo3] and
their references). Recently, Alon and Friedgut [AF] have applied Daven-
port-Schinzel sequences to prove a somewhat weaker version of the
conjecture for arbitrary s. An interesting challenge is to apply the ‘‘RSK
approach’’ to attack the Stanley–Wilf Conjecture; namely, to apply
Greene’s Theorem and methods presented in this paper to sets avoiding a
single permutation.
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