8,392 research outputs found

    Packing tight Hamilton cycles in 3-uniform hypergraphs

    Full text link
    Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C \subset H is a collection of N edges for which there is an ordering of the vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i, v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for N divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.Comment: 31 pages, 1 figur

    Pseudo-random graphs

    Full text link
    Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs and the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page

    Powers of Hamilton cycles in pseudorandom graphs

    Full text link
    We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph GG is (ε,p,k,)(\varepsilon,p,k,\ell)-pseudorandom if for all disjoint XX and YV(G)Y\subset V(G) with Xεpkn|X|\ge\varepsilon p^kn and Yεpn|Y|\ge\varepsilon p^\ell n we have e(X,Y)=(1±ε)pXYe(X,Y)=(1\pm\varepsilon)p|X||Y|. We prove that for all β>0\beta>0 there is an ε>0\varepsilon>0 such that an (ε,p,1,2)(\varepsilon,p,1,2)-pseudorandom graph on nn vertices with minimum degree at least βpn\beta pn contains the square of a Hamilton cycle. In particular, this implies that (n,d,λ)(n,d,\lambda)-graphs with λd5/2n3/2\lambda\ll d^{5/2 }n^{-3/2} contain the square of a Hamilton cycle, and thus a triangle factor if nn is a multiple of 33. This improves on a result of Krivelevich, Sudakov and Szab\'o [Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403--426]. We also extend our result to higher powers of Hamilton cycles and establish corresponding counting versions.Comment: 30 pages, 1 figur

    Optimal covers with Hamilton cycles in random graphs

    Full text link
    A packing of a graph G with Hamilton cycles is a set of edge-disjoint Hamilton cycles in G. Such packings have been studied intensively and recent results imply that a largest packing of Hamilton cycles in G_n,p a.a.s. has size \lfloor delta(G_n,p) /2 \rfloor. Glebov, Krivelevich and Szab\'o recently initiated research on the `dual' problem, where one asks for a set of Hamilton cycles covering all edges of G. Our main result states that for log^{117}n / n < p < 1-n^{-1/8}, a.a.s. the edges of G_n,p can be covered by \lceil Delta(G_n,p)/2 \rceil Hamilton cycles. This is clearly optimal and improves an approximate result of Glebov, Krivelevich and Szab\'o, which holds for p > n^{-1+\eps}. Our proof is based on a result of Knox, K\"uhn and Osthus on packing Hamilton cycles in pseudorandom graphs.Comment: final version of paper (to appear in Combinatorica

    The number of Hamiltonian decompositions of regular graphs

    Full text link
    A Hamilton cycle in a graph Γ\Gamma is a cycle passing through every vertex of Γ\Gamma. A Hamiltonian decomposition of Γ\Gamma is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki's theorem from the 19th century, showing that a complete graph KnK_n on an odd number of vertices nn has a Hamiltonian decomposition. This result was recently greatly extended by K\"{u}hn and Osthus. They proved that every rr-regular nn-vertex graph Γ\Gamma with even degree r=cnr=cn for some fixed c>1/2c>1/2 has a Hamiltonian decomposition, provided n=n(c)n=n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ)H(\Gamma), the number of such decompositions of Γ\Gamma. Our main result is that H(Γ)=r(1+o(1))nr/2H(\Gamma)=r^{(1+o(1))nr/2}. In particular, the number of Hamiltonian decompositions of KnK_n is n(1o(1))n2/2n^{(1-o(1))n^2/2}

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Hamilton cycles in highly connected and expanding graphs

    Full text link
    In this paper we prove a sufficient condition for the existence of a Hamilton cycle, which is applicable to a wide variety of graphs, including relatively sparse graphs. In contrast to previous criteria, ours is based on only two properties: one requiring expansion of ``small'' sets, the other ensuring the existence of an edge between any two disjoint ``large'' sets. We also discuss applications in positional games, random graphs and extremal graph theory.Comment: 19 page
    corecore