5 research outputs found

    Generalized Tur\'an problems for even cycles

    Full text link
    Given a graph HH and a set of graphs F\mathcal F, let ex(n,H,F)ex(n,H,\mathcal F) denote the maximum possible number of copies of HH in an F\mathcal F-free graph on nn vertices. We investigate the function ex(n,H,F)ex(n,H,\mathcal F), when HH and members of F\mathcal F are cycles. Let CkC_k denote the cycle of length kk and let Ck={C3,C4,…,Ck}\mathscr C_k=\{C_3,C_4,\ldots,C_k\}. Some of our main results are the following. (i) We show that ex(n,C2l,C2k)=Θ(nl)ex(n, C_{2l}, C_{2k}) = \Theta(n^l) for any l,k≥2l, k \ge 2. Moreover, we determine it asymptotically in the following cases: We show that ex(n,C4,C2k)=(1+o(1))(k−1)(k−2)4n2ex(n,C_4,C_{2k}) = (1+o(1)) \frac{(k-1)(k-2)}{4} n^2 and that the maximum possible number of C6C_6's in a C8C_8-free bipartite graph is n3+O(n5/2)n^3 + O(n^{5/2}). (ii) Solymosi and Wong proved that if Erd\H{o}s's Girth Conjecture holds, then for any l≥3l \ge 3 we have ex(n,C2l,C2l−1)=Θ(n2l/(l−1))ex(n,C_{2l},\mathscr C_{2l-1})=\Theta(n^{2l/(l-1)}). We prove that forbidding any other even cycle decreases the number of C2lC_{2l}'s significantly: For any k>lk > l, we have ex(n,C2l,C2l−1∪{C2k})=Θ(n2).ex(n,C_{2l},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^2). More generally, we show that for any k>lk > l and m≥2m \ge 2 such that 2k≠ml2k \neq ml, we have ex(n,Cml,C2l−1∪{C2k})=Θ(nm).ex(n,C_{ml},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^m). (iii) We prove ex(n,C2l+1,C2l)=Θ(n2+1/l),ex(n,C_{2l+1},\mathscr C_{2l})=\Theta(n^{2+1/l}), provided a strong version of Erd\H{o}s's Girth Conjecture holds (which is known to be true when l=2,3,5l = 2, 3, 5). Moreover, forbidding one more cycle decreases the number of C2l+1C_{2l+1}'s significantly: More precisely, we have ex(n,C2l+1,C2l∪{C2k})=O(n2−1l+1),ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k}\}) = O(n^{2-\frac{1}{l+1}}), and ex(n,C2l+1,C2l∪{C2k+1})=O(n2)ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k+1}\}) = O(n^2) for l>k≥2l > k \ge 2. (iv) We also study the maximum number of paths of given length in a CkC_k-free graph, and prove asymptotically sharp bounds in some cases.Comment: 37 Pages; Substantially revised, contains several new results. Mistakes corrected based on the suggestions of a refere

    Subgraph densities in a surface

    Full text link
    Given a fixed graph HH that embeds in a surface Σ\Sigma, what is the maximum number of copies of HH in an nn-vertex graph GG that embeds in Σ\Sigma? We show that the answer is Θ(nf(H))\Theta(n^{f(H)}), where f(H)f(H) is a graph invariant called the `flap-number' of HH, which is independent of Σ\Sigma. This simultaneously answers two open problems posed by Eppstein (1993). When HH is a complete graph we give more precise answers.Comment: v4: referee's comments implemented. v3: proof of the main theorem fully rewritten, fixes a serious error in the previous version found by Kevin Hendre

    Counting copies of a fixed subgraph in F-free graphs

    Get PDF
    Fix graphs F and H and let ex(n, H, F) denote the maximum possible number of copies of the graph H in an n-vertex F-free graph. The systematic study of this function was initiated by Alon and Shikhelman [J. Comb. Theory, B. 121 (2016)]. In this paper, we give new general bounds concerning this generalized Tur´an function. We also determine ex(n, Pk, K2,t) (where Pk is a path on k vertices) and ex(n, Ck, K2,t) asymptotically for every k and t. We also characterize the graphs F that cause the function ex(n, Ck, F) to be linear in n. In the final section we discuss a connection between the function ex(n, H, F) and Berge hypergraph problem
    corecore