3,375 research outputs found

    Variational-Correlations Approach to Quantum Many-body Problems

    Get PDF
    We investigate an approach for studying the ground state of a quantum many-body Hamiltonian that is based on treating the correlation functions as variational parameters. In this approach, the challenge set by the exponentially-large Hilbert space is circumvented by approximating the positivity of the density matrix, order-by-order, in a way that keeps track of a limited set of correlation functions. In particular, the density-matrix description is replaced by a correlation matrix whose dimension is kept linear in system size, to all orders of the approximation. Unlike the conventional variational principle which provides an upper bound on the ground-state energy, in this approach one obtains a lower bound instead. By treating several one-dimensional spin 1/2 Hamiltonians, we demonstrate the ability of this approach to produce long-range correlations, and a ground-state energy that converges to the exact result. Possible extensions, including to higher-excited states are discussed

    Three dimensional resonating valence bond liquids and their excitations

    Full text link
    We show that there are two types of RVB liquid phases present in three-dimensional quantum dimer models, corresponding to the deconfining phases of U(1) and Z_2 gauge theories in d=3+1. The former is found on the bipartite cubic lattice and is the generalization of the critical point in the square lattice quantum dimer model found originally by Rokhsar and Kivelson. The latter exists on the non-bipartite face-centred cubic lattice and generalizes the RVB phase found earlier by us on the triangular lattice. We discuss the excitation spectrum and the nature of the ordering in both cases. Both phases exhibit gapped spinons. In the U(1) case we find a collective, linearly dispersing, transverse excitation, which is the photon of the low energy Maxwell Lagrangian and we identify the ordering as quantum order in Wen's sense. In the Z_2 case all collective excitations are gapped and, as in d=2, the low energy description of this topologically ordered state is the purely topological BF action. As a byproduct of this analysis, we unearth a further gapless excitation, the pi0n, in the square lattice quantum dimer model at its critical point.Comment: 9 pages, 2 figure

    Fractionalized topological insulators from frustrated spin models in three dimensions

    Full text link
    We present a theory of three dimensional fractionalized topological insulators in the form of U(1) spin liquids with gapped fermionic spinons in the bulk and topologically protected gapless spinon surface states. Starting from a spin-1/2 model on a pyrochlore lattice, with frustrated antiferromagnetic and ferromagnetic exchange interactions, we show that decomposition of the latter interactions, within slave-fermion representation of the spins, can naturally give rise to an emergent spin-orbit coupling for the spinons. This stabilizes a fractionalized topological insulators which also have bulk bond spin-nematic order. Finally, we describe the low energy properties of these states.Comment: 10 page

    Routing on the Visibility Graph

    Full text link
    We consider the problem of routing on a network in the presence of line segment constraints (i.e., obstacles that edges in our network are not allowed to cross). Let PP be a set of nn points in the plane and let SS be a set of non-crossing line segments whose endpoints are in PP. We present two deterministic 1-local O(1)O(1)-memory routing algorithms that are guaranteed to find a path of at most linear size between any pair of vertices of the \emph{visibility graph} of PP with respect to a set of constraints SS (i.e., the algorithms never look beyond the direct neighbours of the current location and store only a constant amount of additional information). Contrary to {\em all} existing deterministic local routing algorithms, our routing algorithms do not route on a plane subgraph of the visibility graph. Additionally, we provide lower bounds on the routing ratio of any deterministic local routing algorithm on the visibility graph.Comment: An extended abstract of this paper appeared in the proceedings of the 28th International Symposium on Algorithms and Computation (ISAAC 2017). Final version appeared in the Journal of Computational Geometr

    Quantum Field Theory for the Three-Body Constrained Lattice Bose Gas -- Part I: Formal Developments

    Full text link
    We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and non-interacting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a ``constraint principle'' operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low lying excitations are holes and di-holes on top of the constraint induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [14].Comment: 21 pages, 5 figure
    • …
    corecore