3 research outputs found

    Average-case intractability vs. worst-case intractability

    Get PDF
    AbstractWe show that not all sets in NP (or other levels of the polynomial-time hierarchy) have efficient average-case algorithms unless the Arthur-Merlin classes MA and AM can be derandomized to NP and various subclasses of P/poly collapse to P. Furthermore, other complexity classes like P(PP) and PSPACE are shown to be intractable on average unless they are easy in the worst case

    Structural Average Case Complexity

    Get PDF
    AbstractLevin introduced an average-case complexity measure, based on a notion of “polynomial on average,” and defined “average-case polynomial-time many-one reducibility” among randomized decision problems. We generalize his notions of average-case complexity classes, Random-NP and Average-P. Ben-Davidet al. use the notation of 〈C, F〉 to denote the set of randomized decision problems (L, μ) such thatLis a set in C andμis a probability density function in F. This paper introduces Aver〈C, F〉 as the class of randomized decision problems (L, μ) such thatLis computed by a type-C machine onμ-average andμis a density function in F. These notations capture all known average-case complexity classes as, for example, Random-NP= 〈NP, P-comp〉 and Average-P=Aver〈P, ∗〉, where P-comp denotes the set of density functions whose distributions are computable in polynomial time, and ∗ denotes the set of all density functions. Mainly studied are polynomial-time reductions between randomized decision problems: many–one, deterministic Turing and nondeterministic Turing reductions and the average-case versions of them. Based on these reducibilities, structural properties of average-case complexity classes are discussed. We give average-case analogues of concepts in worst-case complexity theory; in particular, the polynomial time hierarchy and Turing self-reducibility, and we show that all known complete sets for Random-NP are Turing self-reducible. A new notion of “real polynomial-time computations” is introduced based on average polynomial-time computations for arbitrary distributions from a fixed set, and it is used to characterize the worst-case complexity classesΔpkandΣpkof the polynomial-time hierarchy
    corecore