2,057 research outputs found

    Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity

    Full text link
    This paper deals with the existence and the asymptotic behavior of non-negative solutions for a class of stationary Kirchhoff problems driven by a fractional integro-differential operator LK\mathcal L_K and involving a critical nonlinearity. The main feature, as well as the main difficulty, of the analysis is the fact that the Kirchhoff function MM can be zero at zero, that is the problem is degenerate. The adopted techniques are variational and the main theorems extend in several directions previous results recently appeared in the literature

    Nonlocal Kirchhoff superlinear equations with indefinite nonlinearity and lack of compactness

    Full text link
    We study the following Kirchhoff equation −(1+b∫R3∣∇u∣2dx)Δu+V(x)u=f(x,u), x∈R3.- \left(1 + b \int_{\mathbb{R}^3} |\nabla u|^2 dx \right) \Delta u + V(x) u = f(x,u), \ x \in \mathbb{R}^3. A special feature of this paper is that the nonlinearity ff and the potential VV are indefinite, hence sign-changing. Under some appropriate assumptions on VV and ff, we prove the existence of two different solutions of the equation via the Ekeland variational principle and Mountain Pass Theorem

    Infinitely many periodic solutions for a class of fractional Kirchhoff problems

    Full text link
    We prove the existence of infinitely many nontrivial weak periodic solutions for a class of fractional Kirchhoff problems driven by a relativistic Schr\"odinger operator with periodic boundary conditions and involving different types of nonlinearities

    Nonlinear equations involving the square root of the Laplacian

    Full text link
    In this paper we discuss the existence and non-existence of weak solutions to parametric fractional equations involving the square root of the Laplacian A1/2A_{1/2} in a smooth bounded domain Ω⊂Rn\Omega\subset \mathbb{R}^n (n≥2n\geq 2) and with zero Dirichlet boundary conditions. Namely, our simple model is the following equation \begin{equation*} \left\{ \begin{array}{ll} A_{1/2}u=\lambda f(u) & \mbox{ in } \Omega\\ u=0 & \mbox{ on } \partial\Omega. \end{array}\right. \end{equation*} The existence of at least two non-trivial L∞L^{\infty}-bounded weak solutions is established for large value of the parameter λ\lambda requiring that the nonlinear term ff is continuous, superlinear at zero and sublinear at infinity. Our approach is based on variational arguments and a suitable variant of the Caffarelli-Silvestre extension method
    • …
    corecore