1,073 research outputs found

    Wireless Technologies in Factory Automation

    Get PDF

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Hybrid RSS-RTT Localization Scheme for Indoor Wireless Networks

    Get PDF
    [EN]Nowadays, a variety of information related to the distance between two wireless devices can be easily obtained. This paper presents a hybrid localization scheme that combines received signal strength (RSS) and round-trip time (RTT) information with the aim of improving the previous localization schemes. The hybrid localization scheme is based on an RSS ranging technique that uses RTT ranging estimates as constraints among other heuristic constraints. Once distances have been well estimated, the position of the mobile station (MS) to be located is estimated using a new robust least-squared multilateration (RLSM) technique that combines the RSS and RTT ranging estimates mitigating the negative effect of outliers. The hybrid localization scheme coupled with simulations and measurements demonstrates that it outperforms the conventional RSS-based and RTT-based localization schemes, without using either a tracking technique or a previous calibration stage of the environment.Dirección General de Telecomunicaciones de la Consejería de Fomento de Castilla y Leó

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Interference mitigation in wireless mesh networks through radio co-location aware conflict graphs

    Get PDF
    Wireless Mesh Networks (WMNs) have evolved into a wireless communication technology of immense interest. But technological advancements in WMNs have inadvertently spawned a plethora of network performance bottlenecks, caused primarily by the rise in prevalent interference. Conflict Graphs are indispensable tools used to theoretically represent and estimate the interference in wireless networks. We propose a generic algorithm to generate conflict graphs which is independent of the underlying interference model. Further, we propose the notion of radio co-location interference, which is caused and experienced by spatially co-located radios in multi-radio multi-channel WMNs. We experimentally validate the concept, and propose a new all-encompassing algorithm to create a radio co-location aware conflict graph. Our novel conflict graph generation algorithm is demonstrated to be significantly superior and more efficient than the conventional approach, through theoretical interference estimates and comprehensive experiments. The results of an extensive set of ns-3 simulations run on the IEEE 802.11g platform strongly indicate that the radio co-location aware conflict graphs are a marked improvement over their conventional counterparts. We also question the use of total interference degree as a reliable metric to predict the performance of a Channel Assignment scheme in a given WMN deployment
    corecore