7,720 research outputs found

    Graphs with few Hamiltonian Cycles

    Full text link
    We describe an algorithm for the exhaustive generation of non-isomorphic graphs with a given number k≥0k \ge 0 of hamiltonian cycles, which is especially efficient for small kk. Our main findings, combining applications of this algorithm and existing algorithms with new theoretical results, revolve around graphs containing exactly one hamiltonian cycle (1H) or exactly three hamiltonian cycles (3H). Motivated by a classic result of Smith and recent work of Royle, we show that there exist nearly cubic 1H graphs of order nn iff n≥18n \ge 18 is even. This gives the strongest form of a theorem of Entringer and Swart, and sheds light on a question of Fleischner originally settled by Seamone. We prove equivalent formulations of the conjecture of Bondy and Jackson that every planar 1H graph contains two vertices of degree 2, verify it up to order 16, and show that its toric analogue does not hold. We treat Thomassen's conjecture that every hamiltonian graph of minimum degree at least 33 contains an edge such that both its removal and its contraction yield hamiltonian graphs. We also verify up to order 21 the conjecture of Sheehan that there is no 4-regular 1H graph. Extending work of Schwenk, we describe all orders for which cubic 3H triangle-free graphs exist. We verify up to order 4848 Cantoni's conjecture that every planar cubic 3H graph contains a triangle, and show that there exist infinitely many planar cyclically 4-edge-connected cubic graphs with exactly four hamiltonian cycles, thereby answering a question of Chia and Thomassen. Finally, complementing work of Sheehan on 1H graphs of maximum size, we determine the maximum size of graphs containing exactly one hamiltonian path and give, for every order nn, the exact number of such graphs on nn vertices and of maximum size.Comment: 29 pages; to appear in Mathematics of Computatio

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Proof of Koml\'os's conjecture on Hamiltonian subsets

    Get PDF
    Koml\'os conjectured in 1981 that among all graphs with minimum degree at least dd, the complete graph Kd+1K_{d+1} minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when dd is sufficiently large. In fact we prove a stronger result: for large dd, any graph GG with average degree at least dd contains almost twice as many Hamiltonian subsets as Kd+1K_{d+1}, unless GG is isomorphic to Kd+1K_{d+1} or a certain other graph which we specify.Comment: 33 pages, to appear in Proceedings of the London Mathematical Societ
    • …
    corecore