1,115 research outputs found

    Decomposing a Graph into Shortest Paths with Bounded Eccentricity

    Get PDF
    We introduce the problem of hub-laminar decomposition which generalizes that of computing a shortest path with minimum eccentricity (MESP). Intuitively, it consists in decomposing a graph into several paths that collectively have small eccentricity and meet only near their extremities. The problem is related to computing an isometric cycle with minimum eccentricity (MEIC). It is also linked to DNA reconstitution in the context of metagenomics in biology. We show that a graph having such a decomposition with long enough paths can be decomposed in polynomial time with approximated guaranties on the parameters of the decomposition. Moreover, such a decomposition with few paths allows to compute a compact representation of distances with additive distortion. We also show that having an isometric cycle with small eccentricity is related to the possibility of embedding the graph in a cycle with low distortion

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4â‹…n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width

    Beyond Helly graphs: the diameter problem on absolute retracts

    Full text link
    Characterizing the graph classes such that, on nn-vertex mm-edge graphs in the class, we can compute the diameter faster than in O(nm){\cal O}(nm) time is an important research problem both in theory and in practice. We here make a new step in this direction, for some metrically defined graph classes. Specifically, a subgraph HH of a graph GG is called a retract of GG if it is the image of some idempotent endomorphism of GG. Two necessary conditions for HH being a retract of GG is to have HH is an isometric and isochromatic subgraph of GG. We say that HH is an absolute retract of some graph class C{\cal C} if it is a retract of any G∈CG \in {\cal C} of which it is an isochromatic and isometric subgraph. In this paper, we study the complexity of computing the diameter within the absolute retracts of various hereditary graph classes. First, we show how to compute the diameter within absolute retracts of bipartite graphs in randomized O~(mn)\tilde{\cal O}(m\sqrt{n}) time. For the special case of chordal bipartite graphs, it can be improved to linear time, and the algorithm even computes all the eccentricities. Then, we generalize these results to the absolute retracts of kk-chromatic graphs, for every fixed k≥3k \geq 3. Finally, we study the diameter problem within the absolute retracts of planar graphs and split graphs, respectively
    • …
    corecore