4 research outputs found

    On Probabilistic Parallel Programs with Process Creation and Synchronisation

    Full text link
    We initiate the study of probabilistic parallel programs with dynamic process creation and synchronisation. To this end, we introduce probabilistic split-join systems (pSJSs), a model for parallel programs, generalising both probabilistic pushdown systems (a model for sequential probabilistic procedural programs which is equivalent to recursive Markov chains) and stochastic branching processes (a classical mathematical model with applications in various areas such as biology, physics, and language processing). Our pSJS model allows for a possibly recursive spawning of parallel processes; the spawned processes can synchronise and return values. We study the basic performance measures of pSJSs, especially the distribution and expectation of space, work and time. Our results extend and improve previously known results on the subsumed models. We also show how to do performance analysis in practice, and present two case studies illustrating the modelling power of pSJSs.Comment: This is a technical report accompanying a TACAS'11 pape

    On the Memory Consumption of Probabilistic Pushdown Automata

    Get PDF
    We investigate the problem of evaluating memory consumption for systems modelled by probabilistic pushdown automata (pPDA). The space needed by a runof a pPDA is the maximal height reached by the stack during the run. Theproblem is motivated by the investigation of depth-first computations that playan important role for space-efficient schedulings of multithreaded programs. We study the computation of both the distribution of the memory consumption and its expectation. For the distribution, we show that a naive method incurs anexponential blow-up, and that it can be avoided using linear equation systems.We also suggest a possibly even faster approximation method.Given~varepsilon>0varepsilon>0, these methods allow to compute bounds on the memoryconsumption that are exceeded with a probability of at most~varepsilonvarepsilon. For the expected memory consumption, we show that whether it is infinite can be decided in polynomial time for stateless pPDA (pBPA) and in polynomial space for pPDA. We also provide an iterative method for approximating theexpectation. We show how to compute error bounds of our approximation methodand analyze its convergence speed. We prove that our method convergeslinearly, i.e., the number of accurate bits of the approximation is a linear function of the number of iterations
    corecore